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A stochastic model of symbiosis

by Urszula Skwara (Lublin)

Abstract. We consider a system of stochastic differential equations which models
the dynamics of two populations living in symbiosis. We prove the existence, uniqueness
and positivity of solutions. We analyse the long-time behaviour of both trajectories and
distributions of solutions. We give a biological interpretation of the model.

1. Introduction. Relations between two populations living in symbiosis
can be described by the following system of differential equations [3] (Gause
and Witt, 1935)

(1) x′ = (a1 + b1y − c1x)x, y′ = (a2 + b2x− c2y)y.

This model does not take into account the random influence of the environ-
ment and the following stochastic model would be more realistic:

dX(t) = ((a1 + b1Y (t)− c1X(t)) dt+ ρ11 dW1(t) + ρ12 dW2(t))X(t),(2)
dY (t) = ((a2 + b2X(t)− c2Y (t)) dt+ ρ21 dW1(t) + ρ22 dW2(t))Y (t),(3)

where ai, bi, ci (i = 1, 2) are positive constants, and W1(t), W2(t) are two
independent standard Wiener processes. The stochastic processes X(t) and
Y (t) represent, respectively, the first and the second population. The con-
stants ai (i = 1, 2) are ideal growth rates, bi (i = 1, 2) are symbiosis coeffi-
cients, ci (i = 1, 2) are death rates and ρij (i, j = 1, 2) are the coefficients of
environmental stochastic perturbations of populations.

The classical model of symbiosis described by (1) is well known (see
[1], [9]). If the coefficients of system (1) are positive and satisfy the inequality
b1b2 < c1c2 then the sizes of both populations converge to a unique equilib-
rium. Otherwise, if b1b2 ≥ c1c2 then the sizes go to infinity. In the literature
we can find other models of symbiosis. V. A. Kostitzin [6] considered a more
complicated model of symbiosis in which, besides free-living individuals in
two associated species, we have the third population of symbiotic couples.
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In [14] A. Rescigno and W. Richardson considered a more general model of
symbiosis than (1). They replaced the growth rates a1 + b1Y (t) − c1X(t),
a2 +b2X(t)−c2Y (t) by functions f1, f2 which satisfy specific conditions. We
can also study stochastic versions of these models using similar methods.

The aim of this paper is to study the long-time behaviour of both tra-
jectories and distributions of the solutions of system (2), (3). First we show
the existence, uniqueness, positivity and non-extinction property of the so-
lutions. Next we prove that the probability distributions of the process
(X(t), Y (t)) are absolutely continuous with respect to the Lebesgue mea-
sure. Let U(x, y, t) be the density of the distribution of (X(t), Y (t)). We
give a sufficient and a necessary condition for the asymptotic stability of
system (2), (3), i.e. the convergence of U(x, y, t) to an invariant density
U∗(x, y). If this system is not asymptotically stable then we prove that
limt→∞ Y (t) = 0 a.e. We also show that in this case limt→∞X(t) = 0 a.e.
or the probability distributions of the process X(t) converge weakly to some
probability measure.

In order to prove asymptotic stability of system (2), (3) we use the theory
of integral Markov semigroups developed in [11], [12], [15] and [18]. If this
system is not asymptotically stable then we use the comparison theorem for
one-dimensional stochastic differential equations and the ergodic theorem to
show that limt→∞ Y (t) = 0 a.e. A similar technique was applied to study
the asymptotic behaviour of a stochastic prey-predator model [16], [17],
a stochastic competition model [20] and a stochastic SIR model [19].

In the model described by equations (2), (3) the random noise is propor-
tional to the number of individuals in the population. This occurs when the
noise is caused, for example, by an epidemic disease or weather conditions.
We can consider another model of symbiosis in which the random noise af-
fects each individual separately. In this case we assume that the mean value
of the stochastic perturbation is zero. From the central limit theorem it fol-
lows that the stochastic perturbation is gaussian and proportional to

√
X(t)

and
√
Y (t) respectively. Then we obtain the system

dX(t) = (a1 + b1Y (t)− c1X(t))X(t)dt(4)

+ (ρ11 dW1(t) + ρ12 dW2(t))
√
X(t),

dY (t) = ((a2 + b2X(t)− c2Y (t))Y (t)dt+ (ρ21 dW1(t)(5)

+ ρ22 dW2(t))
√
Y (t).

