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On a nonlocal problem for fractional integrodifferential
inclusions in Banach spaces

by Zuomao Yan (Zhangye)

Abstract. This paper investigates a class of fractional functional integrodifferential
inclusions with nonlocal conditions in Banach spaces. The existence of mild solutions
of these inclusions is determined under mixed continuity and Carathéodory conditions
by using strongly continuous operator semigroups and Bohnenblust–Karlin’s fixed point
theorem.

1. Introduction. Fractional differential equations have attracted much
attention due to their wide applications in engineering, economics and other
fields. For details, see the monographs [HI], [MR], [P], the papers [DF],
[E], [IM], [JA], [L], [LV], [M], [YG] and the references therein. The non-
local Cauchy problem was considered by Byszewski [BL], [B], [BA], and the
importance of nonlocal initial conditions in different fields has been discussed
in [AM], [DE], [LL], [NT], [Y], [YP] and the references therein. Recently, some
classes of abstract fractional differential and integrodifferential equations
with nonlocal conditions have been investigated by Mophou and N’Guérékata
[MN], [MG]; Balachandran and Trujillo [BT], Chang et al. [CK] and Yan [YA]
have studied the existence of mild solutions of fractional functional integro-
differential equations with nonlocal conditions in Banach spaces by using
fractional calculus and Schaefer’s fixed point theorem. On the other hand,
realistic problems arising from economics, optimal control and so on can
be modeled as differential inclusions, so differential inclusions are widely
investigated by many authors (see [BH], [D], [EI], [F], [H], [HP], [S] and
references therein). Since many partial fractional differential and integro-
differential equations provide a unifying structure for the study of fractional
differential equations, we feel that there is a real need to discuss the nonlocal
Cauchy problem for fractional differential inclusions in abstract spaces.
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In this paper, we shall study a class of fractional functional integrodif-
ferential inclusions with a nonlocal condition in Banach spaces, of the form

(1.1)
dβx(t)
dtβ

∈ Ax(t)

+ F
(
t, x(σ1(t)), . . . , x(σn(t)),

t�

0

h(t, s, x(σn+1(s))) ds
)
, t ∈ J,

(1.2) x(0) + g(x) = x0,

where J = [0, b], 0 < β < 1, the state x(·) takes values in a Banach space
X with the norm | · | and A generates a strongly continuous semigroup T (t)
in X; F : J ×Xn+1 → 2X \ {∅} is a multivalued map, h : ∆×X → X,∆ =
{(t, s) : 0 ≤ s ≤ t ≤ b}, g : C(J,X) → X, σi : J → J , i = 1, . . . , n + 1, are
given functions to be specified later.

Motivated by the above mentioned works, our goal in this paper is to
establish the existence of mild solutions of (1.1)–(1.2) by using Bohnenblust–
Karlin’s fixed point theorem. We only assume continuity and Carathéodory
conditions. The rest of this paper is organized as follows. In Section 2, we
introduce some notation and necessary preliminaries. In Section 3, we give
our main results. In Section 4, an example is given to illustrate our results.
Finally in Section 5, we apply the preceding technique to a control problem.

2. Preliminaries. In this section, we introduce some basic definitions,
notation and lemmas which are used throughout this paper.

Let C(J,X) denote the Banach space of continuous functions from J
into X with the norm

‖x‖∞ = sup{|x(t)| : t ∈ J}.

A measurable function x : J → X is Bochner integrable if |x| is Lebesgue
integrable. (For properties of the Bochner integral see Yosida [YO]). L1(J,X)
denotes the linear space of equivalence classes of all measurable functions
x : J → X, normed by

‖x‖L1 =
b�

0

|x(t)| dt for all x ∈ L1(J,X).

Let (X, | · |) be a Banach space. A multivalued map G : X → 2X \ {∅}
is convex (closed) valued if G(X) is convex (closed) for all x ∈ X; and G
is bounded on bounded sets if G(B) =

⋃
x∈B G(x) is bounded in X for any

bounded subset B of X, that is, supx∈B sup{|y| : y ∈ G(x)} <∞.
G is called upper semicontinuous (u.s.c.) on X if, for each x0 ∈ X,

G(x0) is a nonempty, closed subset of X and, for each open subset N of
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X containing G(x0), there exists an open neighborhood V of x0 such that
G(V ) ⊆ N.

