
ANNALES

POLONICI MATHEMATICI

101.1 (2011)

Normal pseudoholomorphic curves

by Fathi Haggui and Adel Khalfallah (Monastir)

Abstract. First, we give some characterizations of J-hyperbolic points for almost
complex manifolds. We apply these characterizations to show that the hyperbolic embed-
dedness of an almost complex submanifold follows from relative compactness of certain
spaces of continuous extensions of pseudoholomorphic curves defined on the punctured unit
disc. Next, we define uniformly normal families of pseudoholomorphic curves. We prove
extension-convergence theorems for these families similar to those obtained by Kobayashi,
Kiernan and Joseph–Kwack in the standard complex case.

1. Introduction. It is known that every bounded domain in Cn equip-
ped with the standard complex structure is hyperbolic. A statement of this
kind is however false for a general almost complex domain where some extra
condition such as tameness or standard integrability is not imposed (see
Example 2 in [17]).

Motivated by studying the geometry of unbounded domains in Cn in
almost complex settings, the investigation of hyperbolic embeddedness of
not necessarily relatively compact almost complex submanifolds of an almost
complex manifold is of interest. In this paper, we focus on such studies and
we use the results obtained to extend pseudoholomorphic curves.

First, we introduce and give some characterizations of J-hyperbolic
points. This allows a characterization of the hyperbolic embeddedness of
an almost complex submanifold (M,J) (not necessarily relatively compact)
in an almost complex manifold (N, J), and extensions of pseudoholomorphic
curves. We recall that several characterizations of hyperbolic embeddedness
were obtained in [7] under the assumption of relative compactness. Mainly,
we proved that a relatively compact almost complex submanifold (M,J)
is hyperbolically embedded in (N, J) if and only if OJ(∆,M) is relatively
compact in OJ(∆,N).
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As far as we know, almost all studies of hyperbolic embeddedness in the
almost complex case were carried out under the assumption of the relative
compactness of M in N (see [7], [13]). In the complex case, such studies
have been carried out by Kobayashi [16], Kiernan [14, 15], and Joseph–
Kwack [10, 11]. Their proofs are based on the Riemann extension theorem
and winding numbers arguments. So, to extend such results to the almost
complex setting, we need substantial modifications.

Next, we extend the notion of the uniformly normal family to almost
complex curves. We prove that such curves satisfy the big Picard theorem
and Noguchi-type extension convergence theorems. We recall that Joseph
and Kwack [12] and Funahashi [4] extended to several complex variables the
notion of Hayman’s uniformly normal family defined by Lehto–Virtanen [19]
in one complex variable.

Throughout the paper, we assume, by default, that all relevant objects
(manifolds, structures, etc.) are smooth of class C∞.

We denote by M+ = M ∪ {∞} the Aleksandrov (1-point) compactifica-
tion of M , and C(X,Y ) is the space of continuous maps from a topological
spaceX to a topological space Y . LetX0 and Y0 be subspaces ofX, Y respec-
tively, such that X0 is dense in X. If Q ⊂ C(X0, Y0), we denote by C[X,Y ;Q]
the set of f̃ ∈ C(X,Y ) such that f̃ is the unique extension of f ∈ Q.

For the definition of hyperbolic almost complex manifold and related
material see [8, 17].

2. Hyperbolic embedding and extension of pseudoholomorphic
discs. Hyperbolic points are introduced and investigated in [10]; this notion
can be naturally extended to the almost complex case.

Definition 2.1. Let (M,J) be an almost complex submanifold in an
almost complex manifold (N, J) with a length function G.

1. A point p ∈ M is called a J-hyperbolic point for M if there is a
neighborhood U of p in N and a positive constant c such that KJ

M ≥
cG on U ∩M .

2. (M,J) is hyperbolically embedded in (N, J) if for every pair (p, q) of
different points in M , there exist neighborhoods U and V of p and q
such that dJM (M ∩U,M ∩ V ) > 0, where M is the closure of M in N
and dJM is the Kobayashi pseudo-distance on M .

We will denote the set of J-hyperbolic points of M by RJM (N). It is clear
from the definition that RJM (N) is an open subset of M .