The existence, uniqueness, positivity and non-extinction property of the so-
lutions of system (4), (5) follow from general theorems which can be found
in [21]. Some technical details, for instance, the construction of a Khasmin-
skĭı function, will be more complicated. Some models of symbiosis with other
stochastic perturbations, for example X2(t) (see [8]), are also considered.
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2. Mathematical results and their interpretation. In this section
we formulate the main result of our paper. We will study the stochastic model
described by (2), (3) assuming that b1b2 < c1c2. This is a natural assumption,
because in the deterministic model (1) we observe that if b1b2 ≥ c1c2 then the
sizes of both populations go to infinity. In other words, in the deterministic
case too much symbiosis causes an unlimited growth of populations. In the
stochastic model we can observe similar effects. Moreover, we will assume
that the random noise for both populations is proportional to the number of
individuals and is weakly correlated, i.e. ρ11ρ22−ρ12ρ21 6= 0. The asymptotic
behaviour of system (2), (3) depends on the constants b1, b2, c1, c2, ρ1 =√
ρ2

11 + ρ2
12, ρ2 =

√
ρ2

21 + ρ2
22, ã1 = a1 − ρ2

1/2, ã2 = a2 − ρ2
2/2.

Theorem 1. Let b1b2 < c1c2. If (X(t), Y (t)) is a solution of system
(2), (3), then for every t > 0 the distribution of (X(t), Y (t)) has a density
U(t, x, y).

(I) If ã1 > 0 and ã2 > 0 then there exists a unique invariant density
U∗(x, y) such that

(6) lim
t→∞

� �

R2
+

|U(x, y, t)− U∗(x, y)| dx dy = 0.

(II) If ã1 < 0 and ã2 < 0 then

lim
t→∞

X(t) = 0 a.e. and lim
t→∞

Y (t) = 0 a.e.

(III) If ã1 > 0, ã2 < 0 and ã1b2 + ã2c1 > 0 then there exists a unique
invariant density U∗(x, y) such that

(7) lim
t→∞

� �

R2
+

|U(x, y, t)− U∗(x, y)| dx dy = 0.

(IV) If ã1 > 0, ã2 < 0 and ã1b2 + ã2c1 < 0 then limt→∞ Y (t) = 0
a.e. and the distribution of the process X(t) converges weakly to the
measure which has the density f∗(x) = Cx2ã1/ρ21−1e−2c1x/ρ21, where
C = (2c1/ρ

2
1)2ã1/ρ21/Γ (2ã1/ρ

2
1).

Remark 1. In every case the support of the invariant density U∗ is R2
+.

By the support of a measurable function f we simply mean the set

supp f = {(x, y) ∈ X : f(x, y) 6= 0}.
Remark 2. In the statement of Theorem 1 we omit some cases. For

example, we do not take into account the case in which ã1 < 0, ã2 > 0,
ã2b1 + ã1c2 > 0, because it is symmetrical to (III), nor the case when ã1 < 0,
ã2 > 0, ã2b1 + ã1c2 < 0 which is symmetrical to (IV).

Remark 3. Theorem 1 has an interesting biological interpretation. The
inequality b1b2 < c1c2 means that the influence of symbiosis is smaller than
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the suppression of growth connected with the population size. This condition
guarantees that the population cannot go to infinity in finite time and cannot
die out in finite time. From (I) it follows that if stochastic perturbations
are small for both populations then the sizes of the populations stabilize.
However, if the stochastic perturbation is large for one population then this
population can die out. It turns out that if the stochastic perturbation is
large for one population and small for the second population but symbiosis
coefficients are large then both populations survive. The main difference
between the deterministic and stochastic models is that a large stochastic
perturbation can cause the extinction of a population.

3. Existence and uniqueness of solution. In this section we prove
that system (2), (3) has a unique and positive global (i.e. with no explosion
in finite time) solution for any given initial value. In the proof we use the
idea developed in [10], [8], [19]. First we introduce some notation. Let

R2
+ = {(x1, x2) ∈ R2 : xi > 0 for all i = 1, 2}.

We will study system (2), (3) with the initial condition (X(0), Y (0)) ∈ R2
+.

We have the following result.

Theorem 2. If b1b2 < c1c2 then for any initial condition (X(0), Y (0))
∈ R2

+ there is a unique solution (X(t), Y (t)) of system (2), (3) for t ≥ 0 and
the solution remains in R2

+ with probability 1, that is, (X(t), Y (t)) ∈ R2
+ for

all t ≥ 0 almost surely.

Proof. Since the coefficients of equations (2), (3) are locally Lipschitz
continuous, for any given initial condition (X(0), Y (0)) ∈ R2

+ there is a
unique local solution (X(t), Y (t)) for t ∈ [0, τe), where τe is the explosion
time. In order to show that this solution is global, we will show that τe =∞
a.e. Let k0 > 0 be sufficiently large such that

(X(0), Y (0)) ∈ [1/k0, k0]2.

