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On local-in-time existence for the Dirichlet problem
for equations of compressible viscous fluids

by P1oTr BoGustAw MUCHA and
WOJCIECH ZAJACZKOWSKI (Warszawa)

Abstract. The local existence of solutions for the compressible Navier—Stokes equa-
tions with the Dirichlet boundary conditions in the L,-framework is proved. Next an
almost-global-in-time existence of small solutions is shown. The considerations are made
in Lagrangian coordinates. The result is sharp in the Lp-approach, because the velocity
belongs to Wf’l with r > 3.

1. Introduction. In this paper we consider the motion of viscous com-
pressible fluids in a bounded domain £2 C R? described by the Navier-Stokes
equations

o(vi +v - Vo) 4+ pAv —vVdive + Vp = of  in 027,

+ div(ov) =0 in 2T,
(1'1) Ot V(Q )
V= on ST,
Vt=0 = vo, 0li=0 = 0o in £2,

where 27 = 2x[0,T], S = 002, ST = §x[0,T), v(x,t) is the velocity of the
fluid, o(z,t) the density, p = p(o) the pressure, f(z,t) the external force, u
and v the constant viscosity coefficients which satisfy the thermodynamic
restrictions

(1.2) w>0, v> %u,

and the dot denotes the scalar product in R3.
To prove the existence of solutions to (1.1) we introduce the Lagrangian
coordinates as the initial data for the Cauchy problem

dx
(1.3) pri v(z,t), x|t=o =& € .
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Solving (1.3) we obtain
t

(1.4) z=¢+\uE r)dr = (1)
0

which is the relation between the Eulerian x and Lagrangian £ coordinates
and u(§,t)=v(z(,t),t). Here we need to add an extra condition v- 7| gr =0
(7 is the normal vector to S) which ensures that this transformation pre-
serves the domain ({z — &} : 2 — 2).

In Lagrangian coordinates, (1.1) reads

nuy — pAyu —vVydivyu+Vyg=ng in QT,

+ndivyu=20 in 7,

(1.5) e 1N )
U=« on S°,

ult=0 = vo, Mlt=0 = 0o in £2,

where U(fvt) = Q(l‘(f,t),t), q = p(ﬁ), g(f,t) = f(x(fat)’t)’ Vo = 83%8&7
A, = Vﬁ, div,, = V- and the summation convention over repeated indices
is used.

The first result of the paper is the following.

THEOREM 1.1. Let r > 3,8 € Wffl/T, f € L.(0,T;WL (), a €
C3(ST), v € WE_Z/T(Q), 00 € W(£2), a- 7 =0 and moreover

0 < 2a < po(x) <b<oo.

Then there exists Ty > 0 such that for T < Ty there exists a unique solution
of (1.5) such that u € W2H(021), n e WhO(021), n, € WHO(0QT) and
(1.6)  ullyzr gry + [Inllwzoory + [Inellwroor)

< el £z, omy + llellyz-1/ma-1@n gry + lvollyz-2/m o) + lloollwy (o)

+ 1 fllz, 0w (2) + llellessry)

and
(1.7) 0<a<n(zt)<2b< oo
for (z,t) € NT.

The next result concerns the time continuity of solutions which are close
to equilibrium states

(1.8) Vp(o(z)) = o(z) f(z),
where
0<0,<0o(z) <0" <0

for each z € 2, f = Vy and p,, 0" are given constants.
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From (1.1) with « = 0, f = Vg and (1.8) we obtain the following system
for perturbations in Eulerian coordinates:

o(vy +v-Vv) 4+ pAv —vVdiveo +yVeo =of —oVy in Q7

oy 4+ div(pv) =0 in T,
(1.9) t (ov)

v=20 on ST,

V|t=0 = Vo, Oli=0 = 00 — 0 in 2,
where

and ~ is defined by the relation

1

ple) —p(@) = o |p'(e+5(@—0) ds = 7.
0

System (1.9) in Lagrangian coordinates reads

nuy — pAyu — vV divy u + yVox = xg — xVuy  in 27,

+ndiv,u = -0 in 27,
(1.10> Xt TN M
u=0~0 on ST,
ult=0 = vo, 7N|t=0 =00 —0 in §2,
where

X(S’ t) = n(ga t) - ﬁ(é-v t)
and ﬁ(&v t) = E(l‘(f, t))

We prove the almost-global-in-time existence of solutions to (1.10).