The multivalued operator G is called compact if G(X) is a compact sub-
set of X, and completely continuous if G(D) is relatively compact for every
bounded subset D of X. If the multivalued map G is completely continuous
with nonempty compact values, then G is u.s.c. if and only if G has a closed
graph, i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗).

In the following, BCC(X) denotes the set of all nonempty bounded,
closed and convex subsets of X.

G has a fixed point if there is x ∈ X such that x ∈ G(x). For more
details on multivalued maps see the books of Deimling [D] and Hu and
Papageorgiou [HP].

Now, we recall the properties of fractional calculus which are used in this
paper (see [HI], [MR], [P]).

Definition 2.1. A real function f(t), t > 0, is said to be in the space
Cµ, µ ∈ R, if there exists a real number p (> µ) such that f(t) = tpk(t),
where k ∈ C[0,∞), and it is said to be in the space Cmµ iff f (m) ∈ Cµ, m ∈ N.

Definition 2.2. The Riemann–Liouville fractional integral operator of
order µ > 0, of a function f ∈ Cζ , ζ ≥ −1, is defined as

(2.1) Iµf(t) =
1

Γ (µ)

t�

0

(t− s)µ−1f(s) ds, t > 0.

Definition 2.3. If f ∈ Cm−1 and m is a positive integer, then we can
define the fractional derivative of f(t) in the Caputo sense as

(2.2)
dµf(t)
dtµ

=
1

Γ (m− µ)

t�

0

(t− s)m−µ−1fm(s) ds

for m− 1 < µ ≤ m, m ∈ N.

Remark 2.4. If 0 < µ ≤ 1, then

dµf(t)
dtµ

=
1

Γ (1− µ)

t�

0

(t− s)−µf ′(s) ds,

where f ′(s) = df(s)/ds and f is an abstract function with values in X.

Definition 2.5. A continuous function x(t) satisfying the integral in-
clusion
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(2.3) x(t) ∈ T (t)[x0 − g(x)] +
1

Γ (β)

t�

0

(t− s)β−1T (t− s)

× F
(
s, x(σ1(s)), . . . , x(σn(s)),

s�

0

h(s, τ, x(σn+1(τ))) dτ
)
ds

is called a mild solution of problem (1.1)–(1.2) on J.

Lemma 2.6 (Bohnenblust and Karlin [BK]). Let X be a Banach space,
and D a nonempty subset of X, which is bounded, closed, and convex. Sup-
pose G : D → 2X\{∅} is u.s.c. with closed, convex values, and such that
G(D) ⊂ D and G(D) compact. Then G has a fixed point.

3. Main results. In this section, we state and prove an existence the-
orem for problem (1.1)–(1.2). Let us list the following hypotheses:

(H1) T (t), t > 0, is a compact semigroup and there exists a constant
M ≥ 1 such that |T (t)| ≤M.

(H2) For each (t, s) ∈ ∆, the function h(t, s, ·) : X → X is continuous
and for each x ∈ X the function h(·, ·, x) : ∆ → X is strongly
measurable.

(H3) F : J × Xn+1 → BCC(X) is measurable in t ∈ J for each
(x1, . . . , xn+1) ∈ Xn+1, u.s.c. with respect to (x1, . . . , xn+1) ∈
Xn+1 for each t ∈ J, and for x ∈ C(J,X) the set

SF,x =
{
f ∈ L1(J,X) : f(t) ∈ F

(
t, x(σ1(t)), . . . , x(σn(t)),

t�

0

h(t, s, x(σn+1(s))) ds
)}

is nonempty.
(H4) For each r > 0 and x ∈ C(J,X) with ‖x‖∞ ≤ r, there exists a

positive function lr : J → R+ such that

sup
{
|f | : f(t) ∈ F

(
t, x(σ1(t)), . . . , x(σn(t)),

t�

0

h(t, s, x(σn+1(s))) ds
)}
≤ lr(t)

for a.e. t ∈ J.
(H5) The function s 7→ (t−s)β−1lr(s) belongs to L1([0, t],R+) and there

is a γ > 0 such that

lim inf
r→∞

1
r

t�

0

(t− s)β−1lr(s) ds = γ <∞.

