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Nonlinear separable equations
in linear spaces and commutative Leibniz algebras

by D. Przeworska-Rolewicz (Warszawa)

Abstract. We consider nonlinear equations in linear spaces and algebras which can
be solved by a “separation of variables” obtained due to Algebraic Analysis. It is shown
that the structures of linear spaces and commutative algebras (even if they are Leibniz
algebras) are not rich enough for our purposes. Therefore, in order to generalize the method
used for separable ordinary differential equations, we have to assume that in algebras under
consideration there exist logarithmic mappings. Section 1 contains some basic notions and
results of Algebraic Analysis. In Section 2 we consider equations in linear spaces. Section 3
contains results for commutative Leibniz algebras. In Section 4 basic notions and facts
concerning logarithmic and antilogarithmic mappings are collected. Section 5 is devoted
to separable nonlinear equations in commutative Leibniz algebras with logarithms.

Introduction. The purpose of the present paper is to find solutions
of some nonlinear equations and commutative algebras by a “separation of
variables” using the methods of Algebraic Analysis (cf. Przeworska-Rolewicz
[PR1–6].

Recall that the classical theorem for ordinary differential equations with
separated variables can be stated as follows:

Theorem 0.1 (cf. Triebel [T]). Suppose that −∞ < a < b < +∞,
−∞ < c < d < +∞, f1 ∈ C1[a, b], f2 ∈ C1[a, b], f2(y) 6= 0 for y ∈ [a, b],
x0 ∈ [a, b], y0 ∈ [c, d]. Then the unique solution of the equation

(0.1) y′ = f1(x)f2(y)

with the initial condition

(0.2) y(x0) = x0

can be calculated from the equation

(0.3) F (x, y) = 0, where F (x, y) = F2(y)− F1(x),
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F2(y) =
y�

y0

dv

f2(v
, F1(x) =

x�

x0

f1(u) du.

A basic example for this theorem is the following

Example 0.1. Consider in C[a, 1], 0 < a < 1, the separable equation

(0.4)
dy

dt
=
y

x
, i.e.

dy

y
=
dx

x
.

Here we have: f1(x) = 1
x , f2(y) = y for x, y ∈ C1[a, 1]. This implies ln y =

lnx+ ln c = ln(cx), where c ∈ R \ {0} is arbitrary. Then y = cx.

If we require condition (0.2) to be satisfied for x0, y0 ∈ [a, 1] then we get
y0 = cx0. If it is the case, then c = x0/y0. So F1(y) = ln y− ln y0 = ln(y/y0),
F1(x) = lnx− lnx0 = ln(x/x0) and F (x, y) = ln(y/y0)− ln(x/x0).

It will be shown that the structures of linear spaces and commutative
algebras (even if they are Leibniz algebras, i.e. algebras with the Leibniz
product rule) are not rich enough for our purposes. Therefore, in order to
generalize the method used for separable differential equations (cf. Theo-
rem 0.1 and Example 0.1, and Triebel [T]), we have to assume that in the
Leibniz algebras under consideration there exist logarithms (cf. [PR3–6]).

Section 1 contains some basic notions and results of Algebraic Analysis
(without proofs). In Section 2 we consider equations in linear spaces. Sec-
tion 3 contains some results for commutative Leibniz algebras. In Section
4 basic notions and facts (without proofs) about logarithmic and antiloga-
rithmic mappings are collected. Section 5 is devoted to separable nonlinear
equations in commutative Leibniz algebras with logarithms.

It seems that the first attempt at a theory of ordinary and partial non-
linear differential equations was given in the book of Ritt (cf. [R1, 2]), where
the main tool was the implicit function theorem.

1. Basic notions of algebraic analysis. We recall here the following
notions and theorems (without proofs; cf. [PR1–4]).

Denote by N, N0, R, C, Z, Q the sets of positive integers, nonnegative
integers, reals, complexes, integers and rational numbers, respectively and
by F any field of scalars. Moreover, F[t] denotes the set of all polynomials
in t with coefficients in F.

Let X be a linear space (over a field of characteristic zero).

• L(X) is the set of all linear operators with domains and ranges in X;
• domA is the domain of A ∈ L(X);
• kerA = {x ∈ domA : Ax = 0} is the kernel of A ∈ L(X);
• L0(X) = {A ∈ L(X) : domA = X};
• I(X) is the set of all invertible elements in X;



Nonlinear separable equations 221

• In(X) = {x ∈ X : ∃y∈X yn = x} (n ∈ N); if x ∈ In(X) and x = yn

then y = x1/n is said to be an nth root of x.

An operator D ∈ L(X) is said to be right invertible if there is an operator
R ∈ L0(X) such that RX ⊂ dom D and DR = I, where I denotes the
identity operator. The operator R is called a right inverse of D. By R(X)
we denote the set of all right invertible operators in L(X). Let D ∈ R(X).
Let RD ⊂ L0(X) be the set of all right inverses for D, i.e. DR = I whenever
R ∈ RD. We have

domD = RX ⊕ kerD for all R ∈ RD.

Elements of kerD are called constants, since by definition, Dz = 0 if and
only if z ∈ kerD. We point out that, in general, constants are different
from scalars, since they are elements of the space X. If two right inverses
commute with each other, then they are equal.

An element y ∈ dom D is said to be a primitive for x ∈ X if y = Rx for
some R ∈ RD. Indeed, by definition, x = DRx = Dy. Again, by definition,
all x ∈ X have primitives. Let

FD = {F ∈ L0(X) : F 2 = F, FX = kerD and ∃R∈RD
FR = 0}.

Any F ∈ FD is said to be an initial operator for D corresponding to R.
One can prove that any projection F ′ onto kerD is an initial operator for
D corresponding to a right inverse R′ = R− F ′R for any R ∈ RD.

If two initial operators commute with each other, then they are equal.
Thus this theory is essentially noncommutative. An operator F is initial
for D if and only if there is an R ∈ RD such that

(1.1) F = I −RD on domD.

Even more: Write RD = {Rγ}γ∈Γ . Then, by (1.1), we conclude that RD
induces in a unique way a family FD = {Fγ}γ∈Γ of initial operators defined
by Fγ = I −RγD on domD (γ ∈ Γ ). Formula (1.1) yields (by a two-lines
induction) the Taylor Formula:

(1.2) I =
n∑
k=0

RnFDn +RnDn on domDn (n ∈ N).

It is enough to know one right inverse in order to determine all right
inverses and all initial operators. Note that superposition (if it exists) of a
finite number of right invertible operators is again a right invertible operator.

