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The set of probability distribution solutions
of a linear functional equation

by Janusz Morawiec (Katowice) and Ludwig Reich (Graz)

Abstract. Let (Ω,A, P ) be a probability space and let τ : R×Ω → R be a function
which is strictly increasing and continuous with respect to the first variable, measurable
with respect to the second variable. Given the set of all continuous probability distribution
solutions of the equation

F (x) =
�

Ω

F (τ(x, ω)) dP (ω)

we determine the set of all its probability distribution solutions.

1. Introduction. Fix a probability space (Ω,A, P ), a function τ :
R×Ω → R and consider the equation

(1) F (x) =
�

Ω

F (τ(x, ω)) dP (ω).

This equation as well as its particular cases appear in many branches of
mathematics and their solutions are extensively studied in various classes of
functions (see [2], [12]). Measurable and nonnegative solutions of (1) have
been investigated in [7], [8]. Continuous and bounded solutions of (1) have
been studied in [3], [5], [9], [10]. Existence and uniqueness of solutions of
(1) in a class of bounded functions have been proved in [13]. Properties
of this unique solution have been examined in [14]. Absolutely continuous
probability distribution (p.d.) solutions of (1) are interesting in connection
with the refinement equation. Such solutions have been considered in [4],
[6], [16], [17]. Equation (1) contains the integral Cauchy functional equation
which appears in probability theory (see [18], [19]). Interesting and very
general results on solutions of (1) in the class of p.d. functions can be found
in [1]. P.d. solutions of a very special case of (1) have been studied in [15]
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in connection with a problem coming from game theory. Motivated by The-
orem 6 from that paper we are interested in answering the following main
question: Is it possible to determine all p.d. solutions of (1) if one knows all
solutions which are continuous p.d. functions? Another motivation to pose
the above question comes from [1], [9] and [11]. For example, we know from
[1] that equation (1) may possess exactly one solution in the class of all p.d.
functions (see Theorem A in Section 7). But the problem is: When is the
unique solution continuous? According to [9] in some cases equation (1) has
no continuous p.d. solutions (see Theorem B in Section 7) and the problem
reads: Are there discontinuous p.d. solutions of (1)? Further, the paper [11]
brings conditions under which equation (1) has exactly one continuous p.d.
solution (see Theorem C in Section 7). Now the problem is: Is the set of p.d.
solutions of (1) nonvoid and how large is it? It turns out that we can solve
all these problems if we know a positive answer to our main question.

2. Notation. From now on we assume that τ : R × Ω → R is a given
function such that for every x ∈ R the function τ(x, ·) is measurable, and
for every ω ∈ Ω the function τ(·, ω) is strictly increasing and continuous.

Denote by C the class of all continuous p.d. solutions of (1). In this paper
we determine the class

I = {F : R→ [0, 1] | F is a nondecreasing solution of (1) such that
F+(−∞) = lim

x→−∞
F (x) = 0 and F−(+∞) = lim

x→+∞
F (x) = 1},

assuming that the class C is given. Since I contains the classes

R = {F ∈ I | F is right continuous}
and

L = {F ∈ I | F is left continuous},
it follows that the results on I can be easily reformulated to results con-
cerning R and L. The details are left to the reader.

The following remark can be proved by a simple verification.

Remark 1. Let F1, . . . , Fn : R→ R be solutions of (1) and let α1, . . . , αn
be real numbers. Then F = α1F1 + · · · + αnFn is a solution of (1), and if
moreover F1, . . . , Fn ∈ I [L,R, C] and α1, . . . , αn are nonnegative and sum
to one, then F ∈ I [L,R, C].

We now define two sets which will play the key role in the description of
the class I. Put

E = {x ∈ R | τ(x, ω) = x for almost all ω ∈ Ω}, E0 = E ∪ {−∞,+∞}.
Remark 2. Let a, b ∈ E0 and let J be an interval with endpoints a and b.

If F : R→ R is a solution of (1), then so is F |J .
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In particular , any constant function defined on J is a solution of (1).

Proof. It is enough to observe that {τ(x, ω) | x ∈ J} ⊂ J for almost all
ω ∈ Ω, by the strict monotonicity of τ as a function of the first variable.

