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Global attractor for the Navier–Stokes equations
in a cylindrical pipe

by Piotr Kacprzyk (Warszawa)

Abstract. Global existence of regular special solutions to the Navier–Stokes equa-
tions describing the motion of an incompressible viscous fluid in a cylindrical pipe has
already been shown. In this paper we prove the existence of the global attractor for the
Navier–Stokes equations and convergence of the solution to a stationary solution.

1. Introduction. We consider viscous incompressible fluid motions in
a finite cylinder with large inflow and outflow and under boundary slip con-
ditions. The following initial-boundary value problem is examined:

(1.1)

v,t + v · ∇v − div T(v, p) = f in ΩT = Ω × (0, T ),

div v = 0 in ΩT ,

v · n̄ = 0 on ST1 = S1 × (0, T ),

νn̄ · D(v) · τ̄α + γv · τ̄α = 0, α = 1, 2, on ST1 ,

v · n̄ = d on ST2 = S2 × (0, T ),

n̄ · D(v) · τ̄α = 0, α = 1, 2, on ST2 ,

v|t=0 = v(0) in Ω,�

Ω

p dx = 0,

where Ω ⊂ R3, S = S1 ∪ S2 = ∂Ω, v = v(x, t) = (v1(x, t), v2(x, t), v3(x, t))∈
R3 is the velocity vector of the fluid motion, p = p(x, t) ∈ R1 the pressure,
f = f(x, t) = (f1(x, t), f2(x, t), f3(x, t)) ∈ R3 the external force field, n̄ the
unit outward vector normal to the boundary S, and τ̄α, α = 1, 2, are tangent
vectors to S. Moreover, T(v, p) is the stress tensor of the form

T(v, p) = νD(v)− pI,
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where ν is the constant viscosity coefficient, I the unit matrix and D(v) the
dilatation tensor,

D(v) = {vi,xj + vj,xi}i,j=1,2,3.

Finally, γ > 0 is the slip coefficient.
By Ω ⊂ R3 we denote a cylindrical type domain parallel to the x3 axis

with arbitrary cross section. We assume that S1 is the part of the boundary
which is parallel to the x3 axis and S2 is perpendicular to x3. Hence

S1 = {x ∈ R3 : ϕ(x1, x2) = c0, −a < x3 < a},
S2(−a) = {x ∈ R3 : ϕ(x1, x2) < c0, x3 = −a},
S2(a) = {x ∈ R3 : ϕ(x1, x2) < c0, x3 = a},

where a, c0 are given positive numbers and ϕ(x1, x2) = c0 describes a suffi-
ciently smooth closed curve in the plane x3 = const.

To describe inflow and outflow we define

(1.2) d1 = −v · n̄|S2(−a), d2 = v · n̄|S2(a),

so di ≥ 0, i = 1, 2, and by (1.1)2,3 and (1.2) we have the compatibility
condition

(1.3) Φ ≡
�

S2(−a)

d1 dS2 =
�

S2(a)

d2 dS2,

where Φ is the flux.
Let us introduce an extension α = α(x, t) ∈ R such that

(1.4) α|S2(−a) = d1, α|S2(a) = d2.

Then equations (1.1)2,3,6 and (1.3) imply the compatibility condition�

Ω

α,x3 dx = −
�

S2(−a)

α|x3=−a dS2 +
�

S2(a)

α|x3=a dS2 = 0.

In [14, 15, 16] the long time existence of solutions is proved in non-axially
cylindrical domains. In [17] the existence is proved in Besov spaces and in
[2, 9] the proof of existence is simplified to use Sobolev spaces only. In [8] the
global existence of solution is proved by prolongation of long time solutions
from [9].

Now we explain why the global existence is proved in the two steps. We
can prove global existence directly but then we have to assume that the time
integral norms of data functions are finite on (0,∞) (see the norms before
Theorem 2.1).

This means that all data functions must vanish sufficiently fast as t→∞.
To omit these restrictions we prove the existence of solutions on the interval
(0, T ) with fixed T , without smallness restriction on T . Then to prove global
existence we repeat the considerations from the interval (0, T ) on all intervals
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(kT, (k + 1)T ), k ∈ N. For this purpose we need to know that the norms of
data at time t = kT are not greater than the same norms at t = 0.

This can be shown by using the natural decay properties for solutions of
the Navier–Stokes equations and T sufficiently large. In this way the initial
data at t = kT are not greater than the initial data at t = 0. In [17] the
inflow-outflow problem is considered, and in [3] global existence is proved by
prolongation of long time solutions from [2].

This paper extends the result from [7] to the inflow-outflow case. This
extension is difficult because the inflow-outflow flux makes the problems
considered in this paper nonhomogeneous. This implies that solvability of
such a problem must be shown in a different way than in [7]. Moreover, many
new expressions connected with the inflow-outflow flux must be estimated.
Hence, we show the existence of a global attractor for the Navier–Stokes
equations in cylindrical domains in the inflow-outflow case.