For each integer k > k0 we define the stopping time
(8) τk = inf{t ∈ [0, τe) : (X(t), Y (t)) 6∈ [1/k, k]2}
and we set inf ∅ = ∞. Clearly (τk) is an increasing sequence. Set τ∞ =
limk→∞ τk, whence τ∞ ≤ τe a.s. If we can show that τ∞ = ∞ a.s. then
τe = ∞ a.s. and consequently (X(t), Y (t)) ∈ R2

+ for all t ≥ 0 a.s. In other
words, to complete the proof we need to show that τ∞ = ∞ a.s. If this
statement is false, then there is a pair of constants T > 0 and ε ∈ (0, 1) such
that

P{ω ∈ Ω : τ∞(ω) ≤ T} > ε.

Consequently, there exists an integer k1 ≥ k0 such that
P{ω ∈ Ω : τk(ω) ≤ T} ≥ ε for all k ≥ k1.
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Define a C2-function V : R2
+ → R by

(9) V (x, y) = b2x0F (x/x0) + b1y0F (y/y0),

where F (x) = x− lnx− 1 and

x0 =
a2b1 + a1c2

c1c2 − b1b2
, y0 =

a1b2 + a2c1

c1c2 − b1b2
.

If (X(t), Y (t)) ∈ R2
+, the Itô formula shows that

dV (X(t), Y (t)) =
[
b2(a1 + b1Y (t)− c1X(t))(X(t)− x0)
+ b1(a2 + b2X(t)− c2Y (t))(Y (t)− y0)
+ 1

2ρ
2
1b2x0 + 1

2ρ
2
2b1y0

]
dt

+ b2(X(t)− x0)ρ11dW1(t) + b2(X(t)− x0)ρ12dW2(t)
+ b1(Y (t)− y0)ρ21dW1(t) + b1(Y (t)− y0)ρ22dW2(t).

Since b1b2 < c1c2, we have

b2(a1 +b1Y (t)−c1X(t))(X(t)−x0)+b1(a2 +b2X(t)−c2Y (t))(Y (t)−y0) ≤ 0.

We therefore obtain

EV (X(τk ∧ T ), Y (τk ∧ T )) ≤ V (X(0), Y (0)) + αE(τk ∧ T )(10)
≤ V (X(0), Y (0)) + αT,

where α = 1
2ρ

2
1b2x0 + 1

2ρ
2
2b1y0. Set Ωk = {ω ∈ Ω : τk(ω) ≤ T} for k ≥ k1.

Then P (Ωk) ≥ ε. Note that for every ω ∈ Ωk there is some component of
(X(τk(ω)), Y (τk(ω)) which equals either k or 1/k, and hence by (9),

V (X(τk(ω)), Y (τk(ω))) ≥ b2x0

(
k

x0
− ln

k

x0
− 1
)

or
V (X(τk(ω)), Y (τk(ω))) ≥ b1y0

(
k

y0
− ln

k

y0
− 1
)

or
V (X(τk(ω)), Y (τk(ω))) ≥ b2x0

(
1
kx0
− ln

1
kx0
− 1
)

or
V (X(τk(ω)), Y (τk(ω))) ≥ b1y0

(
1
ky0
− ln

1
ky0
− 1
)
.

Let C(k) be the minimum of the four right hand sides above. Then we have
limk→∞C(k) =∞. From (10),

V (X(0), Y (0)) + αT ≥ E(1Ωk
V (X(τk(ω)), Y (τk(ω))) ≥ εC(k),

where 1Ωk
is the indicator function of Ωk. Letting k → ∞ leads to the

contradiction
∞ > V (X(0), Y (0)) + αT =∞,

so we must have τ∞ =∞ a.s.
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4. Markov semigroups. Now we recall some definitions and theorems
concerning Markov semigroups.

Let (X,Σ,m) be a σ-finite measure space. Denote by D the subset of
the space L1 = L1(X,Σ,m) consisting of all densities, i.e.

D = {f ∈ L1 : f ≥ 0, ‖f‖ = 1}.
A linear mapping P : L1 → L1 is called a Markov operator if P (D) ⊂ D.

The Markov operator P is called an integral operator if there exists a
measurable function k : X ×X → [0,∞) such that

(11) Pf(x) =
�

X

k(x, y)f(y)m(dy)

for every density f . The function k is called a kernel of the operator P . One
can check that from the condition P (D) ⊂ D it follows that

(12)
�

X

k(x, y)m(dx) = 1

for almost all y ∈ X.
A family {P (t)}t≥0 of Markov operators which satisfies these conditions:

(a) P (0) = Id,
(b) P (t+ s) = P (t)P (s) for s, t ≥ 0,
(c) for each f ∈ L1 the function t 7→ P (t)f is continuous with respect

to the L1 norm,

is called a Markov semigroup. A Markov semigroup {P (t)}t≥0 is called inte-
gral if for each t > 0, the operator P (t) is an integral Markov operator.