The equation Dx = y (y ∈ X) has the general solution x = Ry + z,
where R ∈ RD is arbitrarily fixed and z ∈ kerD is arbitrary. However, if we
put an initial condition: Fx = x0, where F ∈ FD and x0 ∈ kerD, then this
equation has the unique solution x = Rx+ x0.
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If T ∈ L(X) belongs to the set Λ(X) of all left invertible operators,
then kerT = {0}. If D is invertible, i.e. D ∈ I(X) = R(X) ∩ Λ(X), then
FD = {0} and RD = {D−1}.

If P (t) ∈ F[t] then all solutions of the equation

(1.3) P (D)x = y, y ∈ X,
can be obtained by decomposing the rational function 1/P (t) into vulgar
fractions. One can distinguish subspaces of X with the property that all
solutions of (1.3) belong to a subspace Y whenever y ∈ Y (cf. von Trotha
[T], [PR2]).

If X is an algebra over F and D ∈ L(X) is such that x, y ∈ dom D implies
xy, yx ∈ dom D, then we shall write D ∈ A(X). The set of all commutative
algebras belonging to A(X) will be denoted by A(X). If D ∈ A(X) then

(1.4) fD(x, y) = D(xy)− cD[xDy + (Dx)y] for x, y ∈ domD,

where cD is a scalar dependent on D only. Clearly, fD is a bilinear form,
which is symmetric when X is commutative, i.e. when D ∈ A(X). This
form is called the non-Leibniz component (cf. [PR1]). If D ∈ A(X) then the
product differentiation rule in X can be written as follows:

D(xy) = cD[xDy + (Dx)y] + fD(x, y) for x, y ∈ domD.

If D ∈ A(X) and if D satisfies the Leibniz condition:

(1.5) D(xy) = xDy + (Dx)y for x, y ∈ domD,

then X is said to be a Leibniz algebra. This means that in Leibniz algebras
cD = 1 and fD = 0. The Leibniz condition implies that xy ∈ dom D
whenever x, y ∈ dom D. If X is a Leibniz algebra with unit e then e ∈ kerD,
i.e. D is not left invertible.

Non-Leibniz components for powers of D ∈ A(X) are determined by
recurrence formulae (cf. [PR1], [PR3]).

Suppose that D ∈ A(X) and p 6= 0 is a fixed scalar. Then pD ∈ A(X)
and cpD = cD, fpD = pfD.

If D1, D2 ∈ A(X), the superposition D = D1D2 exists and D1D2 ∈
A(X), then

(1.6) cD1D2 = cD1cD2

and for x, y ∈ domD = domD1 ∩D2,

fD1D2(x, y) = fD1(x, y) +D1fD2(x, y) + +cD1cD2 [(D1x)D2y + (D2x)D1y].

For higher powers of D in Leibniz algebras, by an easy induction from
(1.6) and the Leibniz condition, we obtain the Leibniz formula

(1.7) Dn(xy) =
n∑
k=0

(
n

k

)
(Dkx)Dn−ky for x, y ∈ domDn (n ∈ N).
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2. Equations in linear spaces. We begin with a theorem which at first
sight may look rather artificial. However, it plays a role in our subsequent
considerations.

Theorem 2.1 (cf. [PR1]). Suppose that X is a linear space over a field
F of scalars (of characteristic zero), D ∈ R(X), dim kerD 6= 0 and F is an
initial operator for D corresponding to R ∈ RD. Let {Hx}x∈X be a family
of mappings of X into itself (in general, nonlinear with respect to x). Then:

(i) Every solution x ∈ domD of the equation

(2.1) Dx = Hxy, where y ∈ X is given,

is a solution of the equation

(2.2) x−RHxy = z, where z ∈ kerD is arbitrary.

(ii) Conversely, if a solution x of (2.2) belongs to domD then it is a
solution of (2.1).

(iii) A solution of (2.1) with the initial condition

(2.3) Fx = x0, where x0 ∈ kerD is given,

satisfies the equation

(2.4) x−RHxy = x0.

Proof. (i) If x ∈ dom D satisfies (2.1) then, by our assumptions,

0 = Dx−Hxy = Dx−DRHx = D(x−RHxy),

which implies (2.2).
(ii) Conversely, if x ∈ domD satisfies (2.2) then

0 = Dz = D(x−RHx) = Dx−DRHxy = Dx−Hxy,

i.e. x satisfies (2.1).
(iii) By (i), x ∈ domD satisfies the initial value problem for (2.1) with

condition (2.3) if it satisfies (2.2) with condition (2.3). Since, by definitions,
FR = 0 and Fz = z whenever z ∈ kerD, we find

z = Fz = F (x−RHxy) = Fx− FRHxy = x0,

i.e. x satisfies (2.4).

Example 2.1. Let F = R, X = C[0, 1], D = d
dt , R =

	t
0, (Fx)(t) ≡ c,

c ∈ R, for t ∈ [0, 1], x ∈ X. Then an ordinary differential equation with
separable variables

(2.5) x′(t) = a(t)x(t), where Hx = ax, a ∈ X is given,

is equivalent to a Volterra integral equation

(2.6) x(t)−
t�

0

a(s)x(s) ds = c, where c ∈ R is an arbitrary constant.
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It is well-known that this equation has a unique solution for each c ∈ R.
On the other hand, X = C[0, 1] is an algebra with respect to pointwise
multiplication of functions. Therefore, any solution x 6= 0 of (2.5) satisfies
the equation

(2.7)
x′(t)
x(t)

= a(t), i.e.
d

dt
lnx(t) = a(t),

which implies

lnx(t) =
t�

0

a(s) ds+ ln c = ln exp
t�

0

a(s) ds+ ln c = ln
[
c exp

t�

0

a(s) ds
]
,

where c ∈ R \ {0} is arbitrary. Finally, we conclude that

x(t) = c exp
t�

0

a(s) ds, where c ∈ R \ {0}

(cf. also Triebel [T] and Example 0.1).