(H6) σi : J → J, i = 1, . . . , n+ 1, are continuous functions.
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(H7) The function g(·) : C(J,X) → X is continuous and there exists a
δ ∈ (0, b) such that g(φ) = g(ψ) for any φ, ψ ∈ C := C(J,X) with
φ = ψ on [δ, b].

(H8) There is a constant c > 0 such that

(3.1) 0 ≤ lim sup
‖φ‖∞→∞

|g(φ)|
‖φ‖∞

≤ c, φ ∈ C.

Theorem 3.1. If hypotheses (H1)–(H8) are satisfied, then the nonlocal
Cauchy problem (1.1)–(1.2) has at least one mild solution on J, provided
that

(3.2) M

(
c+

γ

Γ (β)

)
< 1.

Proof. We transform the problem (1.1)–(1.2) into a fixed point problem.
The multivalued map P : C(J,X)→ 2C(J,X) defined by

P (x) :=
{
ρ ∈ C(J,X) : ρ(t) = T (t)[x0 − g(x)]

+
1

Γ (β)

t�

0

(t− s)β−1T (t− s)f(s) ds : f ∈ SF,x
}

has a fixed point. This fixed point is then a mild solution of (1.1)–(1.2).
Let {δn : n ∈ N} be a decreasing sequence in (0, b) with limn→∞ δn = 0.

To prove the above, we show that the inclusion

(3.3)
dβx(t)
dtβ

∈ Ax(t)

+ F

(
t, x(σ1(t)), . . . , x(σn(t)),

t�

0

h(t, s, x(σn+1(s)))ds
)
, t ∈ J,

(3.4) x(0) + T (δn)g(x) = x0,

has at least one mild solution xn ∈ C(J,X).
For fixed n ∈ N, let Pn : C(J,X)→ 2C(J,X) be defined by

Pn(x) :=
{
ρn ∈ C(J,X) : ρn(t) = T (t)[x0 − T (δn)g(x)]

+
1

Γ (β)

t�

0

(t− s)β−1T (t− s)f(s) ds : f ∈ SF,x
}

for t ∈ [0, b]. It is easy to see that a fixed point of Pn is a mild solution of
the nonlocal Cauchy problem (3.3)–(3.4). We now show that Pn satisfies all
the conditions of Lemma 2.6. The proof will be given in several steps.

Step 1. Pn(x) is convex for each x ∈ C(J,X).
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In fact, if ρ1
n, ρ

2
n ∈ Pn(x), then there exist f1, f2 ∈ SF,x such that for each

t ∈ J we have

ρin(t) = T (t)[x0 − T (δn)g(x)](3.5)

+
1

Γ (β)

t�

0

(t− s)β−1T (t− s)fi(s) ds, i = 1, 2.

Let 0 ≤ λ ≤ 1. Then for each t ∈ J we have

(λρ1
n + (1− λ)ρ2

n)(t) = T (t)[x0 − T (δn)g(x)]

+
1

Γ (β)

t�

0

(t− s)β−1T (t− s)(λf1(s) + (1− λ)f2(s)) ds.

Since SF,x is convex (because F has convex values) we have

λρ1
n + (1− λ)ρ2

n ∈ Pn(x).

Step 2. Pn(Bq) ⊂ Bq for some positive number q, where for each con-
stant q > 0,

Bq := {x ∈ C([0, b], X) : ‖x‖∞ ≤ q}.

Clearly Bq is a bounded closed convex set in C(J,X). Assume, to derive
a contradiction, that for each positive number q, there exists a function
xq ∈ Bq with ‖Pn(xq)‖ := {‖ρqn‖∞ : ρqn ∈ Pn(xq)} > q and

(3.6) ρqn(t) = T (t)[x0 − T (δn)g(xq)] +
1

Γ (β)

t�

0

(t− s)β−1T (t− s)fq(s) ds

for some fq ∈ SF,xq . From condition (H8), we conclude that there exist
positive constants ε and γ1 such that, for all ‖φ‖∞ > γ1,

(3.7) |g(φ)| ≤ (c+ ε)‖φ‖∞, M

(
c+ ε+

γ

Γ (β)

)
< 1.