We also need two definitions concerning the asymptotic behaviour of a
Markov semigroup. A density f∗ is called invariant if P (t)f∗ = f∗ for each
t > 0. The Markov semigroup {P (t)}t≥0 is called asymptotically stable if
there is an invariant density f∗ such that

lim
t→∞
‖P (t)f − f∗‖ = 0 for f ∈ D.

A Markov semigroup {P (t)}t≥0 is called sweeping with respect to a set
A ∈ Σ if for every f ∈ D,

(13) lim
t→∞

�

A

P (t)f(x)m(dx) = 0.

Theorem 3 ([13]). Let {P (t)}t≥0 be an integral Markov semigroup. As-
sume that the semigroup {P (t)}t≥0 has only one invariant density f∗. If
f∗ > 0 a.e. then the semigroup {P (t)}t≥0 is asymptotically stable. In partic-
ular, if the integral Markov semigroup {P (t)}t≥0 has a positive kernel and
an invariant density then {P (t)}t≥0 is asymptotically stable.

From Theorem 3 we obtain the following result.
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Corollary 1 ([16]). Let X be a metric space and Σ be the σ-algebra of
Borel sets. Let {P (t)}t≥0 be an integral Markov semigroup with a continuous
kernel k(t, x, y) for t > 0, which satisfies (12) for all y ∈ X. Assume that
for every f ∈ D,

(14)
∞�

0

P (t)f dt > 0 a.e.

Then the semigroup is asymptotically stable or sweeping with respect to com-
pact sets.

A Markov semigroup {P (t)}t≥0 that is asymptotically stable or sweeping
from a sufficiently large family of sets (e.g. from all compact sets) is said to
satisfy the Foguel alternative.

If we know that the semigroup satisfies the Foguel alternative we can
exclude sweeping by showing that there exists a Khasminskĭı function, de-
fined as follows. Let A be the infinitesimal generator of a Markov semigroup
{P (t)}t≥0. Let R = (I − A)−1 be the resolvent operator at point 1. Let
V : X → [0,∞) be a measurable function. Set

DV =
{
f ∈ D :

�

X

f(x)V (x)m(dx) <∞
}
.

Then V is called a Khasminskĭı function for the Markov semigroup {P (t)}t≥0

and a set Z ∈ Σ if there exist M > 0 and ε > 0 such that�

X

V (x)Rf(x) dm(x) ≤
�

X

(V (x)− ε)f(x) dm(x) +
�

Z

MRf(x) dm(x)

for every f ∈ DV . It is difficult to find a Khasminskĭı function using the
definition. In our case we can apply the following theorem.

Theorem 4 ([12]). Let K be a compact set in R2. Assume that there
exists a C2-function V : R2 → [0,∞) such that

sup
x 6∈K
A∗V (x) < 0.

Then V is a Khasminskĭı function for the Markov semigroup {P (t)}t≥0 and
the set K.

5. Properties of trajectories. In order to investigate the properties
of the solution of system (2), (3) we substitute X(t) = eξ(t), Y (t) = eη(t).
Then by the Itô formula we obtain

dξ(t) = (ã1 + b1e
η(t) − c1e

ξ(t))dt+ ρ11 dW1(t) + ρ12 dW2(t),(15)

dη(t) = (ã2 + b2e
ξ(t) − c2e

η(t))dt+ ρ21 dW1(t) + ρ22 dW2(t).(16)

In this section we prove parts (II) and (IV) of Theorem 1. We will use
the following property of solutions of a one-dimensional stochastic equation.
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Consider the stochastic equation

dX(t) = σ(X(t)) dW (t) + b(X(t)) dt.

Let

s(x) =
x�

0

exp
{
−
y�

0

2b(r)
σ2(r)

dr

}
dy.

If s(−∞) > −∞ and s(∞) =∞ then limt→∞X(t) = −∞ a.e.
The proof of parts (II) and (IV) of Theorem 1 is divided into the following

lemmas.

Lemma 1. Let (ξ(t), η(t)) be a solution of system (15), (16). Assume
that ρ1 6= 0 and ρ2 6= 0. If b1b2 < c1c2, ã1 < 0 and ã2 < 0 then

lim
t→∞

ξ(t) = −∞ and lim
t→∞

η(t) = −∞ a.e.

Proof. Let

W̃ (t) =
ρ11

ρ1
W1(t) +

ρ12

ρ1
W2(t), W (t) =

ρ21

ρ2
W1(t) +

ρ22

ρ2
W2(t).

Then W̃ (t), W (t) are two standard Wiener processes. We define

W (t) =
c2ρ11 + b1ρ21

ρ
W1(t) +

c2ρ12 + b1ρ22

ρ
W2(t),

where
ρ =

√
(c2ρ11 + b1ρ21)2 + (c2ρ12 + b1ρ22)2.

