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Alpha-invariant of toric line bundles

by Thibaut Delcroix (Grenoble)

Abstract. We generalize the work of Jian Song by computing the α-invariant of any
(nef and big) toric line bundle in terms of the associated polytope. We use the analytic
version of the computation of the log canonical threshold of monomial ideals to give the
log canonical threshold of any non-negatively curved singular hermitian metric on the line
bundle, and deduce the α-invariant from this.

Introduction. The α-invariant of a line bundle L on a complex manifold
X is an invariant measuring the singularities of the non-negatively curved
singular hermitian metrics on L. It was introduced by Tian in the case of
the anticanonical bundle on a Fano manifold. Tian [Tia87] showed that if
the α-invariant of the anticanonical bundle is strictly greater than n/(n+ 1),
then the Fano manifold admits a Kähler–Einstein metric.

The Yau–Tian–Donaldson conjecture asserts in general that X admits
an extremal metric in c1(L) if and only if the line bundle L is K-stable.
It was proved in [CDS15a, CDS15b, CDS15c, Tia12] that it holds when L
is the anticanonical bundle. In particular (as also shown in [OS12]), if the
α-invariant of the anticanonical bundle is greater than n/(n+ 1), then the
anticanonical bundle is K-stable. Dervan [Der13] gave a similar condition of
K-stability for a general line bundle, involving again its α-invariant. This is
one motivation to compute explicitly the α-invariants of line bundles when
possible.

In [CS08], Chel’tsov and Shramov computed for example the α-invariant
of the anticanonical bundle for many Fano manifolds of dimension three. In
higher dimensions, Song [Son05] proved a formula giving the α-invariant of
the anticanonical bundle on a toric Fano manifold in terms of its polytope.
The only toric manifolds satisfying Tian’s criterion are the symmetric toric
manifolds. Batyrev and Selivanova [BS99] proved first that the α-invariant of
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those manifolds was one, so that they admit a Kähler–Einstein metric. Wang
and Zhu [WZ04] fully settled the question of the existence of Kähler–Einstein
metrics on toric Fano manifolds, and an illustration that Tian’s criterion is
only a sufficient condition can be found in the toric world [NP11].

The α-invariant of a line bundle L is strongly related to the log canonical
thresholds (lct) of metrics on L. The log canonical threshold was initially an
algebraic invariant defined for ideal sheaves, but it was shown to coincide
with the complex singularity exponent, and Demailly defines the log canon-
ical threshold of any non-negatively curved singular hermitian metric on a
line bundle (see [CS08] for example).

One of the main examples of computation of log canonical threshold
is in the case of monomial ideals. Howald [How01] carried out the com-
putation of the lct of such an ideal in terms of its Newton polygon. One
can find in Guenancia [Gue12] an analytic proof of this result, generalized
to compute the lct of an ideal generated by a “toric” psh function on a
neighborhood of 0 ∈ Cn, i.e. a function invariant under rotation in each
coordinate.

Since the only smooth affine toric manifolds without torus factor are iso-
morphic to Cn, the computation of Guenancia in fact gives the log canonical
threshold of any invariant metric on an affine smooth toric manifold, as we
explain in Section 2.

In this note, we give a formula for the α-invariant of any line bundle L on
a compact smooth toric manifold in terms of its polytope. We also compute
the log canonical threshold of any invariant non-negatively curved singular
metric on L.

After this article was accepted, the author was informed that other au-
thors computed the same α-invariants using different methods ([LSY15],
[Amb14]).

1. Line bundles on smooth toric manifolds

1.1. Toric manifolds. We recall some basic facts about toric varieties
(see [Ful93], [Oda88], [CLS11]).

Let T = (C∗)n be an algebraic torus. Denote its group of characters
by M , which is isomorphic to Zn through the choice of a basis, and let
MR := M ⊗ R ' Rn. The dual N of M consists of the one-parameter
subgroups of T , and we also let NR := N ⊗ R ' Rn.