Definition 2.2. We call p ∈M a degeneracy point of dJ
M

if there exists
a point q ∈ M \ {p} such that dJ

M
(p, q) = 0. We denote by SJM (N) the set

of degeneracy points of dJ
M

.
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Here, dJ
M

is the extension to M of the Kobayashi pseudodistance defined
as follows:

for p, q ∈M, dJ
M

(p, q) = lim inf
p′⇒p, q′⇒q

dJM (p′, q′), p′, q′ ∈M.

The following proposition shows that the set of J-hyperbolic points of
M is the complement in M of the set of degeneracy points.

Proposition 2.3. Let (M,J) be an almost complex submanifold in an
almost complex manifold (N, J). For a point p ∈M , the following are equiv-
alent:

(1) p ∈ RJM (N).
(2) For every sequence (pn) converging to p and for every sequence (qn)

with no subsequence converging to p, we have lim inf dJM (pn, qn) > 0.

It is easily seen from Proposition 2.3 that (M,J) is hyperbolically em-
bedded in (N, J) if and only if M = RJM (N).

Our main result in this section is the following

Theorem 2.4. Let (M,J) be an almost complex submanifold in an al-
most complex manifold (N, J) with a length function G. The following are
equivalent for a point p ∈M :

(1) p ∈ RJM (N).
(2) If (fn) is a sequence in OJ(∆∗,M) and (zn) is a sequence in ∆∗

such that zn → 0 and fn(zn) → p, then for each U open about p,
there is an r ∈ ]0, 1[ such that fn(∆∗r) ⊂ U eventually.

(3) If (fn) is a sequence in OJ(∆∗,M) and (zn) is a sequence in ∆∗

such that zn → 0 and fn(zn)→ p, then:

(a) Each fn extends to f̃n ∈ OJ(∆,N).
(b) There is an r ∈ ]0, 1[ and a subsequence (f̃nk

) of (f̃n) such that

f̃nk
→ f ∈ OJ(∆r, N) on ∆r.

(4) There is a neighborhood U of p such that

sup{|f ′(0)|G : f ∈ OJ(∆,M), f(0) ∈ U} <∞.
The proof follows the line of Joseph–Kwack’s proof (see [10, Theorem 1]),

although much of the key steps including the Riemann removable singularity
theorem and winding numbers arguments due to Grauert–Reckziegel [6] are
not available in the almost complex case.

To prove the theorem, we need the following lemmas.

Lemma 2.5. Let (M,J) be an almost complex submanifold of an almost
complex manifold (N, J) and let p ∈ RJM (N). Let (zn) and (fn) be sequences
in ∆∗ and OJ(∆∗,M) respectively such that zn → 0 and fn(zn) → p. If
σn = {z ∈ ∆ : |z| = |zn|}, then fn(σn)→ p.
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Proof. For every sequence αn ∈ σn, we have

lim inf
n→∞

dJ
M

(fn(αn), p) ≤ lim inf
n→∞

dJM (fn(αn), fn(zn))

≤ lim inf
n→∞

d∆∗(αn, zn).

Since d∆∗(αn, zn) = O(1/log |zn|) and p ∈ RJM (N), we have fn(αn)⇒ p.

The following statement is essentially due to E. Chirka (see [5, 9]).

Lemma 2.6. Let (M,J) be an almost complex manifold and let p be a
point of M . Then there exist relatively compact local coordinate neighbor-
hoods U , W of p with W ⊂⊂ U and positive constants A and B such that
the function ψq : z 7→ log |z − q|2 + A|z − q| + B|z|2 is J-plurisubharmonic
on U for every q ∈W .

Proof of Theorem 2.4. (1)⇒(2). Assume (1) holds and (2) does not hold.
Then there exist relatively compact local coordinate neighborhoods U , W
of p as in Lemma 2.6 such that U ∩M ⊂ RJM (N), and a sequence (z′n) in
∆∗ such that |z′n| < |zn| and fn(z′n) 6∈ U , which implies the existence of a
sequence (wn) in ∆∗ such that |z′n| < |wn| < |zn| and fn(wn) ∈ ∂W for
each n. By taking a subsequence, we may assume that fn(wn) → q ∈ ∂W .
Since p ∈ RJM (N), by Lemma 2.5 we have fn(σn)→ p, where σn = {z ∈ ∆ :
|z| = |zn|}. This implies that fn(σn) ⊂W for sufficiently large n. Let Rn be
the largest open annulus containing σn with fn(Rn) ⊂ W. Since fn(wn) ⇒
q ∈ ∂W , there exist an ≥ |wn| and bn > |zn| such that Rn = {z ∈ C :
an < |z| < bn}.