Given a nondecreasing solution F : R → R of (1) we define functions
F−, F

+, ∆F : R→ R by

F−(x) = lim
y→x−

F (y), F+(x) = lim
y→x+

F (y), ∆F (x) = F+(x)− F−(x),

and if a, b ∈ E0 with a < b, F+(a) < F−(b), we also define a function
Fa,b : R→ R by

Fa,b(x) =


0 if x ∈ (−∞, a],
F (x)− F+(a)
F−(b)− F+(a)

if x ∈ (a, b),

1 if x ∈ [b,+∞).

By simple computations we get the following remark.

Remark 3. Let F ∈ I. Then:

(i) F− ∈ L, F+ ∈ R.
(ii) ∆F is a nonnegative solution of (1) and ∆F (x1)+· · ·+∆F (xn) ≤ 1

for all x1 < · · · < xn and n ∈ N.
(iii) F is continuous at x if and only if ∆F (x) = 0.
(iv) Fa,b ∈ I for all a, b ∈ E0.

3. Basic properties of solutions of (1). The following lemma is the
key observation for our next considerations.

Lemma 1. Let F ∈ I. If x 6∈ E, then ∆F (x) = 0.

Proof. Suppose, on the contrary, that there is an x0 6∈ E such that
∆F (x0) > 0. Put

a =
{

sup{x ∈ E | x < x0} if {x ∈ E | x < x0} 6= ∅,
−∞ otherwise,

b =
{

inf{x ∈ E | x0 < x} if {x ∈ E | x0 < x} 6= ∅,
+∞ otherwise.

Clearly,

(2) (a, b) ∩E = ∅.
Since E is closed, we have x0 ∈ (a, b). Hence F+(a) < F−(b), and by Remark
3(iv) we get Fa,b ∈ I. Moreover, from the definition of Fa,b we see that

∆Fa,b(x0) > 0,(3)
∆Fa,b(x) = 0 for all x 6∈ (a, b).(4)
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Let G = Fa,b. We see from (3), Remark 3(ii) and (4) that the set {x ∈
(a, b) | ∆G(x) ≥ ∆G(x0)} is nonempty, finite and contained in (a, b). Put

L = sup{∆G(x) | x ∈ (a, b)}.
Clearly, L > 0 and the set {x ∈ (a, b) | ∆G(x) = L} is also nonempty, finite
and contained in (a, b). Hence there are a < x1 < · · · < xn < b such that

∆G(x1) = · · · = ∆G(xn) = L,(5)
∆G(x) < L for all x 6∈ {x1, . . . , xn}.(6)

Remarks 3(i), 3(iii) and (5) imply

(7) 0 < G+(x1) < · · · < G+(xn) ≤ 1.

Put
Ai = {ω ∈ Ω | τ(x1, ω) = xi}

for all i ∈ {1, . . . , n}. Notice that the sets Ai are pairwise disjoint and

(8) P (A1) < 1,

by (2) and the fact that x1 ∈ (a, b).
Suppose that P (

⋃n
i=1Ai) < 1. Then using Remark 3(ii), (5) and (6) we

obtain

L = ∆G(x1) =
n∑
i=1

�

Ai

∆G(τ(x1, ω)) dP (ω) +
�

Ω\
Sn
i=1 Ai

∆G(τ(x1, ω)) dP (ω)

< L
n∑
i=1

P (Ai) + L
[
1− P

( n⋃
i=1

Ai

)]
= L,

which is impossible. Hence

(9) P
( n⋃
i=1

Ai

)
= 1

and n ≥ 2, by (8). Using Remark 3(i), (1) and (9) we obtain

G+(x1) =
n∑
i=1

G+(xi)P (Ai).

This jointly with (7) and (9) gives

[1− P (A1)]G+(x1) =
n∑
i=2

G+(xi)P (Ai)

>

n∑
i=2

G+(x1)P (Ai)

= [1− P (A1)]G+(x1),

a contradiction.
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An obvious consequence of Lemma 1 and Remark 3(iii) is the following
corollary.

Corollary 1. If E = ∅, then C = R = L = I.