We denote by Tc ' (S1)n the compact torus in T .
Considering only cones for the toric setting, we will call σ ⊂ NR a cone

if σ is a convex cone generated by a finite set of elements of N . The dual
cone σ∨ is defined as

σ∨ = {x ∈MR | 〈x, y〉 ≥ 0, ∀y ∈ σ}.
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A fan Σ consists of a finite collection of cones σ ⊂ NR such that every
cone is strongly convex (i.e. {0} is a face of σ), the faces of cones in Σ are
in Σ and the intersection of two cones in Σ is a union of faces of both. The
support of Σ is |Σ| :=

⋃
σ∈Σ σ ⊂ NR.

Recall that a fan Σ in NR determines a toric variety XΣ , that is, a
normal T -variety with an open and dense orbit isomorphic to T , and every
toric variety is obtained this way.

By the orbit-cone correspondence [CLS11, Theorem 3.2.6], a maximal
cone σ of Σ corresponds to a fixed point zσ in XΣ . Also, a one-dimensional
cone ρ in Σ corresponds to a prime invariant divisor Dρ of XΣ , and these
divisors generate the group of Weyl divisors of XΣ . Let ρ be such a cone;
then we denote by uρ the primitive vector in N generating this ray. We will
denote by Σ(r) the set of r-dimensional cones in Σ.

Many properties of XΣ can be read off from the fan. For example, XΣ is
smooth if and only if every cone in the fan Σ is generated by part of a basis
of N . We will call a cone smooth if it satisfies this condition. The variety XΣ

is complete if and only if |Σ| = NR.
In the following we will assume in general that either |Σ| = NR or Σ is

given by a strongly convex, full-dimensional cone σ and its faces, in which
case we will denote by Xσ the corresponding (affine) toric variety.

1.2. Line bundles. Recall that a line bundle L on a G-variety X is
called linearized if there is an action of G on L such that for any g ∈ G and
x ∈ X, g sends the fiber Lx to the fiber Lg·x and the map defined this way
between Lx and Lg·x is linear.

To a T -linearized line bundle L on XΣ is associated a set of characters vσ
for σ ∈ Σ(n). We define vσ as the opposite of the character of the action
of T on the fiber over the fixed point zσ.

This defines the support function gL of L, which is a function on the
support |Σ| of Σ, linear on each cone, which takes integral values at points
of N , by x 7→ 〈vσ, x〉 for x ∈ σ.

Another equivalent data is the Weyl divisor DL associated to L, which
is related to gL by DL = −

∑
ρ gL(uρ)Dρ.

If L is effective, then to L is associated a polytope PL in MR. This
polytope can be defined as

PL = {m ∈MR | gL(x) ≤ 〈m,x〉, ∀x ∈ |Σ|}.

The properties of the line bundle can be read off from the polytope or
the support function. In particular, we can associate to each point of PL∩M
a global section of L, and the collection of these sections form a basis of the
space of algebraic sections of L. Recall also the following, where we assume
that |Σ| = NR.
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Proposition 1.1 ([CLS11, Theorem 6.1.7]). The following are equiva-
lent:

• L is nef.
• L is generated by global sections.
• {vσ} is the set of vertices of PL.
• gL is concave.

Proposition 1.2 ([CLS11, Lemma 9.3.9]). L is big iff PL has non-
empty interior.

Proposition 1.3 ([CLS11, Lemma 6.1.13]). The line bundle L is ample
iff gL is concave and vσ 6= vσ′ whenever σ 6= σ′ ∈ Σ(n).

Example 1.4. The anticanonical divisor −KXΣ on a toric manifold is
given by −KXΣ =

∑
ρDρ. It is always big on a toric manifold.

1.3. Non-negatively curved singular metrics on line bundles

1.3.1. Potential on the torus. Let L be a T -linearized line bundle on XΣ .
Recall that any linearized line bundle on T ' (C∗)n is trivial. Fix an

invariant trivialization s of L on T .
Given a hermitian metric h on the line bundle L, we denote by φh the

local potential of h on T , which is the function on T defined by

φh(z) := −ln ‖s(z)‖h.