Now we formulate the main result. Let δ > 0 be fixed and

V̄ = {v ∈ C∞(Ω) : div v = 0, v · n̄|S1 = 0, v · n̄|S2 = d, |v,x3 |2,Ω < δ},
then

H ≡ closure of V̄ in the L2-norm,

V ≡ closure of V̄ in the H1-norm.

Let v(t) be a weak global solution to problem (1.1) with initial data v0 =
v(0). Then S(t) : H → H is a semiprocess defined by v(t) = S(t)v(0).

Theorem 1.1. There exists a global attractor A in V for the semiprocess
{S(t)}t≥0 (see also (3.1)). The attractor is bounded in H1(Ω) and compact
and connected in V . It attracts bounded sets in V .

2. Notation and auxiliary results. To simplify the presentation we
introduce the following notation:

|u|p,Q = ‖u‖Lp(Q), Q ∈ {ΩT , ST , Ω, S}, p ∈ [1,∞],

‖u‖s,Q = ‖u‖Hs(Q), Q ∈ {Ω,S}, s ∈ R+ ∪ {0},
‖u‖s,QT = ‖u‖

W
s,s/2
2 (QT )

, Q ∈ {Ω,S}, s ∈ R+ ∪ {0},up,q,QT = ‖u‖Lq(0,T ;Lp(Q)), Q ∈ {Ω,S}, p, q ∈ [1,∞],

‖u‖s,q,QT = ‖u‖
W
s,s/2
q (QT )

, Q ∈ {Ω,S}, s ∈ R+ ∪ {0}, q ∈ [1,∞],

‖u‖s,q,Q = ‖u‖W s
q (Q), Q ∈ {Ω,S}, s ∈ R+ ∪ {0}, q ∈ [1,∞].

By c we denote a generic constant which changes its magnitude from
formula to formula. By c̄(σ), ϕ(σ) we understand generic functions which
are always positive and increasing. Finally, we do not distinguish the scalar-
valued and vector-valued functions.
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We introduce the space

(2.1) V k
2 (ΩT ) =

{
u : ‖u‖V k2 (ΩT ) = ess sup

t∈(0,T )
‖u‖Hk(Ω)

+
( T�

0

‖∇u(t)‖2Hk(Ω) dt
)1/2

<∞
}
, k ∈ N.

Finally, we introduce the quantities

(2.2)
h = v,x3 , q = p,x3 , g = f,x3 ,

w = v3, χ = v2,x1 − v1,x2 .

Lemma 2.1 (Korn inequality; see [14]). Assume that |D(v)|22,Ω < ∞,
v · n̄|S = 0, div v = 0. If Ω is not axially symmetric, then there exists a
constant c > 0 such that

(2.3) ‖v‖21,Ω ≤ c|D(v)|22,Ω.

First we need the estimates and the uniform Gronwall inequality.

Lemma 2.2. The solution v ∈ H2(Ω) of the elliptic problem

div D(v) = f,

v · n̄|S1 = 0,
v · n̄|S2 = d,

(n̄ · D(v) · τ̄α + v · τ̄α)|S1
= 0, α = 1, 2,

n̄ · D(v) · τ̄α|S2 = 0, α = 1, 2,

satisfies the estimate

(2.4) ‖v‖2,Ω ≤ c(|f |2,Ω + |v|2,Ω + ‖d‖3/2,2,S2
+ ‖v · τα‖1/2,2,S1

).

Lemma 2.3. The solution (v, p) ∈ H2(Ω)×H1(Ω) of the elliptic problem

div T(v, p) = f,

div v = 0,
v · n̄|S1 = 0,
v · n̄|S2 = d,

(n̄ · D(v) · τ̄α + v · τ̄α)|S1
= 0, α = 1, 2,

n̄ · D(v) · τ̄α|S2 = 0, α = 1, 2,

satisfies the estimate

(2.5) ‖v‖2,Ω + |∇p|2,Ω ≤ c(|f |2,Ω + |v|2,Ω + ‖d‖3/2,2,S2
+ ‖v · τα‖1/2,2,S1

).

Lemmas 2.2, 2.3 follow from the theory of boundary value problems for
Douglis–Nirenberg elliptic systems (see [10]).
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Lemma 2.4 (uniform Gronwall inequality; see [12, Ch. 3, Lemma 1.1]).
Let g, h, y : [t0,∞)→ (0,∞) be continuous functions. Assume that for some
r > 0 and all t > t0 the inequalities

y′(t) ≤ g(t)y(t) + h(t),
t+r�

t

g(s) ds ≤ a1,

t+r�

t

h(s) ds ≤ a2,

t+r�

t

y(s) ds ≤ a3

hold. Then y satisfies the uniform estimate

(2.6) y(t+ r) ≤
(
a3

r
+ a2

)
ea1 for t > t0.