4. The case C = ∅. Throughout this section we assume that C = ∅.
(This case occurs in [9].)

Lemma 2. Let F ∈ I and let a, b ∈ E0 with a < b. If (a, b)∩E = ∅, then
F is constant on (a, b).

Proof. Suppose, contrary to our claim, that F+(a) < F−(b). From Re-
mark 3(iv) we conclude that Fa,b ∈ I. This jointly with Lemma 1 and
Remark 3(iii) shows that Fa,b ∈ C, a contradiction.

From Corollary 1, Lemma 2 and Remark 2 we get the following descrip-
tion of the class I.

Theorem 1.

(i) If E = ∅, then I = ∅.
(ii) If E 6= ∅, then I 6= ∅. Moreover , if F : R → [0, 1], then F ∈ I if

and only if F+(−∞) = 0, F−(+∞) = 1, F is nondecreasing and
constant on any interval (a, b), where a, b ∈ E0 with E ∩ (a, b) = ∅.

5. The case C 6= ∅. Until the end of the paper we assume that C 6= ∅.
(This case occurs in [13].) We begin with a general observation concerning
the members of C.

Lemma 3. Either |C| = 1 or |C| = c.

Proof. Fix F1, F2 ∈ C. For every α ∈ [0, 1] define Gα : R→ R by

Gα = αF1 + (1− α)F2.

From Remark 1 we conclude that Gα ∈ C for all α ∈ [0, 1].
Since the set of all continuous real functions on R has the cardinality of

the continuum, we have |C| ≤ c. If |C| < c, then there are α1, α2 ∈ [0, 1],
α1 6= α2, such that Gα1 = Gα2 . Consequently, F1 = F2.

The main result of this section reads as follows.

Theorem 2.

(i) If E = ∅, then I = C.
(ii) If E 6= ∅, then I ! C. Moreover , if F : R→ [0, 1], then F ∈ I if and

only if F is nondecreasing , F+(−∞) = 0, F−(+∞) = 1 and for all
a, b ∈ E0 with E ∩ (a, b) = ∅ there are G ∈ C and α, β ∈ [0, 1] with
α+ β ≤ 1 such that
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(10) F |(a,b) = α+ βG|(a,b).

Proof. By Corollary 1 we only need to prove assertion (ii). Fix F ∈ I
and a, b ∈ E0 such that E ∩ (a, b) = ∅.

If F+(a) = F−(b), then (10) holds with α = F+(a), β = 0 and arbitrary
G ∈ C.

If F+(a) < F−(b), then from Remark 3(iv), 3(iii) and Lemma 1 we
conclude that Fa,b ∈ C. Then (10) holds with α = F+(a), β = F−(b)−F+(a)
and G = Fa,b.

The rest of the proof follows from Remarks 1, 2 and the fact that each
function defined on E satisfies (1).

6. The case |C| = 1. Throughout this section we assume that C = {F}.
(This case occurs in [11].) In this particular case Theorem 2 is still valid. To
improve it we need the following observation.

Lemma 4. E ⊂ {x ∈ R | F(x) ∈ {0, 1}}.

Proof. Fix an x0 ∈ E such that F(x0) > 0. Remark 3(iv) leads to
F−∞,x0 = F. Hence F(x0) = 1.

Put

A =
{

sup{x ∈ E | F(x) = 0} if {x ∈ E | F(x) = 0} 6= ∅,
−∞ otherwise,

B =
{

inf{x ∈ E | F(x) = 1} if {x ∈ E | F(x) = 1} 6= ∅,
+∞ otherwise.

Clearly, A,B ∈ E0, −∞ ≤ A < B ≤ +∞ and, by Lemma 4, (A,B) ∩E = ∅
and if E 6= ∅, then A ∈ R or B ∈ R. We now have the following description
of the class I.

Theorem 3.

(i) If E = ∅, then I = {F}.
(ii) If E 6= ∅, then I ! {F}. Moreover , if F : R → [0, 1], then F ∈ I

if and only if F is nondecreasing , constant on any interval (a, b) 6=
(A,B), where a, b ∈ E0 with E ∩ (a, b) = ∅, and

(11) F |(A,B) = α+ βF|(A,B)

with α, β ∈ [0, 1], α+ β ≤ 1, and

(a) if A ∈ R and B ∈ R, then F+(−∞) = 0 and F−(+∞) = 1,
(b) if A = −∞ and B ∈ R, then F−(+∞) = 1 and α = 0,
(c) if A ∈ R and B = +∞, then F+(−∞) = 0 and β = 1− α.