The local potentials of a smooth hermitian metric are smooth. We will
work here with singular metrics, whose local potential are a priori only
in L1

loc. A singular hermitian metric h is said to have non-negative curvature
(in the sense of currents) if and only if every local potential of h is a psh
function.

A Tc-invariant function φ on T is determined by a function f on NR,
identified with the Lie algebra of Tc, through the equivariant isomorphism

Tc ×NR → T, ((eiθj )j , (xj)j) 7→ (exj+iθj )j .

Furthermore, φ is psh if and only if f is convex.
So to a non-negatively curved, Tc-invariant metric h on L is associated a

convex function fh, which is the function on NR determined by φh.

1.3.2. Behavior at infinity of potentials

Definition 1.5. Let L be a nef line bundle on XΣ . The function fL :
x 7→ −gL(−x) is a convex function on NR, and it is the potential of a con-
tinuous, Tc-invariant, non-negatively curved metric on L called the Batyrev–
Tschinkel metric (see [Mai00]), which we denote by hL.
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Proposition 1.6. The map h 7→ fh defines a bijection between the
singular hermitian Tc-invariant metrics on L with non-negative curvature,
and the convex functions on NR, such that there exists a constant C with
fh ≤ fL + C on NR.

Proof. See also [BB13, Proposition 3.3]. Let h be a singular hermitian
Tc-invariant metric on L with non-negative curvature. Write h = e−vhL,
and let ωL be the curvature current of hL. Then v is a ωL-psh function
on X. In particular, v is bounded from above on X. Denote by u the convex
function on Rn associated to the Tc-invariant function v|T . Then we see that
fh(x)− fL(x) = u(x) is bounded above on NR.

Conversely, the standard fact that a psh function, which is bounded from
above, extends uniquely over an analytic set, allows one to extend u := f−fL
to an ωL-psh function on the whole of X if f satisfies the condition of the
proposition.

2. Log canonical thresholds

2.1. Definition. Let X be a compact complex manifold, and L a line
bundle on X. Let h be a singular hermitian metric on L. We recall the
definition of the log canonical threshold of h (see the appendix of [CS08]).

Definition 2.1. Let z ∈ X. The complex singularity exponent cz(h) of
h at z is the supremum of the real c > 0 such that e−2cφ is integrable in a
neighborhood of z, where φ is a local potential of h near z.

Definition 2.2. The log canonical threshold lct(h) of h is defined as

lct(h) = inf
z∈X

cz(h).

2.2. Newton body of a function

Definition 2.3. Let σ be a cone. Let f be a function defined on NR.
Define the Newton body of f on σ as

Nσ(f) = {m ∈MR | f(x)− 〈m,x〉 ≥ O(1), ∀x ∈ σ}.
If σ = NR, we will write N(f).
The following properties of the Newton body will be useful.

Proposition 2.4. For any function f , Nσ(f) is convex and Nσ(f) =
Nσ(f)− σ∨. If f is convex then for any y ∈ NR,

Nσ(f) = {m ∈MR | f(t)− 〈m, t〉 ≥ O(1), ∀t ∈ y + σ}.
Proof. The first two properties are trivial. Let us briefly prove the last

statement.
Let m be in the right-hand set, i.e. f(t)− 〈m, t〉 ≥ O(1), ∀t ∈ y + σ. Let

x = t − y ∈ σ for t ∈ y + σ. By convexity, f(x + y) ≤ 1
2(f(2x) + f(2y)), so



18 T. Delcroix

we get
f(2x) ≥ 2f(x+ y)− f(2y) = 2f(t)− f(2y).

Subtracting 〈m, 2x〉 gives
f(2x)− 〈m, 2x〉 ≥ 2(f(t)− 〈m, t〉) + (2〈m, y〉 − f(2y)).

The right-hand side is the sum of a lower-bounded function of t ∈ y+σ and
a constant, so the left-hand side is a lower-bounded function of x ∈ σ.

This shows one inclusion; the other is proved by a similar argument.

Given a non-negatively curved Tc-invariant metric h on L, we define the
associated convex subset Ph of MR to be the Newton body of fh.

Proposition 2.5.