Example 2.2 (cf. [PR1]). Suppose that D ∈ R(X), dim kerD 6= 0,
R0, . . . , RM+N−1 ∈ RD,

Q(D) =
N−1∑
k=0

QkD
k, where Q0, . . . , QN−1 ∈ L0(X),(2.8)

Qo =
N−1∑
k=1

Q0RM+k . . . RM+N−1(2.9)

and the operator I + Qo is invertible. Let {Hx}x∈X be as in Theorem 2.1.
Then

D1 = Q(D)DM ∈ R(X), R1 = R0 . . . RM+N−1(I +Qo)−1 ∈ RD,
kerD1 = {z = (I −R1D1)x, x ∈ domD} ={
z = R0 . . . RM+N−1(I +Qo)−1

(N−1∑
m=0

Qm

N−1∑
k=m+1

Rm . . . Rk−1zm+k + zM+m

)

+
N−1∑
k=0

R0 . . . Rk−1zk : z0, . . . , zM+N−1 ∈ kerD
}
.

Therefore any x ∈ dom Q(D)DM satisfies the equation

(2.10) Q(D)DMx = Hxy, where y ∈ X (M ≥ 0)

if and only if x satisfies the equation

(2.11) x−R0 . . . RM+N−1(I +Qo)−1Hxy = z, z ∈ kerQ(D)DM .

This is a generalization of Theorem 2.1 for operators of order greater than 1.



Nonlinear separable equations 225

Example 2.3 (cf. [PR1]). Let all assumptions of Example 2.2 be satis-
fied and let R0, . . . , RN−1 = R. Then every solution x of (2.10) belongs to
domQ(D)DM and satisfies the equation

(2.12) x−RN+M [Q(I,R)]−1Hxy = z,

where

(2.13) z = RN+M [Q(I,R)]−1
(N−1∑
m=0

N−1∑
k=m

Rk−mzk

)
+

M+n−1∑
k=0

Rkzk ∈ kerDM+N whenever z0, . . . , zM+N−1 ∈ kerD,

(2.14) Q(t, s) =
N∑
k=0

Qkt
k
N−k, Q(I,R) = I +Qo

and the operator I + Qo is invertible. Conversely, every solution of (2.12)
belonging to dom Q(D)DM satisfies (2.10). A similar result can be obtained
for the operator QMQ(D).

Example 2.4. Let X be a linear space (over F). Let D ∈ R(X) and let
R ∈ RD. Suppose that a ∈ kerD, b ∈ F \ {0}, y ∈ X and the mapping f
of X into itself (not necessarily linear) are given. By definitions, Da = 0,
D(bx) = bDx whenever x ∈ X. Consider the equation

(2.15) Dx = f(a+ bx)y.

Observe that here we have a particular case of (2.1) with Hx = f(a + bx)
for x ∈ X. Write u = a+ bx. Then Du = D(a+ bx) = bDx and Dx = b−1u.
Thus (2.15) may be rewritten as b−1Du = f(u)y, i.e.

(2.16) Du = bf(u)y.

Since bRx = R(bx) whenever b ∈ ker D, x ∈ X, we conclude that u ∈
domD = domX is a solution of (2.16) if and only if it is a solution of the
equation

(2.17) u−BR[f(u)y] = z, where z ∈ kerD is arbitrary.

This means that x = b−1(u − a) is a solution of (2.15) if and only if u is a
solution of (2.17) belonging to domD.

Let F be an initial operator for D corresponding to R. By definition,
FR = 0 and Fz = z whenever z ∈ kerD. Then for a given x0 ∈ kerD and
the initial condition

(2.18) Fx = x0
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we find

z = Fz = F{u− bR[f(u)y]} = Fu− bFR[f(u)y] = F (a+ bx) = Fa+ bFx

= a+ bx0,

i.e. equation (2.17) with condition (2.18) implies the equation

(2.19) u− bR[f(u)y] = x0.

Since u = a+ bx, (2.19) can be rewritten as

(2.20) a+ bx− bR[f(a+ bx)y] = x0.

We conclude that x ∈ domD is a solution of the initial value problem (2.15),
(2.17): Dx = f(a+ bx)y, Fx = x0 if and only if x ∈ domD is a solution of
(2.20).

Clearly, the equations considered in Examples 2.2–2.4 are, in a sense,
analogues (in linear spaces) of the classical ordinary differential equations
with separable variables. However, in order to solve their resolving equations
in closed form, we need richer structures.

3. Equations in commutative Leibniz algebras. Let a commutative
algebra X (over a field F of scalars) with D ∈ R(X), e ∈ domD satisfy the
Leibniz condition (1.5):

(3.1) D(xy) = xDy + yDx for x, y ∈ domD.

Then X is a D-algebra, since xy ∈ domD whenever x, y ∈ domD. The
set of all such algebras will be denoted by L(D). Recall that e ∈ kerD
(cf. Example 6.11 in [PR1]), i.e. the unit e is a constant. We shall use the
following properties (cf. also [PR1]):

Suppose that X ∈ L(D) and F is an initial operator for D corresponding
to R ∈ RD. Write g = Re (1). Then Dg = DRe = e. Hence, by an easy
induction,

(3.2) Dng = 0 (n ∈ N \ {1}), Dg = e.

Since e ∈ kerD, we have Fe = e. Since FR = 0, we find Fg = FRe = 0. So
that, if F is multiplicative then (again by an easy induction)

(3.3) Fgn = (Fg)n = 0 (n ∈ N).

(1) Elements of the form g = Re, where R ∈ RD, play the role of an argument, since

in the case considered in Example 2.1 we have g(t) =
	t

0
1 ds = t for t ∈ [0, 1].
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By (3.3), we have

Fp(g) = p(0) = p0e for p(t) ∈ F[t],(3.4)

Fw(g) = w(0) =
p0

p̃0
for w(t) ∈ Q[t], w =

p

p̃
, p̃0 6= 0, i.e. p̃(0) ∈ I(X),

(3.5)

where

(3.6) p(t) =
n∑
k=0

pkt
k ∈ F[t].

Indeed, p(0) = p0e and

Fp(g) = F

n∑
k=0

pkg
k =

N∑
k=0

Fgk =
n∑
k=0

pk(Fg)k = p0e = p(0),

i.e. p(0) is invertible if and only if p0 6= 0.

Proposition 3.1. Suppose that X ∈ L(D), F is a multiplicative initial
operator for D corresponding to R ∈ RD and g = Re. Then g /∈ I(X).

Proof. Suppose that g ∈ I(X). By (3.3) and (3.5), we have Fg−1 =
(Fg)−1. However, Fg = 0.

Example 3.1. Suppose that all conditions of Example 2.1 are satisfied.
If we consider X = C[0, 1] as an algebra (over R) with respect to pointwise
multiplication then X = L(d/dt), since the Leibniz condition holds:

(3.7) (xy)′ = xy′ + yx′ for x, y ∈ C1[0, 1], where

Dx =
d

dt
x = x′, domD = C1[0, 1].