THEOREM 1.2. Let r > 3, f = Vo € WL(2), 00 —0 € W), ug €

372/7’(0), plo) = ag™ witha > 0, kK > 1 and g0 > 0,/2. Let T > 0 be
given. Then there exist M1(T) and Ma(T, M), where Ma(T, My) — 0 as
T — oo and My — 0, such that for My < M+(T), if

[vollyy2-2/r () + le0 = 2llwi () < Ma(T, M),

then there exist solutions of (1.10) such that u € W21(£2 x [0,T]), x €
V. (2 x[0,T]) and
[ull w2 (oxjom + 1llvi(exiomy < M.
Moreover,
n(§,t) > 2,/4
for each (&,t) € £2 x[0,T].
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To prove these results we need solvability of the following linear problem
in the L,-framework:

Cuy — pAu — vVdivu + AVn = F.
+ Bdivu = H,
(1.11) n v
uls, =G,
ult=0 = o, nle=0 = no,
where A(x,t), B(x,t),C(x,t) are positive functions which belong to C® ({2 x
[0, 7Y).
For system (1.11) we have proved the following result (see [3]).
THEOREM 1.3. Let r > 3, S € W2 /" F € L,(2r), H € W}°(027),
G e W2 Y=Y (g wg e WA /’"(Q), no € WL(2) and
0<Cy <A(z,t),B(z,t),C(x,t) < C* < 0.
Moreover, A, B,C belong to C*(£2T), a > 0. Then there exists a unique
solution of problem (1.11) such that u € W21(0Q1), n € WO (0QT), n, €
WO (0T) and
(1.12) ||U||W3~1(QT) + ||77||W}’0(QT) + HntHWﬁ’O(QT)
< oT,C", COlIf o) + IH g ogom, + [Gllya-s/s-ren gr)
+ oy 21+ ) + Imolly o)
where ¢(T,-,-) is an increasing function of T.

The global existence of small regular solutions for problem (1.9) has
been shown in [2, 5] for the case when the norms of ¢ (f = V) are suf-
ficiently small. These results base on energy estimates. In our paper we
show existence and almost-global-in-time existence of regular solutions in
the L,-framework. The theorems enable us to prove in [4] the global ex-
istence of small solutions to problem (1.9) with “large” ¢. Moreover this
result is sharp in the L,-framework.

2. Notation. In our considerations we will need the anisotropic Sobolev—
Slobodetskii spaces W™ (QT) where m,n € Ry U {0}, r > 1 and QT =
Q@ x (0,T) with the norm

T
(2.1) ullymn gry = § | (e, )" d dt
0Q

T
+ Z §)§2]D “u(x, t)|” da dt

0<|m/ |<[|m/]]
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T

| D — D u(a! )|

+ > Jatl§ ,x_x/‘swm\ Ty~ 4242
m/|=[m] 0 QQ

T
+ Y §§2|D" w(z, t)|" de dt

0<|n/|<(|nl]
rr [n] n|r
D" u(z,t) = D (@, ¢)] '
S da | | t, T dtdt’.
00 ’

where s = dim@, [a] is the integral part of o, D}, = 9% ...0% , where

l=(ly,...,ls) isamultiindex and |l| =1; +...+1s,[; > 0,i=1,...,s. For
m and n integers, the corresponding terms with differences Vanish.
We define the space V(£27) as the closure
v(ar) = ox@ny e
where
(2.2) [fllviery = [Ifllwpoory + L fellwroor)-
In the proof we will use the following results.

PROPOSITION 2.1 (see [1]). Let u € Wm™™(QT), m,n € Ry. If

3
1\ 1 1 1)1
K—Z<a1+———>—+<ﬁ+———>—<l
— q)m roq)n
then
1Y Dl oy < ellullwzr(or) + ele)|ull Ly om),
where ¢ > 1> 2, ¢ € (0,1) and c(e) — oo as e — 0.

PROPOSITION 2.2. Let v > 3. Then V(2T) C C*(027), where 0 < a <
1—-3/r, and

[ fllceory < cllfllvier.
Proof. We have r > 3,0 < o < 1 — 3/r and the following imbeddings:
f€L.(0,T; W) C L.(0,T;C*(R)),
fi € L.(0,T;WX(£2)) C L.(0,T;C(£2)).
From these two relations we conclude
f € WO, T;C%(£2)) € C*'(0,T;C(2)),

where 0 < o/ < 1 —1/r. Thus we obtain f € C*(07T).
In our considerations we will treat all imbedding theorems for Sobolev
spaces as well known results. All constants are denoted by c.
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3. Proof of Theorem 1.1. We prove the existence of solutions of
(1.5) by the method of successive approximations. We construct a sequence
{tm, m }55_ by the relations