• For the Batyrev–Tschinkel metric hL, we recover the polytope PL.
• For any Tc-invariant, non-negatively curved metric h on L, Ph ⊂ PL.
• If h is smooth, then also Ph = PL.

Proof. For the first statement, observe that m ∈ PL if and only if for any
cone σ ∈ Σ, for all x ∈ σ, we have gL(x) = 〈vσ, x〉 ≤ 〈m,x〉. This inequality
is equivalent to −〈vσ, x〉 + 〈m,x〉 ≥ 0, and since the functions involved are
linear, it is satisfied for all x ∈ σ if and only if −〈vσ, x〉+ 〈m,x〉 is bounded
below on σ. Since fL(−x) = −gL(x) = −〈vσ, x〉 for x ∈ σ, we see that
m ∈ PL if and only if for every cone σ ∈ Σ, the function fL(−x)− 〈m,−x〉
is bounded below on σ. Finally, this can be translated as: for every cone
σ ∈ Σ, the function fL(y) − 〈m, y〉 is bounded below on −σ. To conclude
the proof, we note that N(fL) =

⋂
σN−σ(fL).

The second statement is an easy consequence of the first and Propo-
sition 1.6, since whenever two functions f and g satisfy f ≤ g + C for a
constant C, we trivially have Nσ(f) ⊂ Nσ(g).

For the last statement, note that in this case, fh − fL extends to a con-
tinuous function on XΣ , so fL−C ≤ fh ≤ fL+C for some constant C. The
same property of Newton bodies allows one to conclude the proof.

2.3. Integrability condition. The first result on log canonical thresh-
olds on toric varieties was the computation by Howald [How01] in the case
of monomial ideals. Guenancia gave an analytic proof of this result, extend-
ing the computation to the case of non-algebraic psh functions. The key
ingredient in this analytic version is the following integrability condition.

Proposition 2.6 (see [Gue12]). Let σ be a smooth cone of maximum
dimension. Let f be a convex function on NR. Then e−f is integrable on all
translates of σ if and only if 0 ∈ Int(Nσ(f)).

This is essentially the result in Guenancia [Gue12] because any smooth
affine toric manifold with no torus factor is isomorphic to Cn. However we
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precisely describe the change of variables used, to apply it later in the com-
pact case.

Proof. Choose a basis of N formed by the generators of the extremal
rays of σ, then define Sσ to be the isomorphism from N to Zn sending the
chosen basis to the canonical basis of Zn.

Let f be a function on NR, and g the function on Rn such that f = g◦Sσ.
Then from the definition of the Newton body we have Nσ(f) = S∗σ(ND(g)),
where S∗σ is the dual isomorphism from Zn toM and D is the cone generated
by the canonical basis of Zn.

By a change of variables, e−f is integrable on all translates of σ if and
only if e−f◦S

−1
σ is integrable on all translates of D. Applying [Gue12, Propo-

sition 1.9] to the concave function −f ◦S−1σ proves that we have integrability
if and only if 0 ∈ Int(ND(f ◦ S−1σ )). Using S∗σ, which is linear, this indeed
translates to 0 ∈ Int(Nσ(f)).

Note that the statement in [Gue12, Proposition 1.9] only mentions in-
tegrability on D, but the equivalence with integrability on all translates is
easily derived from Proposition 2.4.

2.4. Lct on an affine smooth toric manifold

Proposition 2.7. Let σ be a smooth cone of maximum dimension, and
Xσ the corresponding smooth affine toric manifold. Let L be a linearized
line bundle on Xσ, and h a Tc-invariant metric with non-negative curvature.
Then

lct(h) = sup{c > 0 | cvσ ∈ Int(N−σ(cfh))− S∗σ(1, . . . , 1)}.
Proof. The change of variables for cones Sσ in the proof of Proposition 2.6

gives (by [CLS11, Theorem 3.3.4]) an equivariant isomorphism between Xσ

and Cn, which we again denote by Sσ.
Any linearized line bundle on Cn is trivial, so L admits a global equiv-

ariant trivialization t on Xσ. Note that, at the fixed point zσ, we have
g · t(zσ) = −vσ(t(zσ)) by definition of vσ. Restricting to T and remem-
bering that s is an invariant trivialization of L on T , we deduce that up to
renormalization by a constant, t(z) = vσ(z)s(z) on T .