Let

E1 = {φ : ‖φ‖∞ ≤ γ1}, E2 = {φ : ‖φ‖∞ > γ1},
C1 = max{|g(φ)| : φ ∈ E1}.

Then

(3.8) |g(φ)| ≤ C1 + (c+ ε)‖φ‖∞.
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It follows from (H1), (H3), (H4), (3.6) and (3.8) that for each t ∈ [0, b] we
have

q < ‖Pn(xq)‖

≤ |T (t)[x0 − T (δn)g(xq)]|+ 1
Γ (β)

∣∣∣ t�
0

(t− s)β−1T (t− s)fq(s) ds
∣∣∣

≤ |T (t)x0|+ |T (t+ δn)g(xq)|+ M

Γ (β)

t�

0

(t− s)β−1|fq(s)| ds

≤M [|x0|+ C1 + (c+ ε)q] +
M

Γ (β)

t�

0

(t− s)β−1lq(s) ds.

Dividing by q and taking the lower limit as q → +∞, we have

M

(
c+ ε+

γ

Γ (β)

)
≥ 1,

which contradicts (3.7). Hence there exists a positive number q such that
Pn(Bq) ⊂ Bq.

Step 3. Pn sends bounded sets to equicontinuous sets in C(J,X).

Let 0 < t1 < t2 ≤ b, and let Bq be a bounded set as in Step 2. For each
x ∈ Bq and ρn ∈ Pn(x), there exists f ∈ SF,x such that for each t ∈ J,

(3.9) ρn(t) = T (t)[x0 − T (δn)g(x)] +
1

Γ (β)

t�

0

(t− s)β−1T (t− s)f(s) ds.

In view of (3.9) and (H1)–(H4), we have

|(ρn(t2)− ρn(t1)|
≤ |[T (t2)− T (t1)][x0 − T (δn)g(x)]|

+
1

Γ (β)

t1−ε�

0

|[(t2 − s)β−1T (t2 − s)− (t1 − s)β−1T (t1 − s)]f(s)| ds

+
1

Γ (β)

t1�

t1−ε
|[(t2 − s)β−1T (t2 − s)− (t1 − s)β−1T (t1 − s)]f(s)| ds

+
1

Γ (β)

t2�

t1

|(t2 − s)β−1T (t2 − s)f(s)| ds

≤ |T (t2)− T (t1)[x0 − T (δn)g(x)]|

+
1

Γ (β)

t1−ε�

0

[(t1 − s)β−1 − (t2 − s)β−1]|T (t2 − s)|lq(s) ds
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+
1

Γ (β)

t1−ε�

0

(t1 − s)β−1|T (t1 − s)| |T (t2 − t1)− I|lq(s) ds

+
1

Γ (β)

t1�

t1−ε
[(t1 − s)β−1 − (t2 − s)β−1]|T (t2 − s)|lq(s) ds

+
1

Γ (β)

t1�

t1−ε
(t1 − s)β−1|T (t1 − s)| |T (t2 − t1)− I|lq(s) ds

+
1

Γ (β)

t2�

t1

(t2 − s)β−1|T (t2 − s)|lq(s) ds

≤ |[T (t2)− T (t1)][x0 − T (δn)g(x)]|

+
M

Γ (β)

t1−ε�

0

[(t1 − s)β−1 − (t2 − s)β−1]lq(s) ds

+
M

Γ (β)
|T (t2 − t1)− I|

t1−ε�

0

(t1 − s)β−1lq(s) ds

+
M

Γ (β)

t1�

t1−ε
[(t1 − s)β−1 − (t2 − s)β−1]lq(s) ds

+
M

Γ (β)
|T (t2 − t1)− I|

t1�

t1−ε
(t1 − s)β−1lq(s) ds

+
M

Γ (β)

t2�

t1

(t2 − s)β−1lq(s) ds.