NmUm+1,t = P, Ums1 = V'V, dive,, Umil

+ 0" () Vi i1 = M f (Zm, t) in 7,
(3.1) Nmt1,t + N dive,, Umy1 =0 in 7,
Umt1 = (T, t) on ST,

Umt1lt=0 = V0,  Nm+1lt=0 = 00 in {2,

where x,, = £ + Sg U (2, ') dt’ and ug, 1o are defined by

o0uo ¢ — pAug — vV divug + p'(00) Vo = 0o f(€,t)  in 27,

4+ oodivug =0 in 27,
(3'2) No,t T Qo 0
Ug = a(:r(f,t),t) on ST7
uolt=0 = Vo, Nolt=0 = 0o in £2.

From Theorem 1.3 we get a solution of (3.2) with the estimate
(3.3)  luollwz1(qry + Imollver
< DYz, @ry + llallyyz-rrma-1ren gry + [[vollyz=2/r o) + [l0ollw; (2)-

First we show that {w,, nm }5°_, is uniformly bounded on 27 for some
T > 0. By induction we show that

X = llurllyz gy + Inkllvor) < 4M,
where
M = (T)(If |z, or) +llallyz-1/ma-rs@n gry +vollya-2/r o) + lleollwr(2)-

For fixed 4M we can define T so small that the Jacobian of the transforma-
tion (1.4) (with wu,,) is bounded.

System (3.1) is examined in the form
M tmt1,t — BAUm 1 — UV AV U1 + P (10m) Vil
= N (@ms t) + 0 (1) (V = Ve, i1
+ 1(Ay,, — Atii1 +v(Va, divy, =V div)u, = K in 27
34 Nim+1,t + NMm A1V U1 = N (div — divy,, Jtmg1 = L in 27

Um+1 = (T, ), on ST,

um—i—l’t:(] = Vo, 77m+1\t:o in {2.
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By Proposition 2.2 we see that 7., p'(nm) € C*(£27), thus we can apply
Theorem 1.3 with T'=1, C, = a and C* = 2b, to get

(3:5)  Numtillwzory + [mrillven

< co(lfllz.comy + ladllyz-1/mi-1r@n gz + lvollyyz-2/- (o) + leollw (2

roam))
To obtain (3.5) we have used the following estimates:
lo(zm(&,1), )L, (s;w2 (0,7))
1/r
< (5 ol + law, " ]” + el €, | o )

ST

1/r
< dlam)( § (ol + o, " fuml” + [ae]") dzmdt)
ST

where ¢(a,,) is a positive increasing function such that ¢(0) > 0 and a,, =
T(Tfl)/THumHWg,l(QT). To finish estimating the above term we note

1/r T 1/r 1/r
( S ]aI’T‘u‘Tdmdt) < (S laalr () dt) (Slsz \uyrdx>
0 S

ST
r) 1/r

||um||W31(_QT) + Hvo”Wffg/r(Q)).

T 1/r T
< (g ey sy dt) (S d;v‘ [ e dt +vo(2)
0 S 0

< HOZHWTM(ST)(T(T—l)/T

But

K =0 f(2m,t) + p'(nm)(v ~ Vu, mt1 + (A, — A)tmia
—v(Vdiv -V, divy,, )umt+1
=K1+ Ky + K3+ K.

Since f € L,.(0,T; L,(§2)) we have
1K1z, ory = M f (@m, )L, or)y < 1mlloo o) 1f (@m (&), DL, or)
< Ml Lo 0. 7w (2)) (@) | flI L,

and
T
m ) < m.t(t) dt H
17 IILN(O,T,w;(m)—Hé WO dt+ooff o

=D v ary + loollwi (2)-
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Because r > 3, by Proposition 2.1 and the Hélder inequality we have

< T/

t
|§ IVttt o

0

Hum”Wf*l(QT)v

which gives
152 2, 2ry = 10" (1) (V = Vi, )il 2, 0m)

< CT(T_l)/THum”vm?vl(QT)HnerIHV(QT)a

1Kz, (or) = [[1(Au,, — DumsillL, or)

< Npdiv(V =V, Jtumail o, ory + |p(div —dive,, )V, tmiill L, 0r)

< CT(T?l)/THumHWf’l(QT)(1 + T(Fl)/rHume%l(QT))HumHHWEJ(QT)
and the same for Ky:

1Kl oy < T Jum |z or

x (1+ T(Til)/THumHW,f’l(QT))Hum-HHWTQ.’l(QT)’
LIl 20 ory < | (div —dive, Jtmia|lyroor)
< T w21 gy 1 llv om) w1 o -
Then by (3.5), and the estimates on K and L, we obtain
X1 < T VX2 X000+ TV X M+ 3T D/"X2 X, 000 4+ M.
Since r > 3 we have
X1 < eaTYV" (X + X2) X g1 + 5T " X, M + M.
But we assume that X,, <4M (X satisfies (3.3)). Taking 7" so small that
csTY" (4M) + (4M)?) < 1/2,

we get
X1 < 2esTY" X, M + 2M

and if ¢sTV/"4M < 1 we get X,,41 < 4M. By induction we have proved
that

(3.6) Xp < 4M

for all k£ € N. Finally, we choose T so small that (1.7) is satisfied for all 7.
Let Uy, = tma1 — U and Epy = 01 — - Then from (3.4) we obtain

MUt — AU — vV div Uy, + 9’ (0m)VE, = M in Q7
B¢+ divU, = N in 7,
Unm = a(xm, t) — a(xm—1,1) on ST,
Unlt=o =0, Ep|t=0=0 on {2,

(3.7)
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where

= — En-1Um, — (0'(0m) = 2’ (Mm—1))Viim + E—1.f (T, t)
+ (f(xmvt) - f(mm—lat))nm—l
+ (' (1) = ' (Nn—1))(V = Vo, ) hm1
+ p/(nm)(v =V, ) En +p/(77m)(vum = Vit 1)
+ (A, — AUy, + pdivy,, (Va,, — Va,,_ )um
+ p(divy,, —divey,, )V, tm + v(Vy,, div,, —V div)U,,
+ vV, (divy,, —dive,, )um +v(Va, — Vi, ) dive,, | Un,

N = B, 1(div —divy, Yumi1 + fm—1(div —divy,, )Up,

+ -1 (divy,, _, —divy, Yy — Epoq div ag,.
By Theorem 1.3 we get the estimate on U,, and E,,:

(3:8)  Unllwzr gry + [[Emllver)
< C(HMHLT(QT) + HNHW}O(QT) + HOJ(Z’m, t) —Oé(ib'm_l, t)wa_l/’“’l—l/(ZT)(ST))'

We have to estimate all the terms of the r.h.s. of (3.8). First we consider
M = Z,lf’zl Mj.. By Proposition 2.2 and since E,,_1|t—¢9 = 0 we have

IMillL, o7y = [[Bm-1tm.tl L, or) < T En-illyory,
and for p/(+) € C?,
Mz, oy = (0" (1) = P’ (hn=1)) Vi 27y < T En-1llv(ar),
M3z, ory = [|Em-1f(@m, )|z, ory < T fllz, ory | Em—1llvar)-
Since f € L.(0,T; WL (£2)) we have

Ml ) = 17 ) = F 1,8, com
< T Uz oy

1Ms]|z,.(ery = [(P(1m) = P’ (Mm—1))(V = Vi, )il 0r)

< CTQ+(T_1)/THEm—1”V(QT)7
1Mol 2. comy = 10 (1) (V = Vi, ) Bl or) < TV Bl omy,
[ M|

L@y = 10" m) (Vuy, = Vi )l L, (27)
< T Uy oy
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As in the case of K3 we estimate
Mgl L, ory = [[1(Au,, — D) UnllL,0r) < CT(T*I)/THUmHWE’l(QT),
Moz, or) = + lndiva, (Vu,, = Va,_)tmllL,@r),

Mo, ory = |pu(dive,, —dive,, )V, UnllL,o7)
< TV U,y

|W3v1(QT)a

HMllHLT(QT) = [v(Vu,, divy,, =V diV)UmHLr(QT)
< CT(T_l)/THUmHWE’l(QT)7
[MizlL, (ory = vV, (dive,, —dive,, )umllL, o)

IN

T DUt [l gy,
IMasllz, o) = 1V (Vuy = Vg, 1) diva,  tml|L, or)
< TN Uyl gy
Now we estimate N = Zizl Ng:
[N1lyprogry = [Em—1(div — divy,, Jum+1llyrogr
< T Bty omy,
||N2”WT1’O(QT) = ||nm*1(div_div’U«m)UmHWTl’O(QT)
< T Ul
||N3”Wr1’O(QT) = [I7m—1(divy,,_, _divum)umHWﬁ’O(QT)

< CT(Tfl)/THUm—lHWE’l(_QT)v

[Nallyroory = [[Em—1 div tm |[y10 or)

A

< CTaHEm,1|’V(QT) + ”VEm,1 diVUmHLT(QT)-

To estimate the last term we note that divu,, € er’lﬂ(QT) and

||div ’U,mHLOO(QT) < c§1<1:[; ||div umHWA_z/T-(QT)

< Allumllwz 1 ory + luollyz—2/r o),
where ¢ does not depend on T'. Hence we get
HVEm,1 div um||Lr(QT)

t

/ (r—=1)/r
g]VEm_Lt\ dt HL,.<m> < T 1Em—1]lv (o).