We may assume that an = |wn|. Otherwise, there is a sequence (w′n) in
∆∗ such that |w′n| = an and fn(w′n)→ q′ ∈ ∂W . Let

R̃n = {z ∈ C : |wn| ≤ |z| ≤ |zn|} and γn = {z ∈ ∆∗ : |z| = |wn|}.

We have fn(wn) ⇒ q, so by Lemma 2.5, we get fn(γn) ⇒ q ∈ ∂W . Let
ρ = ψp +ψq, where ψp and ψq are Chirka’s functions defined in Lemma 2.6.
Clearly, ρ is a J-plurisubharmonic function on U satisfying ρ−1{−∞} =
{p, q}. Therefore, for K > 0, we have fn(∂R̃n) ⊂ {z ∈ U : ρ(z) ≤ −K} for
n sufficiently large. By the maximum principle, for n sufficiently large we
obtain

fn(R̃n) ⊂ {z ∈ U : ρ(z) ≤ −K}.

We get a contradiction, since for K sufficiently large, the two points p and
q are not in the same connected component.

(2)⇒(3). Let (fn) be a sequence in OJ(∆∗,M) and (zn) be a sequence
in ∆∗ such that zn → 0 and fn(zn) → p. In order to prove that fn extends
to a J-holomorphic curve in ∆, it is sufficient to verify that fn has a finite
energy.
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Let U and V be hyperbolic neighborhoods of p such that U ⊂ V . There
exists a positive constant c such that KJ

U ≥ cG where G is a length function
on N . By hypothesis, there exist r ∈ ]0, 1[ and n0 ∈ N such that fn(∆∗r) ⊂ U
for n ≥ n0. We conclude that

|f ′n(z)|G ≤
1
c
K∆∗r (z) for every z ∈ ∆∗r .

Hence, E(fn|∆∗
r/2

), the energy of fn|∆∗
r/2

, satisfies

E(fn|∆∗
r/2

) =
1
2

�

∆∗
r/2

|f ′n(z)|2G ≤
1

2c2
�

∆∗
r/2

K2
∆∗r

(z) <∞.

Consequently, each fn extends to ∆; we denote the extension by f̃n. We have
f̃n(∆r) ⊂ V for every n ≥ n0. If we choose V sufficiently small, there exists
a positive constant α such that |f̃ ′n(z)| ≤ α in ∆r. By compactness, there
exists a subsequence (f̃ϕ(n)) which converges uniformly to a J-holomorphic
curve f .

(3)⇒(4). If (4) is not satisfied, there is a sequence (fn) in OJ(∆,M) such
that fn(0) → p and |f ′n(0)|G → ∞. By continuity, there is a sequence (zn)
in ∆∗ such that zn → 0 and fn(zn) → p. Using condition (b), we conclude
that there is a subsequence (fnk

) of (fn) which converges uniformly in some
neighborhood of 0, contradicting |f ′n(0)|G →∞.

(4)⇒(1). By hypothesis, there exists a positive constant C such that
sup{|f ′(0)|G : f ∈ OJ(∆,M), f(0) ∈ U} ≤ C. This implies KJ

M (ξ) ≥
C−1|ξ|G, therefore p is a J-hyperbolic point.

Corollary 2.7. Let (M,J) be a hyperbolic embedded almost complex
submanifold of an almost complex manifold (N, J). Then each f ∈
OJ(∆∗,M) extends to f̃ ∈ C(∆,N+). If M is relatively compact in N ,
then f̃ is J-holomorphic.

Proof. If there is a sequence (zn) in ∆∗ such that zn → 0 and f(zn) →
p ∈ N , then p ∈ RJM (N) and by Theorem 2.4(3)(a), f extends to f̃ ∈
OJ(∆,N). Otherwise, for all sequences (zn) in ∆∗ such that zn → 0, we
have f(zn)→∞ and the conclusion follows.

Next, we prove our second main result.

Theorem 2.8. Let (M,J) be an almost complex submanifold of an al-
most complex manifold (N, J). The following are equivalent:

(1) (M,J) is hyperbolically embedded in (N, J).
(2) C[∆,N ;OJ(∆∗,M)] is relatively compact in C(∆,N+).
(3) OJ [∆,N ;OJ(∆∗,M)] is relatively compact in C(∆,N+).
(4) OJ(∆,M) is relatively compact in C(∆,N+).
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Here OJ [∆,N ;OJ(∆∗,M)] denotes the set of f̃ ∈ OJ(∆,N) such that f̃
is the unique extension of f ∈ OJ(∆∗,M).