Let (Fx)(t) = x(0) for x ∈ X. Then g(t) = t. Hence g(0) = 0 and g−1 does
not exist.

Example 3.2. Suppose that X ∈ L(D), R ∈ R, g = Re ∈ I(X) and f
is a mapping of X into itself (in general, nonlinear). Consider the equation

(3.8) Dx = f(g−1x) (x ∈ domD).

Write x = gu. Then u = g−1 and, by the Leibniz condition, we have

f(u) = f(g−1x) = Dx = D(gu) = uDg + gDu = ue+ gDu = u+ gDu,

i.e.

(3.9) Du = h(u), where h(u) = g−1[f(u)− u] (u ∈ domD).

We conclude that (3.8) has a solution x ∈ domD if and only if (3.9) (with
separable variables) has a solution u ∈ domD. In that case, solutions of
(3.8) are of the form x = gu.
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In the classical case equation (3.8) becomes the so-called homogeneous
ordinary differential equation y′ = f(y/x) (cf. [T], also Example 0.1).

Clearly, if R1 6= R, R1 ∈ RD then the corresponding initial operator
F1 = (I − R1D) 6= F and, by definitions, we have F1R = −FR1. Hence,
if F1 is multiplicative and F1g = F1Re 6= 0 is invertible then the element
F1g

−1 = (F1g)−1 is well-defined.

Example 3.3. Suppose that X, D, F , R satisfy all conditions of Ex-
ample 3.2. Let h be a mapping (in general, nonlinear) of X into itself. Then
the equation

(3.10) Dx = h(x)y, where y ∈ X is given (x ∈ domD),

with separable variables is equivalent to the equation

(3.11) x−R[h(x)y] = z, where z ∈ kerD is arbitrary.

The proof is similar to that given in Example 3.2 for (3.8), (3.9). How-
ever, in order to solve (3.10), we may take another way. Suppose that
h(x) ∈ I(domD) whenever x ∈ domD. Again we obtain a separable equa-
tion equivalent to (3.10):

(3.12) [h(x)]−1Dx = y.

The element h1(x) = R{[h(x)]−1Dx} is a primitive for [h(x)]−1Dx, when-
ever x ∈ domD. Indeed, (3.12) implies that

Dh1(x) = DR{[h(x)]−1Dx} = [h(x)]−1Dx = DRy,

i.e. D[h1(x)−Ry] = 0. Hence we obtain the equation

(3.13) h1(x) = Ry + z, where z ∈ kerD is arbitrary.

If h1(x) is a one-to-one mapping then we conclude that

(3.14) x = h−1
1 (Ry + z), where z ∈ kerD is arbitrary.

Example 3.3 can be generalized as follows.

Proposition 3.2. Suppose that X ∈ L(D), F is a multiplicative initial
operator for D corresponding to R ∈ RD and h is a mapping of X into itself
(in general, nonlinear) such that h(x) ∈ I(domDn) whenever x ∈ domDn

(n ∈ N). Then the equation

(3.15) Dnx = h(x)y, where y ∈ X is given (x ∈ domDn),

is equivalent to the equation

(3.16) x−Rn[h(x)y] = z, where z ∈ kerD is arbitrary.

Write

(3.17) h1(x) = Rn{[h(x)]−1Dnx} for x ∈ domDn (n ∈ N).
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If h1 is a one-to-one mapping of X into itself then (3.16) has all solutions
of the form

(3.18) x = h−1
1 (Rny + z), where

n−1∑
k=0

Rkzk ∈ kerDn,

z0, . . . , zn−1 ∈ kerD are arbitrary,

Proof. As before, (3.15) may be rewritten as

y = [h(x)]−1Dnx = DnRn[h(x)]−1 = Dnh−1
1 (x),

which implies (3.16).

Corollary 3.1. Suppose that all assumptions of Proposition 3.1 are
satisfied, g = Re and y = gm where m ∈ N is fixed. Then all solutions of
the equation

(3.19) Dnx = h(x)gm (m,n ∈ N)

are of the form

(3.20) x = h−1
1

(
gn+m

(n+ 1) . . . (n+m)
+z

)
, where z =

n−1∑
k=0

Rkzk ∈ kerDn,

z0, . . . , zn−1 ∈ kerD are arbitrary.

Proof. By Proposition 3.1, equation (3.19) has all solutions of the form
(3.18) with y = gm. Recall that constants are not zero divisors, because X
is a Leibniz algebra. Since F is multiplicative, we have

(3.21) Rke =
(Re)k

k!
=
gk

k!
(k ∈ N)

(cf. von Trotha [vT] and [PR1]), Then for all m,n ∈ N we have

Rny = Rngn = Rn(Re)m = Rnm!Rme = m!Rn+me

= m!
gn+m

(n+m)!
=

gn+m

(n+ 1) . . . (n+m)
,

which yields (3.21).

Equations of the form (3.21) will be solved in Section 5 in another way.

Proposition 3.3. Suppose that X ∈ L(D), R ∈ RD and a ∈ X.

(i) x ∈ domD is a solution of the equation

(3.22) Dx = ax+ y, y ∈ X is given,

if and only if x ∈ domD satisfies the equation

(3.23) x−R(ax) = Ry + z, where z ∈ kerD is arbitrary.
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(ii) If F is an initial operator for D corresponding to R and we have an
initial value condition

(3.24) Fx = x0, x0 ∈ kerD is given,

then a solution of the initial value problem (3.23), (3.24) (if it exists) satisfies
the equation

(3.25) x−R(ax) = Ry + x0.

(iii) If the operator I −Ra is invertible then equation (3.23) (hence also
(3.22)) has all solutions of the form

(3.26) x = (I −Ra)−1(Ry + z) where z ∈ kerD is arbitrary

and the initial value problem (3.22), (3,24) has a unique solution

(3.27) x = (I −Ra)−1(Ry = x0)

(cf. [PR1], [PR3]).

Proof. If x satisfies (3.22) then DRy = y = Dx− ax = Dx−DR(ax) =
D[x−R(ax), i.e. D[x−R(ax)− y] = 0, which implies (3.23). Conversely, if
x satisfies (3.23) then y = D(Ry + z) = D[x − R(ax0] = Dx −DR(ax) =
Dx−ax. If I−Ra is an invertible mapping then (3.23) immediately implies
(3.26). If F is an initial operator for D corresponding to R then, by (3.26),
we have z = Fz = F [x−R(ax)−Ry] = Fx− FR(ax)− FRy] = Fx = x0

(cf. Propositions 3.1, 3.2 and Corollary 3.1).