< cl|divuml L (om)

Thus
INally00gry < (T + T By (ary.
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Now we estimate the r.h.s. of (3.7)3. Since a € C* we have
|a(@m,t) — O[(xmflvt)HWV?*Z/TJ*l/@T)(ST) < CT(T_l)/THUm—lHWEJ(QT)-

Let
Vi = [[Ukllwzr ory + 1 Ekllv(or)-

Summing all estimates for the r.h.s. of (3.8) we obtain

(3.9) Y < 6T Y1 + ez T D/TY, 1+ gV,

Taking T so small that cgT("~1/" < 1/2, from (3.9) we get
Y < co(T* +TT=D/M)Y,, .

If co(T™ +T=1/7) < 1 we obtain Y}, — 0 as k — oo.
Thus we have obtained (as k — o0)

up — u* in W21,
m —n* in V(QT),
p'(ne) = p'(n")  in C*(27).
We conclude that (u*,n*) is a unique solution of (1.5) and the estimates

(1.6) and (1.7) come from (3.6). We have obtained the local-in-time existence
of solutions.

4. Almost global existence. First we show the boundedness of the
Ls-norm of solutions of (1.9).

LEMMA 4.1, If ||lo||r.(2x0,) 95 sufficiently small then
4.1) v DlLae) +lloC O La2) < AlllvollLa2) + 11e0 = 2llLa(2))
where A is a positive constant.

Proof. Multiplying (1.1); by v and integrating over {2 we get

d L 9 a 2 f 12
(4.2) E}) [501} +—F¢ —ggo} dm+§2[uwvl + v|divo|“] dz = 0.

Next we examine

o) = | (5 @+ )" - @+ o)) do -

P k—1

S <%§“ — 590) dx.

Q
It is easy to see that if ||o||r . is sufficiently small then

(4.3) arllollL,e) < 1(0) < azllolL,(e)-
From (4.2) and (4.3) we obtain

— 1|\ zov da:—i—I(a)] <0,
dt Q2

which gives (4.1) for o sufficiently small.
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Proof of Theorem 1.2. We examine (1.10) in the form
nuy — pAu — vVu +yVy = P,

) i+ ndive=Q,
ulgr =0,
ult=0 = vo,  Xl|t=0 = 00,
where
P=xf—xVuy—plA—-A)u—v(Vdivu — V, div,)u +v(V, — V)x,
Q = n(div —divy)u — 7.
By Theorem 1.3 we get the following estimate for solutions of (4.4):
(4.5)  Mullwzroxp,m) + Inllviexpom) < o(T,42%,2./4)
s 1P io.m)) + 1Qllwooqangory + Iwolyga-2re g + loallw o)

From interpolation theorems we get

(4.6) XSz exior) < ellxlviexiom) + c@)llolliaexpom-
Since
X[ 2o 0.75w2(2)) < XV, 2xio11) + lloollwze)),
we estimate
4.7 IxVu L, @xor)
< T oollwp ) + T elxvi@xiorn + T el oo,
The rest is estimate by

164 = Auullz.coxiorm < Tl g7y

1V dive — Vo diva)ullz, oxomy < T ullfen o000

(4.8)
||7(VU_V)XHLT(Q><[O,T}) §CT(T?I)/T”u||wf’1(g><[o,T}) ||X||VT(Q><[0,T])’

[n(div = diva)ull o ooy < T ulfzs o 0,1
Set
o = [lullyz1 ox0,m) + XV (2x[0,1))-
Taking e sufficiently small, from (4.5)-(4.8) we get
a < Aa® + B,

where

A= CT(T?I)/T’ B = C(EvT)(HUOHWf—Q/"(_Q) + ||00||W,}(Q))7
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and if the initial data are small enough (so that 1 —4A3 > 0) then

1—-+1—-4Ap

24
Estimate (4.9) gives the boundedness from Theorem 1.2. To end the proof
of Theorem 1.2 we have to note that since we have (4.9), by Theorem 1.1
we can continue the solutions onto the whole interval [0,7]. Theorem 1.2 is
proved.

(4.9) a < < 28.
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