The existence of regular solutions to the problem (1.1) has been proved
in [2] by the Leray–Schauder fixed point theorem assuming smallness of the
L2-norms of the derivative, with respect to the variable along the axis of
the cylinder, of the external force and the initial velocity. Moreover, we need
the density of the flux to have sufficiently small derivatives with respect to
variables on S2 and time. The next step is to obtain global in time solutions.
This is shown in [3].

To formulate the main result from [3] we need the notation

Γ 2(t) = |α|22,S1
+ |α,t|26/5,Ω + |α,x3t|26/5,Ω

+ (1 + ‖α‖21,3,Ω)|∇α|22,Ω + |f |26/5,Ω,

Γ 2
1 (kT, t) = ‖α‖2L∞(kT,t;L2(Ω)) + ‖α,x3‖2L∞(kT,t;L2(Ω))

+
t�

kT

‖α(t′)‖21,2,Ω dt′,

l21(kT, t) = c exp c(
d1
6

3,6,S2×(kT,t) +
∇α2

3,2,Ω×(kT,t))

·
( t�

kT

Γ 2(t′) dt′ + Γ 2
1 (kT, t) + |v(kT )|22,Ω

)
,

G(kT, t) = l1(kT, t) + ‖d1‖3/2,2,S2×(kT,t) + |f |2,Ω×(kT,t)

+ |F3|10/7,Ω×(kT,t) + |d1|∞,Ω×(kT,t), where F3 = (rot v)3,

G′(kT, t) = |g|2,Ω×(kT,t) + l1(kT, t) + ‖d1,x′‖3/2,2,S2×(kT,t),

where g = f,x3 ,

η(kT, t) = ‖d1,x′‖L∞(kT,t;H1(S2)) + ‖d1,t‖L2(kT,t;H1(S2))

+ ‖f3‖L2(kT,t;L4/3(Ω)) + ‖g‖L2(kT,t;L6/5(Ω)) +
1
T
l1(kT, t),

where t ∈ (kT, (k + 1)T ).
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Theorem 2.1 (global existence). Assume that t ∈ (kT, (k + 1)T ), k ∈
N ∪ {0} ≡ N0,

t�

kT

Γ 2(t′) dt′ ≤
T�

0

Γ 2(t′) dt′,

Γ1(kT, t) ≤ Γ1(0, T ), G(kT, t) ≤ G(0, T ), G′(kT, t) ≤ G′(0, T ),
l1(kT, t) ≤ l1(0, T ), η(kT, t) ≤ η(0, T ).

Assume that η(kT, (k+ 1)T ) is so small that there exists a positive constant
A such that

(2.7) ϕ(A,G(kT, t))η(kT, t) +G′(kT, t) < A, t ∈ (kT, (k + 1)T ],

where ϕ is some positive increasing function. Then there exists a solution to
(1.1) such that

(2.8)
‖v,x3‖W 2,1

2 ((kT,(k+1)T )×Ω)
≤ A,

‖v‖
W 2,1

2 ((kT,(k+1)T )×Ω)
≤ c(A2 + 1),

where A > 0 is a constant chosen for a given T and independent of k ∈ N.

Remark 2.1. We have to underline that the constant A appearing in
(2.7) need not be small so also the solution (v, p) to problem (1.1) may not
be small either (see (2.8)). However, to guarantee the existence of a con-
stant A satisfying (2.7) we need sufficient smallness of the quantity η(kT, t),
t ∈ (kT, (k + 1)T ). To satisfy this restriction we need smallness of d,t, d,x′ ,
f3, g in the norms in the definition of η. Moreover, we need (1/T )l1(kT, t)
to be sufficiently small. To guarantee this we require that d1(t) and α(t)
decrease with time sufficiently fast and also T is chosen sufficiently large.
The above restrictions do not impose restrictions on the magnitudes of the
initial velocity v(0) and the external force f . Therefore v, p are not small so
the problem considered is not a problem with small data.

In this paper we will show the existence of the global attractor for problem
(1.1). We will apply methods from [11] and use the theory of semiprocesses
since in our case the external force f depends on time.

3. Existence of the global attractor. In this section we prove the
existence of the global attractor to the problem (1.1). We start by recalling
some facts and definitions from [1, Ch. 4].

Let us rewrite equation (1.1)1 in the abstract form

v,t = A(v, t) = Aσ(t)(v), t ∈ R+,

where the right-hand side depends explicitly on the time symbol σ(t), which
is the collection of all time-dependent coefficients of the equation (in the
Navier–Stokes equations that will be the time-dependent external forces).



Global attractor for the Navier–Stokes equations 207

By Φ we denote some metric or Banach space which contains the values
of σ(t) for a.e. t ∈ R+. Moreover, we assume that σ(t), as a function of t,
belongs to a topological space Ξ := {ξ(t), t ∈ R+ : ξ(t) ∈ Ψ for a.e. t ∈ R+}.