Example 3.4. Suppose that X ∈ L(D) and R ∈ RD. Recall that

(3.28) Dxn = nxn−1Dx whenever n ∈ N, x ∈ domD

(cf. [PR1]). This formula holds also for negative integers, i.e.

(3.29) Dx−n = −nx−n−1Dx whenever n ∈ N, x ∈ domD ∩ I(X)

Indeed, Dx−1 = x−2Dx. Then for n ≥ 2 we have

Dx−1 = (Dx−1)n = D(x−1)n = n(x−1)n−1Dx−1 = −nx−n+1x−2Dx

= −nx−n−1Dx.

Consider the equation

(3.30) Dx = axm, where a ∈ X, m ∈ N.

By (3.29), this equation can be rewritten as follows:

Dx−(m+1) = −(m+ 1)x−mx−mDx = −(m+ 1)x−maxm = −(m+ 1)a,

which implies that

(3.31) x−(m+1) = R[−(m+1)a]+z = z−(m+1)ra, z ∈ kerD arbitrary.
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Suppose now that there is a z ∈ kerD such that z− (m+ 1)Ra is invertible.
Then xm+1 = [z − (m+ 1)Ra]−1. If [z − (m+ 1)Ra]−1 ∈ Im+1(X) then

x = {[z − (m+ 1)Ra]−1}1/(m+1) = [z − (m+ 1)Ra]−1/(m+1).

Similarly, in order to solve the equation

(3.32) Dx = ax−m (m ∈ N)

we have to rewrite (3.31) as follows:

Dxm+1 = (m+ 1)xmDx = (m+ 1)xmax−m = (m+ 1)a,

which implies xm+1 = (m+ 1)Ra+ z, where z ∈ kerD is arbitrary. If there
is a z ∈ kerD such that (m+ 1)Ra+ z ∈ Im+1(X) then

(3.33) x = [z + (m+ 1)Ra]1/(m+1).

To summarize, we conclude that the equations (2)

(3.34) Dx = ax∓ (m ∈ N)

have solutions of the form

(3.35) x = [z ± (m+ 1)Ra]±1/(m+1),

respectively, if there are z ∈ kerD such that elements of the form (3.34)
exist (cf. also Example 5.3).

4. Algebras with logarithms. We start with

Definition 4.1. For D ∈ A(X), define a multifunction Ω : domD →
2domD as follows:

(4.1) Ωu = {x ∈ domD : Du = uDx} for u ∈ domD.

The equation

(4.2) Du = uDx for (u, x) ∈ graphΩ

is said to be the basic equation. Clearly,

Ω−1x = {u ∈ domD : Du = uDx} for x ∈ domD.

The multifunction Ω is well-defined and domΩ ⊃ kerD \ {0}.
Suppose that (u, x) ∈ graph Ω, L is a selector of Ω and E is a selector

of Ω−1. By definitions, Lu ∈ domΩ−1, Ex ∈ domΩ and the following
equations are satisfied: Du = uDLu, DEx = (Ex)Dx.

Any invertible selector L of Ω is said to be a logarithmic mapping and
its inverse E = L−1 is said to be an antilogarithmic mapping. By G[Ω] we
denote the set of all pairs (L,E), where L is an invertible selector of Ω and

(2) For brevity, we write here and below ±n (n ∈ N) for two different equations, for
n ∈ N and for −n ∈ N. This means that, as a matter of fact, we consider two types of
equations (cf. also Section 5).
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E = L−1. For any (u, x) ∈ domΩ and (L,E) ∈ G[Ω] the elements Lu, Ex
are said to be the logarithm of u and the antilogarithm of x, respectively.
The multifunction Ω is examined in [PR3]. The assumption that X is a
commutative algebra is for simplicity only.

Clearly, by definition, for all (L,E) ∈ G[Ω], (u, x) ∈ graph Ω we have

(4.3) ELu = u, LEx = x; DEx = (Ex)Dx, Du = uDLu.

The logarithm of zero is not defined. If (L,E) ∈ G[Ω] then L(kerD \
{0}) ⊂ kerD, E(kerD) ⊂ kerD. In particular, E(0) ∈ kerD.

If D ∈ R(X) then logarithms and antilogarithms are uniquely deter-
mined up to a constant.

Let D ∈ A(X) and let (L,E) ∈ G[Ω]. A logarithmic mapping L is said
to be of the exponential type if L(uv) = Lu + Lv for u, v ∈ domΩ. If L is
of the exponential type then E(x+ y) = (Ex)(Ey) for x, y ∈ domΩ−1. We
have proved that a logarithmic mapping L is of the exponential type if and
only if X is a Leibniz commutative algebra (cf. [PR3]). Moreover, Le = 0,
i.e. E(0) = e. In Leibniz commutative algebras with D ∈ R(X) a necessary
and sufficient conditions for u ∈ domΩ is that u ∈ I(X) (cf. [PR3]).

By Lg(D) we denote the class of those commutative algebras with D ∈
R(X) and with unit e ∈ domΩ for which there exist invertible selectors
of Ω, i.e. there exist (L,E) ∈ G[Ω]. By L(D) we denote the class of those
commutative Leibniz algebras with unit e ∈ dom Ω for which there exist
invertible selectors of Ω. By these definitions, X ∈ Lg(D) is a Leibniz
algebra if and only if X ∈ L(D) and D ∈ R(X). This class will be denoted
by L(D). This means that L(D) is the class of those commutative Leibniz
algebras with D ∈ R(X) and with unit e ∈ domΩ for which there exist
invertible selectors of Ω, i.e. there exist (L,E) ∈ G[Ω].

Let F be an initial operator for D corresponding to R ∈ RD. Let m ∈ N.
Let X ∈ Lg(D). Let (L,E) ∈ G[Ω]. If

(4.4) FDjL = 0 for j = 0, 1, . . . ,m− 1,

then (L,E) is said to be m-normalized by R and we write (L,E) ∈ GR,m[Ω]
(cf. Taylor formula (1.2)).

If kerD = {0} then either X is not a Leibniz algebra or X has no unit.
Thus, by our definition, if X ∈ L(D) then kerD 6= {0}, i.e. the operator D
is right invertible but not invertible.