Proof. (1)⇒(2). Suppose that the family C[∆,N ;OJ(∆∗,M)] is not
evenly continuous at (z0, p) in ∆ ×N+. We only have to consider the case
z0 = 0. There exist sequences (fn) in C[∆,N ;OJ(∆∗,M)] and (zn) in ∆∗

such that zn → 0, fn(0)→ p and fn(zn)→ q ∈ N+ with p 6= q. By continu-
ity, there is a sequence (wn) in ∆∗ converging to 0 such that fn(wn) → p.
Since p 6= q, either p or q is in M = RJM (N). Using Theorem 2.4(2), we get
a contradiction since either p or q is a J-hyperbolic point.

(2)⇒(3). We have OJ [∆,N ;OJ(∆∗,M)] ⊂ C[∆,N ;OJ(∆∗,M)].
(3)⇒(4). We have OJ(∆,M) ⊂ OJ [∆,N ;OJ(∆∗,M)].
(4)⇒(1). Let p ∈M . Using Theorem 2.4, we will prove that there exists

a neighborhood U of p such that

sup{|f ′(0)|G : f ∈ OJ(∆,M), f(0) ∈ U} <∞.

Otherwise, there is a sequence (fn) in OJ(∆,M) such that fn(0) → p and
|f ′n(0)|G → ∞. Let U be a neighborhood of p; there is an r ∈ ]0, 1[ such
that fn(∆r) ⊂ U . If we choose U sufficiently small, there exists a positive
constant α such that |f ′n(z)|G ≤ α in ∆r, and we get a contradiction.

Remark 2.9. An almost complex manifold (M,J) is hyperbolic if and
only ifOJ(∆,M) is relatively compact in C(∆,M+). This generalizes a result
of Abate [1] for complex manifolds.

We close this section by showing extension and convergence Noguchi-
type theorem for pseudoholomorphic curves with values in a submanifold
(not necessarily relatively compact).

Theorem 2.10. Let (M,J) be a hyperbolic embedded almost complex
submanifold of an almost complex manifold (N, J). Then:

(1) Each f ∈ OJ(∆∗,M) extends to f̃ ∈ C(∆,N+).
(2) If (fn) is a sequence in OJ(∆∗,M) and fn → f , then f̃n → f̃ .

Proof. (1) Let f ∈OJ(∆∗,M). There exists a sequence (fn) inOJ(∆∗,M)
converging to f . Each fn extends to f̃n in C[∆,N ;OJ(∆∗,M)]. By Theo-
rem 2.8, there exists a subsequence (fnk

) converging to g ∈ C(∆,N+). Hence
g = f on ∆∗ so g = f̃ .

(2) Let (f̃ϕ(n)) be an arbitrary subsequence of (f̃n). Since f̃ϕ(n) is in the
family C[∆,N ;OJ(∆∗,M)], using Theorem 2.8, we can extract a further
subsequence converging to a map g ∈ C(∆,N+) coinciding with f on ∆∗.
Hence, f̃ = g and we conclude finally that the sequence (f̃n) converges to f̃
uniformly on each compact subset.



Normal pseudoholomorphic curves 61

3. Examples. We give two examples of almost hyperbolic embedded
unbounded domains in Cn.

1. In [5], Gaussier and Sukhov proved the hyperbolic embeddedness of
smoothly strictly pseudoconvex Stein domains with almost complex struc-
tures sufficiently close to the initial Stein complex structure (see [5, Propo-
sition 4]).

2. The following proposition due to Bertrand [2] yields some almost com-
plex unbounded domains that are hyperbolically embedded in C2.

Proposition 3.1. Let D be a domain in an almost complex manifold
(M,J). Let p ∈ ∂D and assume that there is a local peak plurisubharmonic
function at p. Then p is a J-hyperbolic point for D.

Consequently, if each point of the boundary of a hyperbolic domain D
has a local peak plurisubharmonic function, then (D,J) is hyperbolically
embedded in (M,J).