Proof. The representation (11) follows from (10) with G = F. The other
assertions follow from Theorem 2 and Lemma 4.



Probability distribution solutions of a functional equation 259

7. Applications. We now give three examples of the possible applica-
tions of the results obtained. The following theorem on the existence and
uniqueness of solutions of (1) in the class of p.d. functions is proved in [1].

Theorem A. Assume that for every ω ∈ Ω the function τ(·, ω) is a
strictly increasing transformation of R onto R and for every x ∈ R the
function τ(x, ·) is measurable. Let L : Ω → (0,+∞) be a measurable function
such that

|τ(x, ω)− τ(y, ω)| ≥ L(ω)|x− y| for x, y ∈ R, ω ∈ Ω,(12)

0 <
�

Ω

logL(ω) dP (ω) < +∞.(13)

If there is x0 ∈ R such that
�

{ω |L(ω)<|τ(x0,ω)−x0|}

log
|τ(x0, ω)− x0|

L(ω)
dP (ω) < +∞,

then (1) has exactly one solution F in the class of all p.d. functions.

Conditions (12) and (13) imply that the set E consists of at most one
element. Now it follows from Corollary 1 that the unique solution F of (1)
from Theorem A is continuous if and only if E = ∅; moreover F = χ[y,+∞)

if and only if E = {y}.
The next two results concern a special but very interesting case of (1),

namely, equations of the form

(14) F (x) =
�

Ω

F (L(ω)x−M(ω)) dP (ω).

The following result follows from [9].

Theorem B. Let L : Ω → (0,+∞), M : Ω → R be measurable functions
such that −∞ <

	
Ω logL(ω) dP (ω) < 0 and

	
Ω log max{|M(ω)|, 1} dP (ω) <

+∞. Then (14) has no continuous p.d. solutions.

It is clear that if τ(x, ω) = L(ω)x−M(ω) for x ∈ R and ω ∈ Ω, then the
set E consists of at most one element. Now from Theorem 1 we conclude
that under the assumptions of Theorem B equation (14) has no p.d. solution
if and only if E = ∅; moreover χ[y,+∞) is the unique p.d. solution of (14) if
and only if E = {y}.

The next theorem can be found in [11]; cf. [9].

Theorem C. Let L : Ω → (0,+∞), M : Ω → R be measurable functions
such that

	
Ω log max{|M(ω)|/L(ω), 1} dP (ω) < +∞ and (13) holds. If

(15) P ({ω | L(ω)x−M(ω) = x}) < 1 for all x ∈ R,

then (14) has exactly one continuous p.d. solution F .
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Condition (15) yields E = ∅. Hence the word “continuous” can be omit-
ted from the assertion of Theorem C, by Corollary 1.

8. The set E. It is clear that for a given function τ (strictly increas-
ing and continuous with respect to the first variable, and measurable with
respect to the second) the set E is closed. One can ask if for a given closed
set E ⊂ R there is a function τ , having all required properties, such that
E = E. The next example answers this question.

Example. Fix a closed set E ⊂ R and let {(ai, bi) | i ∈ I} be a
(countable) set of pairwise disjoint intervals such that R \ E =

⋃
i∈I(ai, bi).

For every i ∈ I fix a function gi : (ai, bi) × Ω → (ai, bi) such that for
every x ∈ (ai, bi) the function gi(x, ·) is measurable, for every ω ∈ Ω
the function gi(·, ω) is strictly increasing without fixed points, continuous,
limx→ai gi(x, ω) = ai and limx→bi gi(x, ω) = bi. Next define the function
τ : R×Ω → R by

τ(x, ω) =
{
x if x ∈ E,
gi(x, ω) if x ∈ (ai, bi).

It is clear that τ is strictly increasing and continuous with respect to the
first variable, measurable with respect to the second variable, and E = E.
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