Theorem 4.1. Suppose that X ∈ L(D), F is an initial operator for D
corresponding to R ∈ RD, (L,E) ∈ G[Ω] and A is an algebra isomorphism
of X. Let D′ = A−1DA and let Ω′ : domD′ → 2domD′

be defined as follows:

(4.5) Ω′u = {x ∈ domD′ : D′u = uD′x} for u ∈ domD′.

Then there are (L′, E′) ∈ G[Ω′] and L′ = A−1LA, E′ = A−1EA.
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5. Equations in Leibniz algebras with logarithms. We start with

Proposition 5.1. Suppose that X ∈ L(D), (L,E) ∈ G[Ω] and g = Re
for some R ∈ RD. Then g ∈ I(X) and

(5.1) DLg = g−1.

Proof. By definitions, g ∈ domΩ−1. Since X is a Leibniz algebra, this
implies that g ∈ I(X). Moreover, g ∈ domΩ ⊂ domD. We therefore con-
clude that DLg = g−1Dg = g−1DRe = g−1e = g−1, since the basic equation
(4.1) is satisfied by g.

Proposition 5.2. Suppose that all assumptions of Proposition 5.1 are
satisfied and Ra+ z ∈ domΩ−1 for some a ∈ X and all z ∈ kerD. Then all
invertible solutions of the equation

(5.2) Dx = ax

are of the form

(5.3) x = zERa, where z ∈ kerD is arbitrary.

If F is a multiplicative initial operator for D corresponding to R such that
Fa ∈ I(X) then the initial value problem

(5.4) Dx = ax, Fx = x0, where x0 ∈ domD is given,

has the unique solution

(5.5) x = x0ERa.

Proof. By definition, if x is a solution of (5.2) then x ∈ I(X) ∩ domD.
Hence DLx = x−1Dx = a + DRa, i.e. D(Lx − Ra) = 0. This implies
that Lx − Ra = z′ ∈ kerD (z′ is arbitrary). Write z = Ez′. Then we get
x = ELx = E(Ra+ z′) = (Ez′)(ERa) = zERa, since the Leibniz condition
holds. Now, we shall prove that

(5.6) EF = FE, LF = FL.

Indeed, by definitions, EL = LE = I. Write A = FE. Then AL = FEL = F
= LEF = LA, which implies FE = A = ELA = EF . In order to prove the
second equality, write B = FL. Then BE = FLE = F = ELF = EB and
F = ELF = EB = BE, which implies FL = BEL = B = LF .

If Fx = x0 ∈ kerD then F z = Fx0 = x0 and, by (5.6) and the multi-
plicativity of F , we find (5.5).

An initial operator F ∈ FD is said to be almost averaging if

(5.7) F (zx) = zFx whenever x ∈ X, z ∈ kerD.

Clearly, every multiplicative initial operator F is almost averaging for F (zx)
= (Fz)(Fx) = zFx, but not conversely, even if dim kerD = 1 (cf. [PR1]).

Corollary 5.1. Proposition 5.2 holds for almost averaging F .
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Indeed, for all z ∈ kerD, we have x0 = Fx = F (zERa) = zFERa =
zEFRa = zE(0) = ze = z, i.e. x is of the form (5.5).

Proposition 5.3. Suppose that X ∈ L(D), (L,E) ∈ G[Ω], ±Ra ∈
domΩ−1 for some a ∈ X and F is an almost averaging initial operator for
some R ∈ RD. Then the equation

(5.8) Dx = ax+ y, where y ∈ X is given,

has all solutions of the form

(5.9) x = (ERa)RE(−Ra) + zERa, where z ∈ kerD is arbitrary.

Proof. We are looking for solutions of (5.8) which are of the form x = uv,
where v = ERa and u is to be determined. By the Leibniz condition and
our assumptions, we have Dv = DERa = (ERa)DRa = aERa = av, i.e. v
is a solution of (5.2). Then

y = Dx− ax = D(uv)− auv = uDv + vDu− auv = uvDu+ vDu− auv
= uva+ vDu− auv = vDu.

Since v = ERa ∈ I(X) and v−1 = (ERa)−1 = E(−Ra), we find Du = v−1y
= yE(−Ra), i.e.

(5.10) u = R[yER(−a)] + z, where z ∈ kerD is arbitrary.

Then

x = uv = (ERa){R[yE(−Ra)] + z} = (ERa)R[yE(−Ra)] + zERa,

i.e. x is of the form (5.9) (cf. also [PR3]).

Corollary 5.2. Suppose that all assumptions of Proposition 5.3 are
satisfied and F is a multiplicative initial operator for D corresponding to R.
Then an initial value problem for (5.8) with the initial condition

(5.11) Fx = x0, where x0 ∈ kerD is given,

has the unique solution

(5.12) x = (ERa)R[yE(−Ra)] + x0ERa.

Proof. By our assumptions and (5.6), (5.9), we find Fv = FERa =
EFRa = E(0) = e, and Fu = F{R[yE(−Ra)] + z} = FR[yE(−Ra)] + Fz
= z. This implies that x0 = Fx = F (uv) = (Fu)(Fv) = ez = z, which was
to be proved.

Note 5.1. We have seen that (according to Proposition 3.1), in order
to solve the equations in question in closed form, we had to assume that the
operator I − Ra is invertible and to calculate its inverse. In several cases
this way could be much more complicated than the use of logarithms and
antilogarithms. Also some metric properties of the space and operators may
be necessary.
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Example 5.1 (Generalized Pearson equation). Suppose that all assump-
tions of Proposition 5.3 are satisfied, g = Re and a = w(g), where w(t) ∈
Q[t]. Consider the equation

(5.13) Dx = w(g)x.

By definitions, if x ∈ I(X) ∩ domD is a solution of (5.13) then DLx =
x−1Dx = w(g), i.e. Lx = Rw(g) + z′, where z′ ∈ kerD is arbitrary. Write
z = Ez′. Then ∈ kerD and x = ELx = E[Rw(g) + z′] = (Ez′)ERw(g) =
zERw(g) (cf. also Example 3.4 for m = −1). Observe that again Rw(g)(t) ∈
Q[t]. The equation

(5.14) Dx = w(g)x+ y, where y ∈ X is given,

has all solutions of the form

x = [ERw(g)]R{yE[−Rw(g)]}+ zERw(g), 0 6= z ∈ kerD arbitrary.

Example 5.2. Suppose that all assumptions of Proposition 5.3 are sat-
isfied, g = Re ∈ I(X) and a = e. Then the equation

(5.15) Dx = g−1xLx

has all solutions belonging to domΩ ∩ domΩ−1 of the form

(5.16) x = E(zERg−1), where z ∈ kerD is arbitrary.