We can now look at the potential ψ of h with respect to the trivializa-
tion t, and observe that, on T , if φ denotes the potential of h with respect
to s on T , we have ψ(z) = 〈−vσ, ln |z|〉+ φ(z).

Let y ∈ NR. Using again the isomorphism Tc × NR ' T , we consider
Tc × (y − σ) as a subset of T , and denote by Cy the closure of this set
in Xσ. Each set Cy is a neighborhood of zσ in Xσ, and they form a basis of
neighborhoods. Observe that the collection of translates of −σ cover NR, and
so the corresponding sets cover Xσ. More precisely, for any point z in Xσ,
there is a translate of −σ which corresponds to a neighborhood of z.
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We first consider the complex singularity exponent of h at zσ. Suppose
c > 0 is such that e−2cψ is integrable in a neighborhood of zσ. Then it is
integrable in a neighborhood Cy. We have

�

Cy

e−2cψ(z) dz ∧ dz =
�

Tc×(y−σ)

e−2cψ(z) dz ∧ dz.

Recall that ψ(z) = 〈−vσ, ln |z|〉 + φ(z), and that f is the function on NR
such that f(x) = φ(ex).

Say we have chosen a basis of N or equivalently of M , and we denote
by (xi)i=1,...,n the coordinates of x ∈ NR in this basis. This determines local
holomorphic coordinates zi = exi+iθi on T ' NR × Tc. Using the fact that
dzi
zi
∧ dzi

zi
= dxi ∧ dθi, and Tc-invariance, we find that, up to a constant,

�

Cy

e−2cψ(z) dz ∧ dz =
�

y−σ
e−2c(f(x)+〈−vσ ,x〉)e2

∑
i xi dx.

Since
∑

i xi is equal to 〈S∗σ(1, . . . , 1), x〉, we conclude by using Proposi-
tion 2.6 that the complex singularity exponent czσ(h) is the supremum of
the c > 0 such that 0 ∈ Int(N−σ(2c(f + 〈−vσ, ·〉)− 2〈S∗σ(1, . . . , 1), ·〉)).

To obtain a simpler condition, note that for any function g and positive
scalar λ, we have N−σ(λg) = λN−σ(g), and that if g2 is a linear function,
then N−σ(g + g2) is the Minkowski sum of N−σ(g) and N−σ(g2).

So we get czσ(h) = sup{c > 0 | cvσ ∈ Int(N−σ(cf))− S∗σ(1, . . . , 1)}.
Furthermore, for any c < czσ(h), Proposition 2.6 shows that e−2cψ is

integrable on every Cy for y ∈ NR. Observe now that for any point z ∈ Xσ,
there exists a Cy containing z. So cz(h) ≥ czσ(h) for any z ∈ Xσ. This
concludes the proof of the proposition.

2.5. Lct on a compact smooth toric manifold

Theorem 2.8. Let XΣ be a smooth compact toric manifold, L a lin-
earized line bundle on XΣ and h a Tc-invariant non-negatively curved metric
on L. Then

lct(h) = sup{c > 0 | cPL ⊂ Int(cPh + P−KXΣ )}.

Proof. The compact manifold XΣ is covered by the affine toric mani-
folds Xσ for σ ∈ Σ(n). By the definition of log canonical threshold,

lct(h) = min
σ∈Σ(n)

lct(h|Zσ).

Another way to say this is that lct(h) is the sup of the c > 0 such that
c ≤ lct(h|Xσ) for all σ ∈ Σ(n).

Now this condition means, by Proposition 2.7, that for all σ ∈ Σ(n),

cvσ ∈ Int
(
N−σ(cfh + 〈−S∗σ(1, . . . , 1), ·〉)

)
.
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By Proposition 2.4, this is equivalent to the condition that for all σ ∈ Σ(n),

cvσ + σ∨ ⊂ Int
(
N−σ(cfh + 〈−S∗σ(1, . . . , 1), ·〉)

)
.