In [2], the author constructed a local peak J-plurisubharmonic func-
tion at each point of the boundary of a J-pseudoconvex domain D of finite
D’Angelo type in a four-dimensional almost complex manifold (M,J). The
existence of local peak Jst-plurisubharmonic functions was first proved by
E. Fornæss and N. Sibony in [3]. For almost complex manifolds the existence
was proved by S. Ivashkovich and J.-P. Rosay in [9] whenever the domain is
strictly J-pseudoconvex.

Example. Let D = {ρ < 0} be a domain of finite D’Angelo type in C2.
We suppose that ρ is a C2 defining function of D, J-plurisubharmonic on a
neighborhood of D. Then (D,J) is hyperbolically embedded in (C2, J).

For the definitions of local peak and finite D’Angelo type domains in the
almost complex case see [2].

4. Uniformly normal families of pseudoholomorphic discs. The
concept of a normal meromorphic function was introduced by Lehto and
Virtanen [19] for the purpose of generalizing the classical Picard theorem.
Since that time several authors, including Funahashi [4], Zaidenberg [21]
and Joseph–Kwack [11, 12], have extended the higher dimensional Picard
theorem to normal mappings. The notion of a normal family can be naturally
extended for almost complex manifolds as follows:

Definition 4.1. Let (M,J) and (N, J ′) be almost complex manifolds.

(1) We say that a family F ⊂ OJ,J ′(M,N) is uniformly normal if F ◦
OJ(∆,M) is relatively compact in C(∆,N+).

(2) We say that f ∈ OJ,J ′(M,N) is normal if {f} is uniformly normal.
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Here OJ,J ′(M,N) denotes the set of (J, J ′)-holomorphic functions from
M to N .

A normal curve behaves like a curve with values in a hyperbolic manifold.
The following result explains this behavior (see [7]).

Proposition 4.2. Let S be a hyperbolic Riemann surface and let (M,J)
be an almost complex manifold. Then F ⊂ OJ(S,M) is uniformly normal
if and only if there is a length function G on M such that f∗(G) ≤ KS for
each f ∈ F .

Consequently, a family F ⊂ OJ(∆∗,M) is uniformly normal if and only
if F ◦ O(∆∗, ∆∗) is uniformly normal.

Theorem 4.3 below is our first main result in this section; it gives several
characterizations of a uniformly normal family of pseudoholomorphic punc-
tured discs. This generalizes a result of Joseph and Kwack (see Theorem 2.1
in [10]).

Theorem 4.3. Let (M,J) be an almost complex manifold. The following
are equivalent for F ⊂ OJ(∆∗,M):

(1) F is uniformly normal.
(2) There is a length function G on M such that f∗(G) ≤ K∆∗ for each

f ∈ F .
(3) If p ∈ M and (fn), (zn) are sequences in F ◦ O(∆∗, ∆∗), ∆∗ re-

spectively such that zn → 0 and fn(zn) → p, then for each U open
about p, there is an r ∈ ]0, 1[ satisfying fn(∆∗r) ⊂ U eventually.

Lemma 4.4. Let (M,J) be an almost complex manifold and F ⊂
OJ(∆∗,M) be a uniformly normal family of pseudoholomorphic curves. Let
(zn) and (fn) be sequences in ∆∗ and F respectively such that zn → 0 and
fn(zn)→ p. If σn = {z ∈ ∆ : |z| = |zn|}, then fn(σn)→ p.

Proof. We denote by `(γ) the length of a piecewise smooth curve γ in M
with respect to G. By Proposition 4.2, there exists a length function G on M
such that f∗(G) ≤ K∆∗ , for each f ∈ F . It follows that |f ′n(z)|G ≤ K∆∗(z)
for all z ∈ ∆∗. Therefore we have `(fn(σn)) ≤ 2π/

∣∣log |zk|
∣∣→ 0. This means

that fn(σn)→ p.

Proof of Theorem 4.3. The equivalence between (1) and (2) was proved
in Proposition 4.2.

(2)⇒(3). The proof is an easy adaptation of the proof of (1)⇒(2) in
Theorem 2.4. We only have to use Lemma 4.4 instead of Lemma 2.5.