Indeed, by our assumptions, whenever x ∈ domΩ∩ dom Ω−1, (5.15) implies
DLx = x−1Dx = g−1x, i.e Lx = zERg−1, where z ∈ kerD is arbitrary (cf.
Proposition 5.3). Then x = ELx = E(zERg−1) (cf. Example 5.1).

Suppose that F is an almost averaging initial operator for D correspond-
ing to R. By (5.6), for all z ∈ kerD we have

Fx = FE(zERg−1) = EF (zERg−1) = E(zFERg−1) = E(zEFRg−1

= E[zE(0)] = E(ze) = Ez ∈ kerD

(cf. Corollary 5.1). Therefore the initial condition Fx = x0, where x0 ∈
kerD is given, for (5.15) holds if and only if z = LEz = LFx = Lx0 ∈
kerD. In that case, the corresponding initial value problem has the unique
solution x = E[(Lx0)ERg−1]. Observe that Lg = Rg−1. Hence (5.15) can
be rewritten as x = E(zERg−1) = E(zELg) = E(zg), which implies that
the unique solution of the initial value problem in question is x = E(gLx0).

Example 5.3. Suppose that all assumptions of Proposition 5.3 are sat-
isfied and a is a mapping of X into itself such that a(x) 6= e whenever
x ∈ domΩ. Consider the equation

(5.17) Dx = a(x)xLx.

The case a(x) ≡ e has been considered in Example 5.2. As in that exam-
ple, we obtain the equalities DLx = x−1Dx = a(x)Lx, which implies x =
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ELx = E{R[a(x)Lx] + Lz′} = E{zR[a(x)Lx]}, where z = Lz′, z′ ∈ kerD
is arbitrary. Then, by (5.6), we find

Fx = FE{zR[a(x)Lx]} = EF{zR[a(x)Lx]} = E{zFR[a(x)Lx)
= E(0) = e.

We conclude that a necessary condition for (5.17) to have a solution x is
that Fx = e.

Theorem 5.1. Suppose that X ∈ L(D), (L,E) ∈ G[Ω], ±Ra ∈ domΩ
for some a ∈ X and R ∈ RD and F is an almost averaging initial operator
for D corresponding to R. For a given m ∈ N write

(5.18) v± = z ∓ (m+ 1)Ra

whenever there exist z ∈ kerD such that

(5.19) v± ∈ Im+1(X) ∩ domΩ.

If (5.19) is satisfied then the equations

(5.20) Dx = ax∓m

have solutions of the form

(5.21) x± = v±1/(m+1) = E

[
∓ 1
m+ 1

Lv±
]
,

respectively (cf. footnote in Example 3.4).

Proof. Let m ∈ N. Consider the equation Dx = axm. By our assump-
tions, we have

Dx−(m+1) = −(m+ 1)x−mDx = −(m+ 1)x−maxm = −(m+ 1)a,

which implies x−(m+1) = v+, where v+ is determined by (5.18). This and
condition (5.19) together imply that x+ is a solution we are looking for. A
similar proof for −m ∈ N.

Corollary 5.3. Suppose that all assumptions of Theorem 5.1 and con-
dition (5.19) are satisfied. Then an initial condition

(5.22) Fx = x0, where x0 ∈ kerD is given,

holds if and only if

x0 = E

(
∓ 1
m+ 1

Lz

)
= z∓1/(m+1), i.e. z = x

∓(m+1)
0 = E

(
∓ 1
m+ 1

Lx0

)
.
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Proof. By our assumptions, (5.6) and Theorem 5.1, we have

Fv± = F [z ± (m+ 1)Ra] = Fz ± (m+ 1)FRa = z,

x0 = Fx± = FE

(
∓ 1
m+ 1

Lv±
)

= EF

(
∓ 1
m+ 1

Lv±
)

= E

(
∓ 1
m+ 1

FLv±
)

= E

(
∓ 1
m+ 1

LFv±
)

= E

(
∓ 1
m+ 1

LFv±
)

= E

(
∓ 1
m+ 1

Lz

)
= ELz∓1/(m+) = z∓1/(m+1),

i.e.
x0 = ELx0 = E[∓(m+ 1)Lz] = z∓(m+1).

Corollary 5.4. Suppose that all assumptions of Theorem 5.1 and con-
dition (5.19) are satisfied. Then all solutions of the equations

(5.23) Dy = ay(Ly)±m

are of the form

(5.24) y± = Ex±, where x± are defined by (5.21).

Proof. Let m ∈ N. Let x = Ly. By (5.23), we have y = ELy = Ex,
Dx = DLy = y−1Dy = a(Ly)m = axm. This means that x is a solution of
(5.21), hence it is of the form (5.21). We conclude that a solution y = Ex is
of the form (5.24). A similar proof for −m ∈ N.

Proposition 5.4. Suppose that all assumptions of Proposition 5.3 are
satisfied and Rb ∈ domΩ−1, where b ∈ X is given. Then all solutions of the
equation

(5.25) Dx = axLx+ bx

are of the form

x = Ew, where(5.26)
w = (ERa)R[bE(−Ra)] + zERa, z ∈ kerD arbitrary.

Proof. Write w = Lx. Then x = Ew and, by (5.25), we have Dw =
x−1Dx = aLx+ b = aw + b. This and Proposition 5.3 together imply that
w is defined by (5.26).

Propositions 5.3 and 5.4 together imply

Corollary 5.5. Suppose that all assumptions of Proposition 5.3 are
satisfied. Then the initial value problem for (5.25) with the initial condition
Fx = x0 has the unique solution

(5.27) x = Ew0, where w0 = (ERa)R[bE(−Ra)] + x0ERa.
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Theorem 5.2. Suppose that X ∈ L(D), (L,E) ∈ G[Ω], a ∈ domΩ, h
is an invertible mapping of X into itself such that

R[ah(x)] ⊂ domΩ ∩ domΩ−1 for R ∈ RD whenever x ∈ domD

and F is an initial operator for D corresponding to R.