This is further equivalent to the condition that for all σ ∈ Σ(n),⋂
σ∈Σ(n)

(cvσ + σ∨) ⊂ Int
(
N−σ(cfh + 〈−S∗σ(1, . . . , 1), ·〉)

)
.

Recall from Proposition 2.5 that
⋂
σ∈Σ(n)(vσ + σ∨) = N(fL) = PL, so

that the condition can be written as

N(cfL) ⊂
⋂

σ∈Σ(n)

Int
(
N−σ(cfh+〈−S∗σ(1, . . . , 1), ·〉)

)
= Int(N(cfh+f−KXΣ )).

Indeed, the support function of the anticanonical bundle is, from Example 1.4,

f−KXΣ (x) = 〈−S
∗
σ(1, . . . , 1), x〉.

3. Alpha-invariant

3.1. Log canonical threshold and α-invariant. Let X be a compact
Kähler manifold, and L a big and nef line bundle on X.

Definition 3.1. Assume that a compact group K acts on X, and that
L is K-linearized. The α-invariant αK(L) of L with respect to the group K
is defined as the infimum of the log canonical thresholds of all K-invariant,
non-negatively curved singular hermitian metrics on L.

The linear systems in a multiple of L give singular metrics on L, which we
will call algebraic metrics, in the following way. Let δ1, . . . , δr ∈ H0(X,mL)
be linearly independent sections, and denote by ∆ the linear system gener-
ated by these. Then it defines an algebraic metric h∆/m on L by setting, in
any trivialization,

‖ξ‖2h∆/m =
|ξ|2

(
∑
|δj(z)|2)1/m

for any ξ ∈ Lz. The local potential φ∆/m(z) = 1
2m ln

∑
|δj(z)|2 is psh.

If ∆ is one-dimensional, generated by δ, we denote by hδ/m the corre-
sponding metric.

Recall the following result of Demailly, relating the α-invariant with log
canonical thresholds of algebraic metrics:

Theorem 3.2 ([CS08, Appendix A]). Let K be a compact group, let X
be a compact complex K-variety and L a big and nef K-linearized line bundle
on X. Then

αK(L) = inf
m∈N∗

inf
∆⊂H0(X,mL),∆K=∆

lct(h∆/m).

One can slightly improve this result and give the following statement,
which is only given in the case of a trivial group K by Demailly.
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Corollary 3.3. Let K be a compact group, let X be a compact complex
K-variety and L a big and nef K-linearized line bundle on X. Then

αK(L) = inf
m∈N∗

inf
∆∈Irr(H0(X,mL))

lct(h∆/m),

where Irr(H0(X,mL)) is the set of all irreducible K-subrepresentations of
H0(X,mL).

Proof. Let ∆ be a K-invariant subspace of H0(X,mL). Then we have
∆ = ∆1⊕· · ·⊕∆s with ∆i irreducible subspaces. For all i, one can choose a
basis δij of ∆i. Together they form a basis of ∆ and we can obtain the metric
h∆ this way.

In particular, φ∆/m(z) = 1
2m ln

∑
i

∑
j |δij(z)|2. Since the logarithm is

increasing, we can write

φ∆/m(z) ≥
1

2m
ln
∑
|δ1j (z)|2 = φ∆1/m(z).

This implies, by elementary properties of the complex singularity expo-
nent [DK01, 1.4], that lct(h∆/m) ≥ lct(h∆1/m).

We conclude that the log canonical threshold of a metric associated to a
K-invariant linear system is greater than the log canonical threshold of at
least one metric associated to an irreducible linear system, so it is enough
to consider only these.

3.2. General formula. Let XΣ be a smooth compact toric manifold.
Let N(T ) be the normalizer of T in Aut(XΣ), and denote by W = N(T )/T
the Weyl group obtained from T .

The group N(T ) naturally acts on M , and since T acts trivially on M ,
this induces an action of W on M . By duality one also gets an action on N .