Replacing the symbol σ(t) by the shifted symbol σ(t + h) should not
change the attractor, hence we introduce a translation invariant subspace
Σ ⊆ Ξ called the symbol space. Translation invariance means that for all
σ(t) ∈ Σ the relation T (h)σ(t) = σ(t + h) ∈ Σ holds, where T (h) : Ξ → Ξ
is the shift operator. In our case, it will be convenient to set Σ = Σ(σ0) ≡
{σ0(t+h) : h ∈ R+}, where σ0 is the time symbol of the initial equation and
the closure is taken in the topology of Ξ.

Let v(t) be a weak and global solution of problem (1.1) with initial data
v0 = v(0). We define a family of semiprocesses {Uσ(t, τ)}t≥τ≥0 acting on
H,U(t, τ) : H → H by the formula

(3.1) v(t) = Uσ(t, τ)v(τ),

where v(τ) is the initial condition and Σ 3 σ(t) = f(·, t) is the external
force.

By B(H) we denote the family of all bounded sets of H.

Definition 3.1 (see [1, Ch. 4, Definition 3.2]). A family of semiprocesses
{uσ(t, τ)}t≥τ≥0, σ ∈ Σ, is said to be uniformly bounded if for any B ∈ B(H)
we have ⋃

σ∈Σ

⋃
τ∈R+

⋃
t≥τ

Uσ(t, τ)B ∈ B(H).

Definition 3.2 (see [1, Ch. 4, Definition 3.3]). A set B0 ∈ H is said
to be uniformly absorbing for the family of semiprocesses {Uσ(t, τ)}t≥τ≥0,
σ ∈ Σ, if for any τ ∈ R+ and for every B ∈ B(H) there exists t0 = t0(τ,B)
such that

⋃
σ∈Σ Uσ(t, τ)B ⊆ B0 for all t ≥ t0. If the set B0 is compact, we

call the family of semiprocesses uniformly compact.

Definition 3.3 (see [1, Ch. 4, Definition 3.4]). A set P belonging to H
is called uniformly attracting for the family of semiprocesses {Uσ(t, τ)}t≥τ≥0,
σ ∈ Σ, if for an arbitrary fixed τ ∈ R+,

lim
t→∞

(sup
σ∈Σ

distE(Uσ(t, τ)B,P )) = 0.

If the set P is compact, we call the family of semiprocesses uniformly asymp-
totically compact.

Definition 3.4 (see [1, Ch. 4, Definition 3.5]). A closed set AΣ ⊂ H is
called the uniform attractor of the family of semiprocesses {Uσ(t, τ)}t≥τ≥0,
σ ∈ Σ, if it is uniformly attracting and contained in any closed uniformly
attracting set of the family {Uσ(t, τ)}t≥τ≥0, σ ∈ Σ.
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The existence of the global attractor follows from the following theorem:

Theorem 3.1 (see [1, Ch. 4, Theorem 3.1]). If a family of semiprocesses
{Uσ(t, τ)}t≥τ≥0, σ ∈ Σ, is uniformly asymptotically compact, then it pos-
sesses a uniform global attractor AΣ. The set AΣ is compact in H.

The main result in this section reads.

Theorem 3.2. There exists a global attractor AΣ in H for the family
of semiprocesses {Uσ(t, τ)}t≥τ≥0, σ ∈ Σ, defined by (3.1). The attractor is
bounded in V and compact and connected in H. It attracts bounded sets in H.

To prove this theorem we need some estimates.

Lemma 3.1. There exists a bounded and absorbing set in H for the family
of semiprocesses {Uσ(t, τ)}t≥τ≥0, σ ∈ Σ.

Proof. In view of Theorem 2.1 we see that

lim sup
t→∞

‖v(t)‖L2(Ω) ≤ c(A2 + 1).

Hence for every v0 ∈ H there exists t0 > 0 such that

(3.2) v(t) ∈ B(0, ρ1) for all t ≥ t0,
where B(0, ρ1) is the ball in H centered at 0 with radius ρ1 > c(A2 + 1). If
B(0, r) ⊂ H is any ball such that v0 ∈ B(0, r) then there exists t0 = t0(r)
such that (3.2) holds. This concludes the proof.

Lemma 3.2. There exists a bounded and absorbing set V for the family
of semiprocesses {Uσ(t, τ)}t≥τ≥0, σ ∈ Σ.

Proof. We multiply (1.1)1 by div T(v, p) and integrate over Ω to obtain

(3.3)
�

Ω

v,t · div T(v, p) dx−
�

Ω

|div T(v, p)|2 dx+
�

Ω

v · ∇v · div T(v, p) dx

=
�

Ω

f · div T(v, p) dx.

According to the definition of T(v, p) we have

I1 =
�

Ω

v,t · div(νD(v)− pI) dx

= ν
�

Ω

v,t div D(v) dx−
�

Ω

v,t · ∇p dx = I2 + I3.