(i) The equations

(5.28) Dx = axh(x)(Lx)±n (n ∈ N)

have solutions x if and only if for n 6= −1 the equations

(5.29) x = E2

{
∓ 1
n+ 1

L{∓(n+ 1)R[ah(x)] + z}
}

(respectively) have solutions for a z ∈ kerD.
If n = −1 then the only solution of (5.28) is an x ∈ kerD (i.e. x is a

constant). In that case, Fx = x, FDx = 0.
(iii) If x is a solution of (5.29) for n 6= −1 then the initial condition

Fx = x0 (x0 ∈ kerD) is satisfied if and only if

(5.30) z = (Lx0)±(n+1) provided that x0 6= 0

(i.e. there is no solution such that Fx = 0).
(iv) If for n 6= −1, condition (5.30) is satisfied and F is multiplicative

then FDx is not well-determined.

Proof. Write u = Lx, h̃ = ahE. Then x = Eu and h̃L = ahEL = ah.
This, (5.28) and our assumptions together imply that for ±n (n ∈ N)

Du∓(n+1) = ∓(n+ 1)u∓nDu = ∓Du = ∓(n+ 1)(Lx)∓nDLx

= ∓(n+ 1)(Lx)∓nx−1Dx = ∓(n+ 1)ah(x) = ∓(n+ 1)ahEu

= ∓(n+ 1)h̃(u).

If n 6= −1 (i.e. n+ 1 6= 0) then

E(∓Lu) = u∓(n+1) = ∓(n+ 1)Rh̃(u) + z,

where z ∈ kerD, i.e.

∓(n+ 1)Lu = LE[∓(n+ 1)Lu] = L[∓(n+ 1)Rh̃(u) + z].

This implies that

x = Eu = E2Lu = E2

{
∓ 1
n+ 1

L[∓Rh̃(u) + z]
}

= E2

{
∓ 1
n+ 1

L[∓(n+ 1)R[ahE(Lx) + z]
}

= E2

{
∓ 1
n+ 1

Rah(x) + z

}
where z ∈ kerD.

This means that (5.29) should be satisfied for a z ∈ kerD.
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(ii) If n = −1 then we get Du−1 = 0, which implies that u−1 = z̃ ∈ kerD
and x = ELx = Eu = Ez̃−1 = z ∈ kerD, i.e. x is a constant. Hence
Fx = Fz = z = x. Then Dx = 0. So FDx = 0.

(iii) Suppose that n 6= −1, x± satisfy (5.29) and the initial value condi-
tions

(5.31) F±x = x±0 , where x±0 ∈ kerD are given,

respectively. This means that there are z ∈ kerD such that

x±0 = Fx±0 = FE2

{
∓ 1
n+ 1

FL{∓(n+ 1)R[ah(x)] + z̃}
}

= E2

{
∓ 1
n+ 1

FL{∓(n+ 1)R[ah(x)] + z̃}
}

= E2

{
∓ 1
n+ 1

L{∓(n+ 1)FR[ah(x)] + F z̃}
}

= E2

[
∓ 1
n+ 1

Lz̃

]
= E2Lz∓

1
n+1 = Ez∓

1
n+1 ,

and z = (Lx0)∓(n+1).
(iv) If (iii) is satisfied and F is multiplicative then

FDx = F [ah(x)(Lx)n] = (Fa) · 0 · [Fh(x)](LFx)n.

However, LFx = L(0) is not well-determined, so neither is FDx.

Example 5.4. Suppose that all assumptions of Theorem 5.2 are satis-
fied. Then x ∈ domD is a solution of the equation

(5.32) Dx = axh(x)

if and only if x ∈ domD is a solution of the equation

(5.33) x = zER[ah(x)] for a z ∈ kerD.

Indeed, we have DLx = x−1Dx = axh(x). Hence x = ELx = E{R[ah(x)] +
Lz} = (ELz)ER[ah(x)] = zER[ah(x)], where z ∈ kerD. If F is an almost
averaging initial operator for D corresponding to R then the initial value
condition Fx = x0 (x0 ∈ kerD is given) implies that

x0 = F{zER[ah(x)]} = zFER[ah(x)] = zEFR[ah(x)] = zE(0) = z · e = z,

i.e. x should satisfy the equation

(5.34) x = x0ER[ah(x)].

Example 5.5. Suppose that all assumptions of Theorem 5.2 are satis-
fied, g = Re ∈ I(X), a = g−1, Rg−1 ∈ domΩ and h(x) = x(x− e). Observe
that

x−1 + (x− e)−1 = 2x−1(x− e)−1 = 2[x(x− e)]−1 whenever x, x− e ∈ I(X).
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As before, we conclude that the equation

(5.35) Dx = 2g−1x(x− e)
has a solution x ∈ domD if and only x ∈ domD satisfies the equation

(5.36) x(x− e) = zg2 for a z ∈ kerD.

In that case, if F is multiplicative, then the initial condition Fx = x0 (x0 ∈
kerD is given) leads to the equality x0(x0 − e) = zFg2 = z(Fg)2 = 0.
This implies that either x0 = 0 or x0 = e (3). If Fx = e, we find x − e =
RD(x− e) = RDx, i.e.

x = RDx+ e = [2g−1x(x− e)] + e = R[2g−1zg2] + e+ 2zRg = 2zR2e = zg2.

Therefore e = Fx = F (zg2) = z(Fg)2 = 0, which is a contradiction. Hence
Fx 6= e. So Fx = 0. By similar arguments, we find that FDx is not well
defined, i.e. there is no z ∈ kerD such that FDx = z. Hence equation (5.36)
has no solutions.

Example 5.6. Suppose that all assumptions of Theorem 5.2 are satis-
fied, g = Re ∈ I(X), a = g−1 and F is an almost averaging initial operator
for D corresponding to R. Then the equation

(5.37) Dx = g−1xh(x)Lx

has a solution x ∈ domD if and only if the equation

(5.38) x = E{zER[g−1h(x)]}
has a solution x ∈ domD for some z ∈ kerD. Indeed, write u = Lx. Then
x = Eu and we have Du = DLx = x−1Dx = g−1h(x)Lx = g−1h(Eu)u.
Hence DLu = u−1Du = g−1h(Eu), which implies that for z ∈ kerD,

x = E2L2x = E2L{zER[g−1h(x)]} = E{zER[g−1h(x)].

If x is a solution of (5.38) satisfying the initial condition Fx = x0, where
x0 ∈ kerD, then

x0 = FxFE{zER[g−1h(x)]} = EF{zER[g−1h(x)]}
= E{zEFR[g−1h(x)]} = E[zE(0)] = E(z · e) = Ez.

Let x0 = 0. Since there is no z ∈ kerD such that Ez = x0 = 0, we conclude
that Fx is not well-determined, hence there is no solution belonging to
dom D. As in previous examples, we can show that in this case FDx is not
well-determined either.
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