From the description of morphisms between toric varieties [CLS11, The-
orem 3.3.4], we can see that W is isomorphic to the subgroup of GL(N)
composed of the γ such that γ(Σ) = Σ.

Given a subgroup G of W , we denote by KG the compact subgroup of
Aut(XΣ) generated by Tc and G, and by TG the subgroup generated by T
and G. If P is a polytope in MR, we let PG be the set of G-invariant points
of P .

Finally, if P is a polytope in MR, we denote by P (Q) the set of rational
points in P , i.e. points p such that there exists m ∈ N∗ with mp ∈M .

Theorem 3.4. Let L be a TG-linearized line bundle on XΣ. Then

αKG(L) = inf
p∈PGL (Q)

sup{c > 0 | cPL ⊂ Int(cp+ P−KXΣ )}.

Proof. Corollary 3.3 shows that it is enough to consider algebraic metrics
on L associated to KG-irreducible linear systems in a multiple of L.
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The Tc-irreducible subrepresentations of H0(XΣ ,mL) are the dimension
one subspaces corresponding to integral points of the polytope PmL associ-
ated to mL. Recall that PmL = mPL.

Now a KG-irreducible subrepresentation of H0(XΣ ,mL) is the union of
the images by G of a Tc-irreducible representation.

Let p be an integral point in mPL, and denote by ∆ the KG-irreducible
linear system generated by the G-orbit of p.

The potential of h∆/m is

φ∆/m(z) =
1

2m
ln
∑
g∈G
|(g · p)(z)|2.

By the arithmetic-geometric mean inequality,

φ∆/m(z) ≥
1

2m
ln

∣∣∣∣(
∑

g∈G(g · p)
|G|

)
(z)

∣∣∣∣2.
The right-hand side is the potential of the algebraic metric h∑

g∈G(g·p)/(m|G|)

corresponding to the linear system of H0(XΣ ,m|G|L) generated by the sec-
tion

∑
g∈G(g · p).

Using again the fact that the complex singularity exponent is increasing
[DK01, 1.4], we get

lct(h∆/m) ≥ lct(h∑
g∈G(g·p)/(m|G|)).

We have thus shown that it is enough to compute the log canonical
thresholds of algebraic metrics associated to one-dimensional G-invariant
sublinear systems of multiples of L.

We use Theorem 2.8 to conclude the proof. Indeed, if p ∈ mPL generates
a one-dimensional G-invariant sublinear system in H0(XΣ ,mL), and fp/m
denotes the convex function associated to the potential of the corresponding
algebraic metric hp/m, we have N(fp/m) = {p/m}.

Applying Theorem 2.8 gives

lct(hp/m) = sup{c > 0 | cPL ⊂ Int(cp/m+ P−KXΣ )}.

Finally, observe that as p and m vary, they describe the set PGL (Q) of
G-invariant points of PL with rational coordinates.

Remark 3.5. One can also prove, without the use of Corollary 3.3, that
we can consider only metrics corresponding to points of PL (not necessarily
with rational coordinates), by considering the expression of the log canonical
threshold of any metric.

Indeed, if f is a convex function on NR, corresponding to a metric h on L,
and p is a point in N(f), then the metric hp associated to the convex function
x 7→ 〈p, x〉 is also a non-negatively curved metric on L, and lct(hp) ≤ lct(h).
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3.3. Case of the anticanonical line bundle. We assume in this sec-
tion that L = −KXΣ .

This line bundle admits a natural TW -linearization, and the polytope
associated to this linearization contains the origin in its interior.

For any subgroup G of W , let SG := {p ∈ ∂PL | g · p = p, ∀g ∈ G}. If
0 6= p ∈ PL, let wp be the point ∂PL ∩ {−tp | t ≥ 0}.

Remark 3.6. Note that SG is empty if and only if {0} is the only point
fixed by G in P . Moreover, if SW is empty then XΣ is called symmetric.