The right-hand side of the above inequality tends to zero independently of
x ∈ Bq as t2 − t1 → 0 and ε is sufficiently small, since the compactness of
T (t) (t > 0) implies the continuity in the uniform operator topology. Thus
Pn sends Bq to an equicontinuous family of functions.

Step 4. The set W (t)={ρn(t) : ρn∈Pn(Bq)} is relatively compact in X.

We note that W (0) is relatively compact in X. Let 0 < t ≤ s ≤ b be
fixed and ε a real number satisfying 0 < ε < t. For x ∈ Bq, we define

(ρεnx)(t) = T (t)[x0 − T (δn)g(x)] +
1

Γ (β)

t−ε�

0

(t− s)β−1T (t− s)f(s) ds

= T (t)[x0 − T (δn)g(x)] +
T (ε)
Γ (β)

t−ε�

0

(t− s)β−1T (t− s− ε)f(s) ds
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for some f ∈ SF,x. Using the compactness of T (t) for t > 0, we deduce that
the set Wε(t) = {ρεn(t) : ρεn ∈ Pn(Bq)} is pre-compact in X for every ε with
0 < ε < t. Moreover for every x ∈ Bq we have

|ρ(t)− ρεn(t)| ≤ 1
Γ (β)

t�

t−ε
(t− s)β−1|T (t− s)f(s)| ds

≤ M

Γ (β)

t�

t−ε
(t− s)β−1lq(s) ds.

Therefore, there are relatively compact sets arbitrarily close to the set
W (t) = {ρn(t) : ρn ∈ Pn(Bq)}, and W (t) is a relatively compact in X.

Step 5. Pn has a closed graph.

Let x(m) → x∗ (m → ∞), ρ(m)
n ∈ Pn(x(m)), x(m) ∈ Bq and ρ

(m)
n → ρ∗n.

We shall show that ρ∗n ∈ Pn(x∗). Now ρ
(m)
n ∈ Pn(x(m)) means that there

exists f (m) ∈ SF,x(m) such that, for each t ∈ J,

ρ(m)
n (t) = T (t)[x0 − T (δn)g(x(m))] +

1
Γ (β)

t�

0

(t− s)β−1T (t− s)f (m)(s) ds.

We must prove that there exists f∗ ∈ SF,x∗ such that, for each t ∈ J,

ρ∗n(t) = T (t)[x0 − T (δn)g(x∗)] +
1

Γ (β)

t�

0

(t− s)β−1T (t− s)f∗(s) ds.

Clearly,

‖(ρ(m)
n (t)− T (t)[x0 − T (δn)g(x(m))])

− (ρ∗n(t)− T (t)[x0 − T (δn)g(x∗)])‖∞ → 0 as m→∞.

Consider the continuous linear operator Φ : L1(J,X)→ C(J,X) defined by

f 7→ (Φf)(t) =
1

Γ (β)

t�

0

(t− s)β−1T (t− s)f(s) ds.

We can see that Φ is linear and continuous. Indeed,

‖Φf‖∞ ≤
M

Γ (β)

t�

0

(t− s)β−1lq(s) ds.

From (H4) and [LO] , it follows that Φ◦SF has closed graph. Also, from the
definition of Φ,

ρ(m)
n − T (t)[x0 − T (δn)g(x(m))] ∈ Φ(SF,x(m)).
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Since x(m) → x∗, it follows that

ρ∗n(t)− T (t)[x0 − T (δn)g(x∗)] =
1

Γ (β)

t�

0

(t− s)β−1T (t− s)f∗(s) ds

for some f∗ ∈ SF,x∗ .

As a consequence of Steps 1 to 5, together with the Arzelà–Ascoli theo-
rem, we conclude that Pn is a compact multivalued map, u.s.c. with convex
closed values. In view of Lemma 2.6, Pn has a fixed point xn in Bq, which
is in turn a mild solution of (3.3)–(3.4). Thus,

xn(t) = T (t)[x0 − T (δn)g(xn)](3.10)

+
1

Γ (β)

t�

0

(t− s)β−1T (t− s)fn(s) ds

for all t ∈ [0, b], and some fn ∈ SF,xn .