From the Stokes theorem it follows that
I2 = ν

�

Ω

div(v,t · D(v)) dx− ν
�

Ω

∇v,tD(v) dx

= ν
�

S

v,t · D(v) · n̄ dS − ν

4
d

dt

�

Ω

|D(v)|2 dx.
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Next we estimate the boundary integral. Using the boundary conditions we
have

(3.4)
�

S

v,t · D(v) · n̄ dS =
�

S

((v · n̄),tn̄+ (v · τ̄α),tτ̄α) · D(v) · n̄ dS

=
�

S1

((v · n̄),tn̄+ (v · τ̄α),tτ̄α) · D(v) · n̄ dS1

+
�

S2

((v · n̄),tn̄+ (v · τ̄α),tτ̄α) · D(v) · n̄ dS2

= −γ
�

S1

(v · τ̄α),tv · τ̄α dS1 +
�

S2

(v · n̄),tn̄ · D(v) · n̄ dS2

=
−γ
2

d

dt

�

S1

(v · τ̄α)2 dS1 +
�

S2

d,tv3,x3 dS2

≤ −γ
2

d

dt

�

S1

(v · τ̄α)2 dS1 + c|d,t|22,S2
+ ε‖v‖22,Ω.

Integrating by parts and using (2.5) we obtain

I3 =
�

S

v,t · n̄p dS =
�

S2

d,tp dS2 ≤ (|d,t|22,S2
+ ‖p‖21,Ω)

≤ c(|d,t|22,S2
+ |f |22,Ω + |v|22,Ω + ‖d‖23/2,2,S2

+ ‖v · τ̄α‖21/2,2,S1
).

Finally, we get

I1 ≤ −
ν

4
d

dt

�

Ω

|D(v)|2 dx− νγ

2
d

dt

�

S1

(v · τ̄α)2 dS1 + ε‖v‖22,Ω

+ c(|d,t|22,S2
+ |f |22,Ω + |v|22,Ω + ‖d‖23/2,2,S2

+ ‖v · τ̄α‖21/2,2,S1
).

Next we estimate the integral
	
Ω v · ∇v · div T(v, p) dx. From Lemma 2.3 we

get
�

Ω

v · ∇v · div T(v, p) dx ≤ ν|v|6,Ω|∇v|3,Ω(|div D(v)|2,Ω + |∇p|2,Ω)

≤ c|v|6,Ω|∇v|3,Ω(|div D(v)|2,Ω + ‖d‖3/2,2,S2
+ |f |2,Ω + |v|2,Ω

+ γ‖v · τα‖1/2,2,S1
) = I4.

Using the interpolation inequality, the Young inequality and Lemma 2.2
yields
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I4 ≤ c|v|6,Ω|∇v|1/22,Ω|∇v|
1/2
6,Ω(|div D(v)|2,Ω + ‖d‖3/2,2,S2

+ |f |2,Ω + |v|2,Ω + γ‖v · τ̄α‖1/2,2,S1
)

≤ c‖v‖3/21,Ω‖v‖
1/2
2,Ω(|div D(v)|2,Ω + ‖d‖3/2,2,S2

+ |f |2,Ω + |v|2,Ω
+ γ‖v · τ̄α‖1/2,2,S1

)

≤ c‖v‖3/21,Ω(|div D(v)|3/22,Ω + ‖d‖3/23/2,2,S2
+ |f |3/22,Ω

+ |v|3/22,Ω + (γ‖v · τ̄α‖1/2,2,S1
)3/2)

≤ c
(

1
ε
‖v‖61,Ω + ε|div D(v)|22,Ω

+ ε|f |22,Ω + ε|v|22,Ω + ε‖d‖23/2,2,S2
+ εγ2‖v · τ̄α‖21/2,2,S1

)
.

Hence we obtain from (3.3) the inequality
ν

4
d

dt

�

Ω

|D(v)|2 dx+
νγ

2
d

dt

�

S1

(v · τ̄α)2 dS1 +
�

Ω

|div T(v, p)|2 dx

≤
∣∣∣ �
Ω

f · div T(v, p) dx
∣∣∣+ ε‖v‖22,Ω + c|d,t|22,S2

+
c

ε
(‖v‖61,Ω + ‖d‖23/2,2,S2

+ |f |22,Ω + |v|22,Ω

+ |d,t|22,S2
+ γ2‖v · τ̄α‖21/2,2,S1

) + ε|div D(v)|22,Ω.