ThenW (t) is also a standard Wiener process. Multiplying (15) by c2 and (16)
by b1 and adding the two equations we have

d(c2ξ(t) + b1η(t)) = (ã1c2 + ã2b1 + (b1b2 − c1c2)eξ(t))dt+ ρdW (t).

Since b1b2 < c1c2, from the comparison theorem ([4, Lemma 4, p. 120]) we
get

d(c2ξ(t) + b1η(t)) ≤ (ã1c2 + ã2b1)dt+ ρdW (t).

Consequently,
lim
t→∞

(c2ξ(t) + b1η(t)) = −∞ a.e.

Thus for arbitrarily small ε > 0 there exist t0 and a set Ωε such that
Prob(Ωε) > 1 − ε and ξ(t) < − b1

c2
η(t) for t ≥ t0 and ω ∈ Ωε. It follows

that

(17) dη(t) ≤ (ã2 + b2e
− b1

c2
η(t))dt+ ρ2 dW (t).

Consider the equation

(18) dη̄(t) = (ã2/2 + b2e
− b1

c2
η̄(t))dt+ ρ2 dW (t).
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The Fokker–Planck equation corresponding to (18) has a stationary density

f∗(x) = C exp
2
ρ2

2

(
ã2

2
x− b2c2

b1
e
− b1

c2
x
)
,

where C is some constant. From the ergodic theorem ([4, Theorem 2, p. 141])
it follows that

(19) lim
t→∞

1
t

t�

0

e
− b1

c2
η̄(s)

ds =
∞�

−∞
f∗(x)e−

b1
c2
x
dx.

Since f ′∗(x) = 2/ρ2
2(ã2/2 + b2e

− b1
c2
x)f∗(x), we have

(20)
∞�

−∞
f∗(x)e−

b1
c2
x
dx = − ã2

2b2
> 0.

From (19), (20) we obtain

(21) lim
t→∞

1
t

t�

0

e
− b1

c2
η̄(s)

ds = − ã2

2b2
.

In view of (17) we have

η(t) ≤ η̄(t) +
ã2

2
t+ C1,

where η̄(t) is a solution of equation (18) and C1 is some constant. Therefore

η(t) ≤ ã2t+ b2

t�

0

e
− b1

c2
η̄(s)

ds+ ρ2W (t) + C1.

From this and (21), limt→∞ limW (t)/t = 0, we obtain

lim sup
t→∞

η(t)
t
≤ ã2

2
< 0.

Consequently, limt→∞ η(t) = −∞ a.e. Using the symmetry of system (15),
(16) we analogously show that limt→∞ξ(t) = −∞ a.e.

Lemma 2. Let (ξ(t), η(t)) be a solution of system (15), (16). Assume
that ρ1 6= 0 and ρ2 6= 0. If b1b2 < c1c2, ã1 > 0, ã2 < 0 and ã1b2 + ã2c1 < 0
then limt→∞ η(t) = −∞ a.e and the distribution of the process ξ(t) converges
weakly to a measure which has the density

f∗(x) = C exp
(

2
ρ2

1

(ã1x− c1e
x)
)
.

Proof. As in the proof of Lemma 1, we show that limt→∞ η(t) = −∞ a.e.
Thus for arbitrary ε > 0 there exist t0 and a set Ωε such that Prob(Ωε) >
1− ε and b1eη(t,ω) ≤ ε for t ≥ t0 and ω ∈ Ωε. Therefore

(ã1 − c1e
ξ(t))dt+ ρ1dW̃ (t) ≤ dξ(t) ≤ (ã1 + ε− c1e

ξ(t))dt+ ρ1dW̃ (t),
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where W̃ (t) = ρ11
ρ1
W1(t) + ρ12

ρ1
W2(t). Let ξε(t) be a solution of the equation

dξε(t) = (ã1 + ε− c1e
ξε(t))dt+ ρ1dW̃ (t)

with the initial condition ξε(0) = ξ(0). Assume that ξ0(t) is a solution of the
equation

dξ0(t) = (ã1 − c1e
ξ0(t))dt+ ρ1dW̃ (t)

with the initial condition ξ0(0) = ξ(0). Thus from the comparison theo-
rem ([4, Lemma 4, p. 120]) it follows that ξ0(t) ≤ ξ(t) ≤ ξε(t) a.e. Denote
by Fξ0(t), Fξ(t), Fξε(t), respectively, the distributions of the processes ξ0(t),
ξ(t), ξε(t). Then Fξ0(t)(x) ≥ Fξ(t)(x) ≥ Fξε(t)(x) for x ∈ R. Every Markov
semigroup connected with a diffusion process of a non-degenerate type is an
integral semigroup which has a positive kernel. From Theorem 3 it follows
that the densities of the process ξ0(t) converge in L1 to an invariant den-
sity f∗ and the densities of the process ξε(t) converge in L1 to an invariant
density

f∗ε (x) = C exp
(

2
ρ2

1

((ã1 + ε)x− c1e
x)
)
,

where C is some constant. In particular, f∗ = f∗0 . Let

F ∗ε (x) =
x�

−∞
f∗ε (s) ds.