Next we will show that the set {xn : n ∈ N} is relatively compact in
C(J,X).

Step 6. {xn : n ∈ N} is equicontinuous on J.

For ε > 0 and xn ∈ Bq, there exists a constant η > 0 such that for all
t ∈ (0, b] and ξ ∈ (0, η) with t+ ξ ≤ b, we have

|xn(t+ ξ)− xn(t)|
≤ |[T (t+ ξ)− T (t)][x0 − T (δn)g(xn)]|

+
1

Γ (β)

t+ξ�

t

|(t+ ξ − s)β−1T (t+ ξ − s)fn(s)| ds

+
1

Γ (β)

t�

0

|(t+ ξ − s)β−1T (t+ ξ − s)− (t− s)β−1T (t− s)fn(s)| ds

≤ |[T (t+ ξ)− T (t)][x0 − T (δn)g(xn)]|+ M

Γ (β)

t+ξ�

t

(t+ ξ − s)β−1lq(s) ds

+
1

Γ (β)

t�

0

|(t+ ξ − s)β−1T (t+ ξ − s)− (t− s)β−1T (t− s)|lq(s) ds.

Using the compact semigroup property, we get

|[T (t+ ξ)− T (t)][x0 − T (δn)g(xn)]| < ε/3,(3.11)
t+ξ�

t

(t+ ξ − s)β−1lq(s) ds <
Γ (β)
3M

ε,(3.12)
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t�

0

|(t+ ξ − s)β−1T (t+ ξ − s)− (t− s)β−1T (t− s)|lq(s) ds <
Γ (β)

3
ε.(3.13)

Thus by (3.11)–(3.13) one has

|xn(t+ ξ)− xn(t)| < ε.

Therefore, {xn(t) : n ∈ N} is equicontinuous for t ∈ (0, b]. Clearly {xn(0) :
n ∈ N} is equicontinuous.

Step 7. {xn(t) : n ∈ N} is relatively compact in X.

Let t ∈ (0, b] and ε > 0. Since xn is a mild solution for (3.3)–(3.4) and
condition (H1) holds, there exists ξ ∈ (0, t) such that

|xn(t)−T (ξ)xn(t−ξ)| ≤ 1
Γ (β)

t−ξ�

0

|[(t−s)β−1−(t−ξ−s)β−1]T (t−s)fn(s)| ds

+
1

Γ (β)

t�

t−ξ
|(t−s)β−1T (t−s)fn(s)| ds

≤ M

Γ (β)

t−ξ�

0

[(t−ξ−s)β−1−(t−s)β−1]lq(s) ds

+
M

Γ (β)

t�

t−ξ
(t−s)β−1lq(s) ds < ε

for all n ∈ N. Combining the above inequality with the compactness of the
operator T (ξ), one finds that {xn(t) : n ∈ N} is relatively compact in X.

Set

x̃n(t) :=
{
xn(t) if t ∈ [δn, b],
xn(δn) if t ∈ [0, δn].

Using condition (H7), we obtain

g(xn) = g(x̃n),

where x̃n(t) = xn(t) for t ∈ [δn, b]. On the other hand, in Steps 6 and 7,
applying the Arzelà–Ascoli theorem again one obtains the relative compact-
ness of {x̃n : n ∈ N} in C((0, b], X). Therefore there exists a subsequence of
{x̃n : n ∈ N}, denoted again by {x̃n : n ∈ N}, and a function x ∈ C((0, b], X)
such that

x̃n → x as n→∞.
Therefore, by the continuity of T (t) and g, we get

xn(0) = x0−T (δn)g(xn) = x0−T (δn)g(x̃n)→ x0−g(x) = x(0) as n→∞.
Thus the sequence {xn(0) : n ∈ N} is relatively compact.
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These facts imply the relative compactness of {xn : n ∈ N} in C(J,X).
Therefore, without loss of generality, we may suppose that

xn → x∗ ∈ C(J,X) as n→∞.