Multiplying by −ν/4, using the Hölder inequality on the right hand side and
observing that

|div D(v)|2,Ω ≤ c(|div T(v, p)|2,Ω + ‖d‖3/2,2,S2
+ γ‖v · τ̄α‖1/2,2,S1

),

we get

(3.5)
d

dt
|D(v)|22,Ω + 2γ

d

dt
|v · τ̄α|22,S1

+ |div D(v)|22,Ω

≤ ε‖v‖22,Ω +
c

ε
(|d,t|22,S2

+ ‖d‖23/2,2,S2
+ γ2‖v · τ̄α‖21/2,2,S1

+ |v|22,Ω

+ ‖v‖61,Ω + |f |22,Ω).

Next using in (3.5) the inequalities

|D(v)|2,Ω + ‖v‖2,Ω ≤ c(|div D(v)|2,Ω + γ‖v · τ̄α‖1/2,2,S1
+ ‖d‖3/2,2,S2

)

and ‖v · τ̄α‖1/2,2,S1
≤ c‖v‖1,Ω we obtain

d

dt
|D(v)|22,Ω + 2γ

d

dt
|v · τ̄α|22,S1

+ |D(v)|22,Ω
≤ c(|d,t|22,S2

+ ‖d‖23/2,2,S2
+ γ2‖v‖21,Ω + ‖v‖61,Ω + |f |22,Ω) ≡ J(t).
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From (2.8) we get

(k+1)T�

kT

|D(v(x, s))|22,Ωds ≤ a3,

(k+1)T�

kT

J(s)ds ≤ a2.

Applying now Lemma 2.4 yields

(3.6) |D(v)|22,Ω ≤ a3/T + a2,

where t ≥ T .
Finally, using the Korn inequality we obtain from (3.6)

1
c1
‖v(t)‖21,Ω ≤

a3

T
+ a2 for t ≥ T,

where c1 is the constant from the Korn inequality.
We see that

(3.7) v(t) ∈ B(0, ρ2) for all t ≥ t0,

where B(0, ρ2) is the ball in V centered at 0 with radius ρ2 > c1(a3/T +a2).
If B(0, r) ⊂ H is any ball such that v0 ∈ B(0, r) then there exists t0 = t0(r)
such that (3.5) holds. This concludes the proof.

Proof of Theorem 3.2. We take ρ = max{ρ1, ρ2}. Then due to Lemmas
3.1 and 3.2 there exists an absorbing set B(0, ρ) which is bounded in V and
bounded and compact in H. From Theorem 3.1 we conclude the proof.

4. Convergence to stationary solutions. First we examine the sta-
tionary problem (1.1)

(4.1)

v∞ · ∇v∞ − div T(v∞, p∞) = f∞ in Ω,

div v∞ = 0 in Ω,

v∞ · n̄ = 0 on S1,

νn̄ · D(v∞) · τ̄α + γv∞ · τ̄α = 0, α = 1, 2, on S1,

v∞ · n̄ = d∞ on S2,

n̄ · D(v∞) · τ̄α = 0, α = 1, 2, on S2.

Let us introduce an extension α = α(x) ∈ R such that

α|S2(−a) = d1∞, α|S2(a) = d2∞.

Then we introduce the vector b = (0, 0, α). Define u = v∞ − b. Then

div u = −div b in Ω,

u · n̄ = 0 on S.
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Hence we define a function ϕ to be the solution to the problem

∆ϕ = −div b in Ω,

∇ϕ · n̄ = 0 on S,�

Ω

ϕdx = 0.

Next, we introduce the new function

(4.2) w = u−∇ϕ = v∞ − (b+∇ϕ) ≡ v∞ − δ,

which is the solution to the problem

(4.3)

(w + δ) · ∇(w + δ)− div T(w + δ, p) = f∞ in Ω,

divw = 0 in Ω,

w · n̄ = 0 on S1,

νn̄ · D(w + δ) · τ̄α + γ(w + δ) · τ̄α = 0, α = 1, 2, on S1,

w · n̄ = 0 on S2,

n̄ · D(w + δ) · τ̄α = 0, α = 1, 2, on S2.

Multiplying (4.3) by w, integrating the result over Ω and next by parts we
obtain the inequality

(4.4) ν
�

Ω

|D(w)|2 dx+ γ
�

S1

|w · τ̄α|2 dS1

≤ ε‖w‖2H1(Ω) +
1
ε

(ν‖δ‖2H1(Ω) + ‖f∞‖2L6/5(Ω))

+
∣∣∣ �
Ω

(w + δ) · ∇(w + δ)w dx
∣∣∣.