Thus Fξε(t) uniformly converges to F ∗ε as t→∞ and F ∗ε uniformly converges
to F ∗0 as ε → 0. Therefore the distribution of the process ξ(t) converges
weakly to the measure which has the density f∗.

6. Asymptotic stability. Let (ξ(t), η(t)) be a solution of (15), (16)
such that the distribution of (ξ(0), η(0)) is absolutely continuous with density
v(x, y). Then the random variable (ξ(t), η(t)) has a density u(x, y, t) and u
satisfies the Fokker–Planck equation:

(22)
∂u

∂t
=

1
2
ρ2

1

∂2u

∂x2
+(ρ11ρ21 +ρ12ρ22)

∂2u

∂x∂y
+

1
2
ρ2

2

∂2u

∂y2
− ∂(f1u)

∂x
− ∂(f2u)

∂y
,

where f1(x, y) = ã1 + b1e
y − c1e

x, f2(x, y) = ã2 + b2e
x − c2e

y.
Now we introduce a Markov semigroup connected with the Fokker–Planck

equation (22). Let X = R2, Σ be the σ-algebra of Borel subsets of X, and m
be the Lebsegue measure on (X,Σ). Let P (t)v(x, y) = u(x, y, t) for v ∈ D.
Since the operator P (t) is a contraction on D, it can be extended to a
contraction on L1(R2, Σ,m). Thus the operators {P (t)}t≥0 form a Markov
semigroup. Let A be the infinitesimal generator of the semigroup {P (t)}t≥0,
i.e.

Av =
1
2
ρ2

1

∂2v

∂x2
+ (ρ11ρ21 + ρ12ρ22)

∂2v

∂x∂y
+

1
2
ρ2

2

∂2v

∂y2
− ∂(f1v)

∂x
− ∂(f2v)

∂y
.
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The adjoint operator of A is of the form

A∗v =
1
2
ρ2

1

∂2v

∂x2
+ (ρ11ρ21 + ρ12ρ22)

∂2v

∂x∂y
+

1
2
ρ2

2

∂2v

∂y2
+ f1

∂v

∂x
+ f2

∂v

∂y
.

By P(t, x, y, A) we denote the transition probability function for the
diffusion process (ξ(t), η(t)), i.e. P(t, x, y, A) = Prob((ξ(t), η(t)) ∈ A) and
(ξ(t), η(t)) is a solution of (15), (16) with the initial condition (ξ(0), η(0)) =
(x, y). Since ρ11ρ22 − ρ12ρ21 6= 0, for each point (x0, y0) ∈ R2 and t > 0 the
measure P(t, x0, y0, ·) is absolutely continuous with respect to the Lebesgue
measure. Denote by k(t, x, y;x0, y0) the density of P(t, x0, y0, ·). Thus

(23) P (t)v(x, y) =
∞�

−∞

∞�

−∞
k(t, x, y; ξ, η)v(ξ, η) dξ dη

and consequently {P (t)}t≥0 is an integral Markov semigroup. The asymp-
totic stability of the semigroup {P (t)}t≥0 implies the convergence in L1 of
the densities of the process (ξ(t), η(t)) to an invariant density. Therefore,
instead of proving part (I) and (III) of Theorem 1, we show the asymptotic
stability of the semigroup {P (t)}t≥0. As ρ11ρ22 − ρ12ρ21 6= 0, the semigroup
{P (t)}t≥0 connected with (22) has a continuous and positive kernel k. By
Corollary 1 this semigroup satisfies the Foguel alternative. In order to ex-
clude sweeping we construct a Khasminskĭı function. We have the following
result.

Theorem 5. Assume that b1b2 < c1c2. If ã1 > 0, ã2 > 0 or ã1 > 0,
ã2 < 0, ã1b2 + ã2c1 > 0 then the semigroup {P (t)}t≥0 is asymptotically
stable.

Proof. According to Theorem 4 we will construct a nonnegative C2-
function V and a compact set K ⊂ R2 such that

sup
x6∈K
A∗V (x) < 0.

Using similar arguments to those in [11] one can check that the existence
of a Khasminskĭı function implies that the semigroup is not sweeping from
compact sets.