Obviously, x∗ ∈ Bq, and taking limits in (3.10) one has

(3.14) x∗(t) = T (t)[x0 − g(x∗)] +
1

Γ (β)

t�

0

(t− s)β−1T (t− s)f∗(s) ds

for t ∈ J, and some f∗ ∈ SF,x∗ , which implies that x∗ is a mild solution of
problem (1.1)–(1.2), and the proof of Theorem 3.1 is complete.

Remark 3.2. (H2)–(H4) are satisfied if there exist positive functions
a1, a2 : J → R+ such that∣∣∣F(t, x(σ1(t)), . . . , x(σn(t)),

t�

0

h(t, s, x(σn+1(s))) ds
)∣∣∣

≤ a1(t)|x|+ a2(t) for almost all t ∈ J and all x ∈ X,

or there exist positive functions b1, b2 : J → R+ and θ1 ∈ (0, 1) such that∣∣∣F(t, x(σ1(t)), . . . , x(σn(t)),
t�

0

h(t, s, x(σn+1(s))) ds
)∣∣∣

≤ b1(t)|x|θ1 + b2(t) for almost all t ∈ J and all x ∈ X.

(H7)–(H8) are satisfied if there exist constants b1, b2 such that

(3.15) |g(φ)| ≤ b1 + b2‖φ‖∞, φ ∈ C(J,X),

or there exist constants c1, c2, µ1 ∈ [0, 1) such that

(3.16) |g(φ)| ≤ c1 + c2‖φ‖µ1
∞ , φ ∈ C(J,X).

Remark 3.3. As compared to the previous research on nonlocal Cauchy
problems, we no longer require the Lipschitz continuity of F . Indeed, we only
require that F satisfies the Carathéodory condition. Moreover, we consider
the case in which g is continuous but without imposing severe compactness
conditions and convexity. So these results have more practical applications.

4. Example. Consider the nonlocal fractional order partial functional
integrodifferential inclusion

dβx(t)
dtβ

∈ ∂2

∂x2
z(t, x) +

1
1 + t2

[√
z(sin t, x) + sin z(t, x)

t�

0

e−z(sin s,x) ds

]
,(4.1)

z(t, 0) = z(t, π) = 0,(4.2)
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z(0, x) +
p∑
i=1

ci
3
√
z(ti, x) = z0(x), 0 ≤ t ≤ 1, 0 ≤ x ≤ π,(4.3)

where 0 < t1 < · · · < tp ≤ 1 and ci are constants, z0 ∈ X = L2([0, π]) and
z0(0) = z0(π) = 0.

Let X = L2([0, π]) and let the operator A : X → X be given by Au = u′′

with
D(A) := {u ∈ X : u′′ ∈ X, u(0) = u(π) = 0}.

Then

Au =
∞∑
n=1

n2(u, un)un, u ∈ D(A),

where un(x) =
√

2/π sin(nx), n = 1, 2, . . . , is the orthogonal set of eigen-
functions of A. It is well known that A is the infinitesimal generator of a
compact analytic semigroup T (t), t > 0, in X and is given by

T (t)u =
∞∑
n=1

exp(−n2t)(u, un)un, u ∈ X,

where T (t) satisfies hypothesis (H1).
Define F : [0, 1] × X × X → X, h : [0, 1] × [0, 1] × X → X and g :

C([0, 1], X)→ X by

F
(
t, z(σ(t)),

t�

0

h(t, s, z(σ(s))) ds
)

(x)

=
1

1 + t2

[√
z(sin t, x) + sin z(t, x)

t�

0

e−z(sin s,x) ds
]
,

t�

0

h(t, s, z(σ(s)))(x) ds =
1

1 + t2
sin z(t, x)

t�

0

e−z(sin s,x)ds,

g(z)(x) =
p∑
i=1

ci
3
√
z(ti, x), z ∈ C([0, 1], X).

It is easy to see that with these choices, the assumptions (H2)–(H8) of
Theorem 3.1 are satisfied with the constants γ = 1/β, c = 0. Assume that

M

Γ (β + 1)
< 1.