Now we examine the last term on the r.h.s. of (4.4):

(4.5)
∣∣∣ �
Ω

(w + δ) · ∇(w + δ)w dx
∣∣∣

≤
�

Ω

|w · ∇δw| dx+
�

Ω

|δ · ∇ww| dx+
�

Ω

|δ · ∇δw| dx

≤ ε1‖w‖2L6(Ω) +
1
ε1
‖∇δ‖2L3/2(Ω)‖w‖

2
L6(Ω)ε2‖∇w‖

2
L2(Ω)

+
1
ε2
‖δ‖2L3(Ω)‖w‖

2
L6(Ω) + ε3‖w‖2L6(Ω) +

1
ε3
‖∇δ‖2L3/2(Ω)‖δ‖

2
L6(Ω) ≡ I.

Using the Korn inequality ‖w‖H1(Ω) ≤ c1‖D(w)‖2L2(Ω) we obtain from (4.4),
(4.5), for sufficiently small ε, ε1, ε2, ε3, the inequality
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(4.6)
ν

c1
‖w‖2H1(Ω) + γ

�

S1

|w · τ̄α|2 dS1

≤ c2(‖δ‖2H1(Ω) + ‖f∞‖2L6/5(Ω)) + c3‖δ‖2H1(Ω)‖w‖
2
H1(Ω) + c‖δ‖4H1(Ω).

Assuming

c3‖δ‖2H1(Ω) ≤
1
2
ν

c1
,

we obtain from (4.6) the inequality

(4.7)
1
2
ν

c1
‖w‖2H1(Ω) + γ‖w · τ̄α‖2L2(S1)

≤ c2(‖δ‖2H1(Ω) + ‖f∞‖2L6/5(Ω)) + c‖δ‖4H1(Ω).

Next, (4.2) and (4.7) imply

(4.8)
1
2
ν

c1
‖v∞‖2H1(Ω) ≤ c4‖δ‖

2
H1(Ω) + c2‖f∞‖2L6/5(Ω) + c‖δ‖4H1(Ω).

where c4 = c2 + 1
2
ν
c1
. Let V = v(t)−v∞, P = p(t)−p∞. Then (V, P ) satisfies

the system of equations

(4.9)

Vt − div T(V, P ) = V · ∇V + V · ∇v∞
+ v∞ · ∇V + f − f∞ in ΩT ,

div V = 0 in ΩT ,

V · n̄ = 0 on ST1 ,

νn̄ · D(V ) · τ̄α + γV · τ̄α = 0, α = 1, 2 on ST1 ,

v · n̄ = d(t)− d∞ on ST2 ,

n̄ · D(V ) · τ̄α = 0, α = 1, 2 on ST2 ,

V |t=0 = v(0)− v∞ ≡ V (0) in Ω.

To obtain an energy type estimate for solutions to problem (4.9) we introduce
the function

α1|S2(−a) = d1 − d1∞, α1|S2(a) = d2 − d2∞.

Then we define u1 by
div u1 = −div b1,
u1 · n̄|S = 0,

where b1 = (0, 0, α1). Next we introduce the function ϕ1 by

∆ϕ1 = −div b1 in Ω,

n̄ · ∇ϕ1 = 0 on S,�

Ω

ϕ1 dx = 0.
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Finally, the function

(4.10) W = u1 −∇ϕ1 = V − (b1 +∇ϕ1) ≡ V − δ1
and P solve the problem

(4.11)

W,t − div T(W,P ) = −δ1,t + ν div D(δ1)
+ (W + δ1) · ∇(W + δ1) + (W + δ1) · ∇v∞
+ v∞ · ∇(W + δ1) + f − f∞ in ΩT ,

divW = 0 in ΩT ,

W · n̄ = 0 on ST ,

νn̄ · D(W + δ1) · τ̄α + γ(W + δ1) · τ̄α = 0, α = 1, 2, on ST1 ,

n̄ · D(W + δ1) · τ̄α = 0, α = 1, 2, on ST2 ,

W |t=0 = V (0)− δ1(0).

Multiplying (4.14)1 by W and integrating over Ω yields

(4.12)
1
2
d

dt
‖W‖2L2(Ω) −

�

Ω

div T(W,P ) ·W dx

=
�

Ω

(−δ1,t + ν div D(δ1)) ·W dx

+
�

Ω

(W + δ1) · ∇(W + δ1) ·W dx+
�

Ω

(W + δ1) · ∇v∞ ·W dx

+
�

Ω

v∞ · ∇(W + δ1) ·W dx+
�

Ω

(f − f∞) ·W dx

≡
5∑
i=1

Ii.

The second term on the l.h.s. equals

−
�

S

n̄ · T(W,P ) ·W dS + ν
�

Ω

|D(W )|2 dx,

where the boundary term takes the form

−
�

S1

[−νn̄ · D(δ1) · τ̄α − γ(W + δ1) · τ̄α]W · τ̄α dS1

−
�

S2

νn̄ · D(δ1) · τ̄αW · τ̄α dS2.

Hence
−

�

S

n̄ · T(W,P ) ·W dS ≥ γ
�

S1

|W · τ̄α|2 dS1 + I,
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where

|I| ≤ ε‖W‖2H1(Ω) + (c/ε)‖δ1‖2H2(Ω).