Let γ1 = log(c1/b1), γ2 = log(b2/c2), γ = (γ1 + γ2)/2, δ = (γ1 − γ2)/2.
As b1b2 < c1c2 we have γ2 < γ1 and δ > 0. If d1 is a constant such that
0 < d1 < δ then we have the inequalities

(24) γ + d1 < γ1, γ − d1 > γ2.

First we consider the case when ã1 > 0, ã2 > 0. Let a = min(ã1, ã2) and

d2 > max
{

6
a

(ρ1
2 + ρ2

2),−(γ + γ1), γ + γ2

}
.
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We define

D1 = {(x, y) ∈ R2 : x > z0 + d1, y > z0 + γ + d1,

x+ γ − d1 < y < x+ γ + d1},
D2 = {(x, y) ∈ R2 : x > z0, y = x+ γ + d1},
D3 = {(x, y) ∈ R2 : x > z0 + d1, y = x+ γ − d1},
D4 = {(x, y) ∈ R2 : x > z0 + d1, y < −z0 − γ − d1,

−x− γ − d1 < y < −x− γ + d1},
D5 = {(x, y) ∈ R2 : x > z0 + d1, y = −x− γ + d1},
D6 = {(x, y) ∈ R2 : x > z0, y = −x− γ − d1},
D7 = {(x, y) ∈ R2 : x < −z0 − d1, y < −z0 − γ − d1,

x− γ − d2 < y < x− γ + d2},
D8 = {(x, y) ∈ R2 : x < −z0 − d1 + d2, y = x− γ − d2},
D9 = {(x, y) ∈ R2 : x < −z0 − d1, y = x− γ + d2},
D10 = {(x, y) ∈ R2 : x < −z0 − d1, y > z0 + γ + d1,

−x+ γ − d1 < y < −x+ γ + d1},
D11 = {(x, y) ∈ R2 : x < −z0 − d1, y = −x+ γ − d1},
D12 = {(x, y) ∈ R2 : x < −z0, y = −x+ γ + d1},
D13 = {(x, y) ∈ R2 : y > z0 + γ + d1, y > x+ γ + d1, y > −x+ γ + d1},
D14 = {(x, y) ∈ R2 : x > z0 + d1, −x− γ + d1 < y < x+ γ − d1},
D15 = {(x, y) ∈ R2 : y < −z0 − γ − d1, y < −x− γ − d1, y < x− γ − d2},
D16 = {(x, y) ∈ R2 : x < −z0 − d1, x− γ + d2 < y < −x+ γ − d1},

where z0 is a positive and sufficiently large constant. Next we define the
function z = V1(x, y) for z ≥ z0 in the following way:

(x− z)4 + (y − (z + γ))4 = d4
1 for (x, y) ∈ D1 ∪D2 ∪D3,

(x− z)4 + (y + (z + γ))4 = d4
1 for (x, y) ∈ D4 ∪D5 ∪D6,

(x+ z + d1 − d2)4 + (y + z + d1 − d2 + γ)4 = d4
2 for (x, y) ∈ D7 ∪D8 ∪D9,

(x+ z)4 + (y − (z + γ))4 = d4
1 for (x, y)∈D10 ∪D11 ∪D12,

z = y − γ − d1 for (x, y) ∈ D13, z = x− d1 for (x, y) ∈ D14,

z = −y − γ − d1 for (x, y) ∈ D15, z = −x− d1 for (x, y) ∈ D16.

We show that there exist ε > 0 and a compact set K1 ⊂ R2 such that

A∗V1(x, y) ≤ −ε for (x, y) 6∈ K1.

Fix 0 < ε < a/2. Let K1 = [−z0 − d1, z0 + d1]× [−z0 − γ − d1, z0 + γ + d1].
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x

y

Fig. 1. The level curves of the Khasminskĭı function if b1b2 < c1c2, ã1 > 0 and ã2 > 0

We calculate
∂V1

∂x
=

(x− z)3

(x− z)3 + (y − (z + γ))3
,

∂V1

∂y
=

(y − (z + γ))3

(x− z)3 + (y − (z + γ))3

and

(25)
∂V1

∂x
+
∂V1

∂y
= 1,

∂V1

∂x
> 0,

∂V1

∂y
> 0

for (x, y) ∈ D1. Moreover,
∂2V1

∂x2
=
∂2V1

∂y2
= 3(x− z)2(y − (z + γ))2 (x− z)4 + (y − (z + γ))4

((x− z)3 + (y − (z + γ))3)3

and
∂2V1

∂xy
= −∂

2V1

∂x2
< 0

for (x, y) ∈ D1. Moreover,

(26) 0 <
∂2V1

∂x2
=
∂2V1

∂y2
≤ 6
d1
.