Proposition 3.7. Assume that Ph = {p} with 0 6= p ∈ PL. Then

lct(h) =
|wp|

|wp|+ |p|
.

p

0

wp

Proof. By Theorem 2.8 we have

lct(h) = sup{c > 0 | cP ⊂ Int(cp+ P )}.
Consider the half-line starting from p and containing the origin. It inter-

sects ∂P at wp. Denote by r its intersection with ∂(p+ P ).
Then it is easy to see that the log canonical threshold of hp is equal to the

quotient of the distance between p and r by the distance between p and wp.
The translation sending 0 to p also sends wp to r, so |r − p| = |wp|. The
result follows.

Remark 3.8. If Ph = {0} then lct(h) = 1.

Example 3.9. Consider the case Ph = {b}, where b is the barycenter of
the polytope PL. Then lct(h) is equal to the greatest lower bound for the
Ricci curvature R(X), introduced by Székelyhidi [Szé11], and computed for
toric manifolds by Li [Li11].

From this formula we recover the previous results of Song and Chel’tsov–
Shramov.

Theorem 3.10 ([Son05], [CS08, Lemma 6.1]). Let X be a smooth Fano
toric manifold, and G be a subgroup of W . Then

• if SG is empty, we have αKG(X) = 1;
• else,

αKG(X) =
1

1 +maxp∈SG |p|/|wp|
≤ 1

2
.
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Proof. By Theorem 3.4, it is enough to consider only the (rational)
G-invariant points of P .

The first case follows immediately by using Remark 3.8.
In the second case, we obtain the formula using Proposition 3.7. Indeed,

it is enough to consider points p in SG because if q 6= 0 is not in ∂P , and p is
the intersection of ∂P with the half-line starting from the origin and going
through q, then lct(hq) ≥ lct(hp).

Furthermore, maxp∈SG |p|/|wp| ≥ 1 because otherwise if p were a point
at which this maximum was attained and the maximum were < 1, then we
would have |wp|/|p| > 1 with wp ∈ SG, a contradiction.

3.4. Example. We compute the α-invariant of any linearized line bundle
on the blow up X of P2 at one point.

Identify N with Z2. The fan of X has four rays, with generators u1 =
(1, 0), u2 = (1, 1), u3 = (0, 1) and u4 = (−1,−1).

The group W is isomorphic to Z/2Z and acts on MR by exchanging the
coordinates, (x, y) 7→ (y, x).

We define P (k, l) to be the polytope whose vertices are (0, k), (0, l), (k, 0)
and (l, 0), for k, l ∈ N with l > k. It is easy to see that the polytopes of nef
and big divisors are the P (k, l), up to translation by a character. For example,
the polytope of the anticanonical bundle is Q := (−1,−1) + P (1, 3).

Proposition 3.11. The α-invariant with respect to KW of the nef and
big line bundle corresponding to P (k, l) is equal to inf

(
1
l−k ,

2
l

)
.

Proof. By Theorem 3.4, it is enough to consider points (with rational
coordinates) in the intersection of P (k, l) with the first diagonal. However,
one easily observes that it is enough to consider only the point (l/2, l/2),
similarly to the proof of Theorem 3.10.

We want to compute

sup{c > 0 | cP (k, l) ⊂ Int(c(l/2, l/2) +Q)}.

This is of course equal to

sup

{
c > 0

∣∣∣∣ P (k, l) ⊂ Int

(
(l/2, l/2) +

1

c
Q

)}
.

Observe that l/2 is the least positive constant b such that

{(0, l), (l, 0)} ⊂ (l/2, l/2) + bQ.

If k ≥ l/2, then we also have {(0, k), (k, 0)} ⊂ (l/2, l/2) + (l/2)Q, so

P (k, l) ⊂ (l/2, l/2) + (l/2)Q.

Thus αKW (P (k, l)) = 2/l when k ≥ l/2.



26 T. Delcroix

For the other case, observe that l−k is the least positive constant b such
that (k/2, k/2) ∈ (l/2, l/2) + bQ. If k ≤ l/2, then we also have

P (k, l) ⊂ (l/2, l/2) + (l − k)Q.
Thus αKW (P (k, l)) = 1

l−k when k ≥ l/2.
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