Now the condition (3.2) in Section 3 holds and hence by Theorem 3.1, the
nonlocal Cauchy problem (4.1)–(4.3) has a mild solution on [0, 1].

5. Application. This section is devoted to an application of the ar-
gumens of previous sections to the controllability of a fractional functional
integrodifferential system with nonlocal conditions in a Banach space X.
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More precisely we consider the problem

(5.1)
dβx(t)
dtβ

∈ Ax(t) +Bu(t)

+ F
(
t, x(σ1(t)), . . . , x(σn(t)),

t�

0

h(t, s, x(σn+1(s))) ds
)
, t ∈ J,

(5.2) x(0) + g(x) = x0,

where A, F and g are as in Section 3. Also, the control function u belongs
to L2(J, U) with U a Banach space. Further, B is a bounded linear operator
from U to X. Several authors have established controllability results for
differential and integrodifferential systems in Banach spaces (see [BG], [G]
and the references therein). In the case of a nonlocal condition, a fractional
integrodifferential system has recently been studied by Balachandran and
Park [BP].

Definition 5.1. A continuous function x(·) : J → X is said to be a
mild solution to problem (5.1)–(5.2) if for all x0 ∈ X, it satisfies the integral
equation

(5.3) x(t) ∈ T (t)[x0 − g(x)] +
1

Γ (β)

t�

0

(t− s)β−1T (t− s)

× F
(
s, x(σ1(s)), . . . , x(σn(s)),

s�

0

h(s, τ, x(σn+1(τ))) dτ
)
ds

+
1

Γ (β)

t�

0

(t− s)β−1T (t− s)Bu(s) ds.

Definition 5.2. The system (5.1)–(5.2) is said to be controllable on the
interval J if for every x0, x1 ∈ X, there exists a control u ∈ L2(J, U) such
that the mild solution x(t) of (5.1)–(5.2) satisfies x(b) + g(x) = x1.

We make the following assumptions:

(B1) The linear operator W : L2(J, U)→ X defined by

Wu =
1

Γ (β)

b�

0

(b− s)β−1T (b− s)Bu(s) ds

has an induced inverse operator W−1 with values in L2(J, U) \
KerW and there exist positive constants M1 such that |BW−1|
≤M1.

(B2) The constants M,M1, b, β satisfy the inequality

(5.4) M

(
1 +

(1 +M)M1b
β

Γ (β + 1)

)
c+

Mγ

Γ (β)

(
1 +

MM1b
β

Γ (β + 1)

)
< 1.
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Remark 5.3. The construction of the operator W and its inverse is
studied by Quinn and Carmichael in [Q].

Theorem 5.4. Assume that hypotheses (H1)–(H8), (B1) and (B2) are
satisfied. Then system (5.1)–(5.2) is controllable on J.

Proof. Using hypothesis (B1), for an arbitrary function x(·) define the
control

ux(t) = W−1

[
x1 − g(x)− T (b)(x0 − g(x))

− 1
Γ (β)

b�

0

(b− s)β−1T (b− s)f(s) ds
]
(t)

for some f ∈ SF,x. We shall show that when using the above control the
operator P : C(J,X)→ 2C(J,X) defined by

P (x) :=
{
ρ ∈ C(J,X) : ρ(t) = T (t)[x0 − g(x)]

+
1

Γ (β)

t�

0

(t− s)β−1T (t− s)f(s) ds

+
1

Γ (β)

t�

0

(t− θ)β−1T (t− θ)BW−1

[
x1 − g(x)− T (b)(x0 − g(x))

− 1
Γ (β)

b�

0

(b− s)β−1T (b− s)f(s) ds
]
(θ)dθ : f ∈ SF,x

}
has a fixed point, and then x(·) is a mild solution of system (5.1)–(5.2).
Indeed, it is easy to verify that

x1 − g(x) ∈ (Px)(b),

which means that the system is controllable. The remaining part of the
proof is similar to that of Theorem 3.1: the operator P has a fixed point
which is a mild solution of problem (5.1)–(5.2). Hence, system (5.1)–(5.2) is
controllable on the interval J .
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