As b1eγ+d1 − c1 < 0, b2 − c2e
γ−d1 < 0, for sufficiently large z0 we obtain

ã1 + b1e
y − c1e

x < ã1 + b1e
x+γ+d1 − c1e

x = ã1 + ex(b1eγ+d1 − c1)

< ã1 + ez0+d1(b1eγ+d1 − c1) < − 3
d1
ρ2

1 −
3
d1
ρ2

2 − ε
and

ã2 + b2e
x − c2e

y < ã2 + b2e
x − c2e

x+γ−d1 = ã2 + ex(b2 − c2e
γ−d1)

< ã2 + ez0+d1(b2 − c2e
γ−d1) < − 3

d1
ρ2

1 −
3
d1
ρ2

2 − ε.

From this and from (25), (26) we get

A∗V1(x, y) ≤ 3
d1
ρ2

1 +
3
d1
ρ2

2 −
(

3
d1
ρ2

1 +
3
d1
ρ2

2 + ε

)(
∂V1

∂x
+
∂V1

∂y

)
(27)

= −ε
for (x, y) ∈ D1. Calculations in the other cases are similar or much easier
and therefore we omit them.
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Now we consider the case when ã1 > 0, ã2 < 0 and ã1b2 + ã2c1 > 0. Let
µ = −2ã2b2, ν = ã1b2 − ã2c1. It is easy to see that µ > 0 and ν > 0. Let
α = µ/ν, y0 = −(3α/2 + 1)z0 − αd1. As before we define

E1 = D1, E2 = D2, E3 = D3,

E4 = {(x, y) ∈ R2 : x > z0 + d1,

y < y0, −x+ z0 + y0 < y < −x+ z0 + y0 + 2d1},
E5 = {(x, y) ∈ R2 : x > z0 + d1, y = −x+ z0 + y0 + 2d1},
E6 = {(x, y) ∈ R2 : x > z0, y = −x+ z0 + y0},
E7 = {(x, y) ∈ R2 : x < −z0 − d1, y ≤ −z0},
E8 = {(x, y) ∈ R2 : −z0 − d1 ≤ x < z0/2, y < y0},
E9 = {(x, y) ∈ R2 : x ≥ z0/2, y < y0, y < −x+ z0 + y0},
E10 = D10, E11 = D11, E12 = D12, E13 = D13,

E14 = {(x, y) ∈ R2 : x > z0 + d1, −x+ z0 + y0 + 2d1 < y < x+ γ − d1},
E15 = {(x, y) ∈ R2 : x < −z0 − d1, −z0 < y < −x+ γ − d1}.

Next we define the function z = V2(x, y) which is a modification of V1. Let

V2(x, y) = V1(x, y) for (x, y) ∈ E1 ∪ E2 ∪ E3 ∪ E10 ∪ E11 ∪ E12 ∪ E13,

(x− z)4 + (y + αz + (α/2 + 1)z0 + (α− 1)d1)4

= d4
1 for (x, y) ∈ E4 ∪ E5 ∪ E6,

αx+ y + αz + z0 + αd1 = 0 for (x, y) ∈ E7 ∪ E8,

2z + 2y + 3αz0 + 2αd1 = 0 for (x, y) ∈ E9,

z = x− d1 for (x, y) ∈ E14, z = −x− d1 for (x, y) ∈ E15.

We show that there exist ε > 0 and a compact set K2 ⊂ R2 such that

A∗V2(x, y) ≤ −ε for (x, y) 6∈ K2.

Fix 0 < ε < min(ã1, µã1 + νã2). Let K2 = [−z0 − d1, z0 + d1] × [y0, z0 + γ
+ d1]. Calculations are similar to the previous case. The main difference is
in E7 ∪ E8. If (x, y) ∈ E7 ∪ E8 then

(28) A∗V2(x, y) = (1/µ)(−µã1 − νã2 + (µc1 − νb2)ex + (νc2 − µb1)ey).

As ã1b2+ã2c1 > 0, b1b2 < c1c2 and ã2 < 0 thus −µã1−νã2 < 0, µc1−νb2 < 0
and

νc2 − µb1 = b2(ã1c2 + ã2b1) + ã2(b1b2 − c1c2)

>
b1b2
c1

(ã1b2 + ã2c1) + ã2(b1b2 − c1c2) > 0.

Consequently, for (x, y) ∈ E7 we have

(29) A∗V2(x, y) ≤ (1/µ)(−µã1 − νã2 + (νc2 − µb1)e−z0) < −ε,
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x

y

Fig. 2. The level curves of the Khasminskĭı function if b1b2 < c1c2, ã1 > 0, ã2 < 0,
ã1b2 + ã2c1 > 0

and for (x, y) ∈ E8 we obtain

(30) A∗V2(x, y) ≤ (1/µ)(−µã1 − νã2 + (νc2 − µb1)e−(3α/2+1)z0−αd1) < −ε,

because z0 is sufficiently large.
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