Now we estimate the terms on the r.h.s. of (4.15):

I1 ≤ ε‖W‖2H1(Ω) + (c/ε)(‖δ1,t‖2L2(Ω) + ‖δ1‖2H2(Ω)),

I2 =
�

Ω

[W · ∇δ1 ·W + δ1 · ∇(W + δ1) ·W ] dx

≤ ε‖W‖2H1(Ω) + (c/ε)(‖δ1‖2L∞(Ω)‖W‖
2
L2(Ω) + ‖δ1‖4H1(Ω)),

I3 ≤ ε‖W‖2L6(Ω) + (c/ε)‖∇v∞‖2L3(Ω)(‖W‖
2
L2(Ω) + ‖δ1‖2L2(Ω)),

I4 ≤ ε‖∇W‖2L2(Ω) + (c/ε)‖v∞‖2L∞(Ω)(‖W‖
2
L2(Ω) + ‖δ1‖2H1(Ω)),

I5 ≤ ε‖W‖2L6(Ω) + (c/ε)‖f − f∞‖2L6/5(Ω).

Using the Korn inequality and assuming that ε is sufficiently small we obtain
the inequality

(4.13)
d

dt
‖W‖2L2(Ω) + ν‖W‖2H1(Ω) + γ‖W · τ̄α‖2L2(S1)

≤ 6
ν

(‖δ1‖2L∞(Ω) + ‖v∞‖2W 1
4 (Ω))‖W‖

2
L2(Ω)

+ c(‖δ1‖2H2(Ω) + ‖δ1,t‖2L2(Ω) + ‖δ1‖4H1(Ω) + ‖f − f∞‖2L6/5(Ω)).

Continuing, we get

d

dt
(‖W‖2L2(Ω)e

νt− 6
ν

	t
0(‖δ1‖2L∞(Ω)

+‖v∞‖2
W1

4 (Ω)
) dt′

)

≤ c(‖δ1‖2H2(Ω) + ‖δ1,t‖2L2(Ω) + ‖δ1‖4H1(Ω)

+ ‖f − f∞‖2L6/5(Ω))e
νt− 6

ν

	t
0(‖δ1‖2L∞(Ω)

+‖v∞‖2
W1

4 (Ω)
) dt′

.

Integrating with respect to time yields

(4.14) ‖W (t)‖2L2(Ω) ≤ e
−νt+ 6

ν

	t
0(‖δ1‖2L∞(Ω)

+‖v∞‖2
W1

4 (Ω)
) dt′

· c
t�

0

(‖δ1‖2H2(Ω) + ‖δ1,t‖2L2(Ω) + ‖δ1‖4H1(Ω) + ‖f − f∞‖2L6/5(Ω))

· e
νt′− 6

ν

	t′
0 (‖δ1‖2L∞(Ω)

+‖v∞‖2
W1

4 (Ω)
) dt′′

dt′

+ e
−νt+ 6

ν

	t
0(‖δ1‖2L∞(Ω)

+‖v∞‖2
W1

4 (Ω)
) dt′

‖W (0)‖2L2(Ω).
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Assuming that

(4.15) −ν +
6
ν
‖v∞‖2W 1

4 (Ω) +
6
ν

t�

0

‖δ1‖2L∞(Ω) dt
′ ≤ −ν

2

and the decay

(4.16) ‖δ1(t)‖2H2(Ω) + ‖δ1,t(t)‖2L2(Ω) + ‖δ1(t)‖4H1(Ω) + ‖f(t)− f∞‖2L6/5(Ω)

≤ e−δt(‖δ1(0)‖2H2(Ω) + ‖δ1,t(0)‖2L2(Ω) + ‖δ1(0)‖4H1(Ω)

+ ‖f(0)− f∞‖2L6/5(Ω)),

we obtain from (4.14) the inequality

(4.17) ‖W (t)‖2L2(Ω) ≤ ce
−δt(‖δ1(0)‖2H2(Ω) + ‖δ1,t(0)‖2L2(Ω)

+ ‖δ1(0)‖4H1(Ω) + ‖f(0)− f∞‖2L6/5(Ω)) + e−νt/2‖W (0)‖2L2(Ω).

Therefore we obtain

Theorem 4.1. Let f denote the external field force in the nonstationary
problem (1.1), and f∞ the external field force in the stationary problem.
Assume that f∞ ∈ L6/5(Ω). If

‖f(t)− f∞‖L6/5(Ω)
−−−→
t→∞

0 and ‖d− d∞‖L2(S2) −−−→
t→∞

0,

then the solution v(t) of problem (1.1) converges to the stationary solution
v∞ of problem (1.1) and the estimate

‖v(t)− v∞‖2L2(Ω) ≤ ce
−δt(‖δ1(0)‖2H2(Ω) + ‖δ1,t(0)‖2L2(Ω)

+ ‖δ1(0)‖4H1(Ω) + ‖f(0)− f∞‖2L6/5(Ω)) + e−νt/2‖v(0)− v∞‖2L2(Ω)

holds, where δ, δ1 are given by (4.2) and (4.10).
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