(3)⇒(2). Let Q be a compact subset of M and let G be a length function
on M . We prove the following claim: there is a positive constant c such that
f∗(G) ≤ cK∆∗ on f−1(Q) for every f ∈ F .
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Otherwise, there exist pn ∈ ∆∗, vn ∈ Tpn∆
∗, fn ∈ F and q ∈ Q such that

K∆∗(pn, vn) = 1, fn(pn) → q and |f ′n(pn, vn)|G → ∞. By the definition of
K∆∗ , there is a sequence of holomorphic curves ϕn : ∆→ ∆∗ and a sequence
rn ∈ [1/2, 1] such that ϕn(0) = pn and ϕ′n(0) = rnvn. Let gn = fn ◦ ϕn ∈
OJ(∆,M). We have |g′n(0)|G = rn|f ′n(pn, vn)|G → ∞. By continuity, there
exists a sequence (zn) in ∆∗ such that zn → 0 and gn(zn)→ q. Let U and V
be relatively compact local coordinate neighborhoods of q such that U ⊂ V .
Since gn|∆∗ ∈ F ◦ O(∆∗, ∆∗), by hypothesis there is an r ∈ ]0, 1[ such that
gn(∆∗r) ⊂ U . Hence, gn(∆r) ⊂ V . Choosing V sufficiently small, we deduce
that the sequence g′n(0) is bounded and we get a contradiction.

Let Qn be an exhaustion of open and relatively compact sets in M . By
the claim, there exists a sequence cn such that f∗(F ) ≤ cnK∆∗ on f−1(Qn)
for every f ∈ F . Choose a positive continuous function µ on M such that
µ ≤ 1/cn on Qn. The length function G = µF satisfies f∗(G) ≤ K∆∗ for
each f ∈ F (see Lang [18, p. 34]).

By Theorems 2.4(3) and 4.3(3), we obtain the following:

Corollary 4.5. Let (M,J) be an almost complex manifold and let F
be a uniformly normal family in OJ(∆∗,M). If (fn) is a sequence in F and
(zn) is a sequence in ∆∗ such that zn → 0 and fn(zn)→ p ∈M , then

(1) Each fn extends to f̃n ∈ OJ(∆,M).
(2) There is an r ∈ ]0, 1[ and a subsequence (f̃nk

) of (f̃n) such that

f̃nk
→ f ∈ OJ(∆r,M) on ∆r.

Corollary 4.6. Let (M,J) be an almost complex manifold and let F
be a uniformly normal family in OJ(∆∗,M). Then each f ∈ F extends to
f̃ ∈ C(∆,M+).

Now, we prove a variant of Noguchi-type extension convergence theorems
for uniformly normal families of punctured pseudoholomorphic discs.

Theorem 4.7. Let (M,J) be an almost complex manifold, F⊂OJ(∆∗,M)
a uniformly normal family, and F its closure in C(∆∗,M+). Then:

(1) C[∆,M+;F ] is relatively compact in C(∆,M+).
(2) Each f ∈ F extends to f̃ ∈ C(∆,M+).
(3) If fn is a sequence in F and fn → f , then f̃n → f̃ .

Proof. (1) By Theorem 4.3(2), we only have to prove that the family
C[∆,M+;F ] is evenly continuous at (0, p) in ∆×M+. Otherwise, there exist
sequences (fn) in C[∆,M+;F ] and (zn) in ∆∗ such that zn → 0, fn(0)→ p
and fn(zn) → q ∈ M+ with p 6= q. By continuity, there is a sequence (wn)
in ∆∗ converging to 0 such that fn(wn)→ p. Using Theorem 4.3(3), we get
a contradiction since either p or q is in M .
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(2) Let f ∈ F . There exists a sequence (fn) in F converging to f . By
Corollary 4.6, each fn extends to f̃n in C[∆,M+;F ], which is relatively com-
pact in C(∆,M+). Consequently, there exists a subsequence (fnk

) converging
to g ∈ C(∆,N+). Hence g = f on ∆∗, so g = f̃ .

(3) It is similar to the proof of Theorem 2.10(2).

The last result of our paper clarifies the link between the hyperbolic em-
beddedness and the uniform normality of some family of pseudoholomorphic
discs.

Theorem 4.8. Let (M,J) be an almost complex submanifold of an al-
most complex manifold (N, J). The following are equivalent:

(1) (M,J) is hyperbolically embedded in (N, J).
(2) The canonical injection M ↪→ N is normal.
(3) OJ(∆∗,M) is a uniformly normal subfamily of OJ(∆∗, N).
(4) There exists a length function G on N such that each f ∈ OJ(∆∗,M)

satisfies f∗G ≤ K∆∗.

Proof. (1)⇔(2). From Theorem 2.8(4).
(2)⇒(3). Obviously, we have OJ(∆∗,M)◦O(∆,∆∗) ⊂ OJ(∆,M) which

is relatively compact in C(∆,N+). Hence OJ(∆∗,M) is a uniformly normal
subfamily of OJ(∆∗, N).

(3)⇔(4). Follows from Theorem 4.3(2).
(4)⇒(1). Taking F = OJ(∆∗,M), we clearly have F ◦ O(∆∗, ∆∗) = F .

By Theorems 4.3(3) and 2.4, each p ∈M is a J-hyperbolic point.

Acknowledgments. We thank the referee for insightful comments that
helped us improve the paper significantly.

References

[1] M. Abate, A characterization of hyperbolic manifolds, Proc. Amer. Math. Soc. 117
(1993), 789–793.

[2] F. Bertrand, Pseudoconvex domains of finite D’Angelo type in almost complex man-
ifolds of dimension four, Math. Z. 264 (2010), 423–457.

[3] J. E. Fornæss and N. Sibony, Construction of p.s.h. functions on weakly pseudocon-
vex domains, Duke Math. J. 58 (1989), 633–655.

[4] K. Funahashi, Normal holomorphic mappings and classical theorems of function
theory, Nagoya Math. J. 94 (1984), 89–104.

[5] H. Gaussier and A. Sukhov, Estimates of the Kobayashi–Royden metric in almost
complex manifolds, Bull. Soc. Math. France 133 (2005), 259–273.

[6] H. Grauert und H. Reckziegel, Hermitesche Metriken und normale Familien holo-
morpher Abbildungen, Math. Z. 89 (1965), 108–125.

[7] F. Haggui and A. Khalfallah, Hyperbolic embeddedness and extension-convergence
theorems of J-holomorphic curves, Math. Z. 262 (2009), 363–379.

http://dx.doi.org/10.1007/s00209-008-0471-x
http://dx.doi.org/10.1215/S0012-7094-89-05830-4
http://dx.doi.org/10.1007/BF01111588
http://dx.doi.org/10.1007/s00209-008-0378-6


Normal pseudoholomorphic curves 65

[8] F. Haggui and A. Khalfallah, Some characterizations of hyperbolic almost complex
manifolds, Ann. Polon. Math. 97 (2010), 159–168.

[9] S. Ivashkovich and J.-P. Rosay, Schwarz-type lemmas for solutions of ∂-inequalities
and complete hyperbolicity of almost complex manifolds, Ann. Inst. Fourier (Grnoble)
54 (2004), 2387–2435.

[10] J. E. Joseph and M. H. Kwack, Hyperbolic imbedding and spaces of continuous
extensions of holomorphic maps, J. Geom. Anal. 4 (1994), 361–378.

[11] —, —, Some classical theorems and families of normal maps in several complex
variables, Complex Var. 29 (1996), 343–378.

[12] —, —, Extension and convergence theorems for families of normal maps in several
complex variables, Proc. Amer. Math. Soc 125 (1997), 1675–1684.

[13] J. C. Joo, Generalized big Picard theorem for pseudo-holomorphic map, J. Math.
Anal. Appl. 323 (2006), 1333–1347.

[14] P. Kiernan, Extension of holomorphic maps, Trans. Amer. Math. Soc. 172 (1972),
347–355.

[15] —, Hyperbolically imbedded spaces and the big Picard theorem, Math. Ann. 204
(1973), 203–209.

[16] S. Kobayashi, Hyperbolic Complex Spaces, Springer, Berlin, 1998.
[17] B. Kruglikov and M. Overholt, Pseudoholomorphic mappings and Kobayashi hyper-

bolicity, Differential Geom. Appl. 11 (1999), 265–277.
[18] S. Lang, Introduction to Complex Hyperbolic Spaces, Springer, New York, 1987.
[19] O. Lehto and K. I. Virtanen, Boundary behavior and normal meromorphic functions,

Acta Math. 97 (1957), 47–65.
[20] M.-P. Muller, Gromov’s Schwarz lemma as an estimate of the gradient for holomor-

phic curves as an estimate of the gradient for holomorphic curves, in: Holomorphic
Curves in Symplectic Geometry, M. Audin and J. Lafontaine (eds.), Birkhäuser,
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