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On the existence for the Dirichlet problem
for the compressible linearized Navier–Stokes

system in the Lp-framework

by Piotr Bogusław Mucha and
Wojciech Zajączkowski (Warszawa)

Abstract. The existence of solutions to the Dirichlet problem for the compressible
linearized Navier–Stokes system is proved in a class such that the velocity vector belongs
to W 2,1

r with r > 3. The proof is done in two steps. First the existence for local problems
with constant coefficients is proved by applying the Fourier transform. Next by applying
the regularizer technique the existence in a bounded domain is shown.

1. Introduction. In a bounded domain Ω in R3 with boundary S we
consider the initial-boundary value problem for the compressible linearized
Navier–Stokes system:

(1.1)

Cut − µ∆u− ν∇divu+A∇η = F,

ηt +B div u = H,

u|ST = G,

u|t=0 = u0, η|t=0 = η0,

where u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) is the velocity vector, η(x, t)
the density, µ, ν constant positive viscosity coefficients and A(x, t), B(x, t),
C(x, t) positive functions from Cα(Ω × [0, T ]).

We prove the existence of solutions for system (1.1). The main result of
this paper is the following

Theorem 1. Let r > 3, S ∈ W
2−1/r
r , F ∈ Lr(ΩT ), H ∈ W 1,0

r (ΩT ),
G ∈W 2−1/r,1−1/(2r)

r (ST ), u0 ∈W 2−2/r
r (Ω), η0 ∈W 1

r (Ω), A,B,C ∈ Cα(Ω×

2000 Mathematics Subject Classification: 35Q30, 76Q10.
Key words and phrases: compressible Navier–Stokes system, Dirichlet problem, Lp-

framework.
Supported by Polish KBN Grant 2 P03A 038 16.

[241]



242 P. B. Mucha and W. Zajączkowski

[0, T ]) with α > 0 and

0 < C∗ ≤ A(x, t), B(x, t), C(x, t) ≤ C∗ <∞.
Then there exists a unique solution of problem (1.1) such that

u ∈W 2,1
r (ΩT ), η ∈W 1,0

r (ΩT ), ηt ∈W 1,0
r (ΩT )

and the following estimate holds:

(1.2) ‖u‖W 2,1
r (ΩT ) + ‖η‖W 1,0

r (ΩT ) + ‖ηt‖W 1,0
r (ΩT )

≤ C(T )[‖f‖Lr(ΩT ) + ‖H‖W 1,0
r (ΩT ) + ‖G‖

W
2−1/r,1−1/(2r)
r (ST )

+ ‖u0‖W 2−2/r
r (Ω) + ‖η0‖W 1,0

r (Ω)],

where ΩT = Ω× (0, T ), ST = S× (0, T ) and C(T ) is an increasing function
of T .

The proof of Theorem 1 is divided into two steps. In the first step the
existence for the corresponding local problems with constant coefficients is
proved by applying the Fourier transform. In the second step the regularizer
technique is used to prove the existence in a bounded domain and with
nonvanishing initial data.

In the first step after localizing system (1.1) and freezing its coefficients
we apply the Fourier transform to obtain a system of ordinary differential
equations. Solving them explicitly we estimate them directly applying the
Marcinkiewicz theorem [2, 3]. Hence we omit the difficulties with construct-
ing and estimating the corresponding potentials.

Our estimates are new, quite simple and original. We think that it is an
interesting direction.

2. Notation. In our considerations we will need the anisotropic Sobolev
spaces Wm,n

r (QT ) where m,n ∈ R+ ∪ {0}, r ≥ 1 and QT = Q× (0, T ) with
the norm

‖u‖rWm,n
r (QT ) =

T�

0

�

Q

|u(x, t)|r dx dt+
∑

0≤|m′|≤[|m|]

T�

0

�

Q

|Dm′
x u(x, t)|r dx dt(2.1)

+
∑

|m′|=[|m|]

T�

0

dt
�

Q

�

Q

|Dm′
x u(x, t)−Dm′

x u(x′, t)|r
|x− x′|s+r(|m|−[|m|]) dx dx′

+
∑

0≤|n′|≤[|n|]

T�

0

�

Q

|Dn′
t u(x, t)|r dx dt

+
�

Q

dx

T�

0

T�

0

|D[n]
t u(x, t)−D[n]

t′ (x, t′)|r
|t− t′|1+r(n−[n])

dt dt′,



Compressible Navier–Stokes system 243

where s = dimQ, [α] is the integral part of α, and Dl
x = ∂l1x1

. . . ∂lsxs where
l = (l1, . . . , ls) is a multiindex. If Q is a manifold the above norms are defined
by using a partition of unity.

In the case when QT = Rs × R we can apply the Fourier transform and

(2.2) ‖u‖Hm,nr (Rs+1) = ‖u‖Lr(Rs+1)

+ ‖F−1
t,x [|ξ|mû(ξ, ξ0)]‖Lr(Rs+1) + ‖F−1

t,x [|ξ0|nû(ξ, ξ0)]‖Lr(Rs+1)

where û(ξ, ξ0) is the Fourier transform of u(x, t),

û(ξ, ξ0) =
�
e−iξ0t

�
e−iξ·xu(x, t) dx dt ≡ Ft,x[u](ξ, ξ0)

and F−1 the inverse transform

F−1
t,x [û](x, t) = (2π)−2(s+1)

�
eiξ0t

�
eiξ·xû(ξ, ξ0) dξ dξ0

where ξ = (ξ1, . . . , ξs) and ξ · x = ξ1x1 + . . .+ ξsxs.
We also define the space V (QT ) as the closure

V (QT ) = C∞(QT )
‖·‖V (QT )

,

where

(2.3) ‖u‖V (QT ) = ‖u‖W 1,0
r (QT ) + ‖ut‖W 1,0

r (QT ).

In the proof we will use the following results.

Theorem 2.1 (Marcinkiewicz theorem; see [3]). Suppose that the func-
tion Φ : Rm → C is smooth enough and there exists M > 0 such that for
every x ∈ Rm we have

|xj1 . . . xjk |
∣∣∣∣

∂kΦ

∂xj1 . . . ∂xjk

∣∣∣∣ ≤M, 0 ≤ k ≤ m, 1 ≤ j1 < . . . < jk ≤ m.

Then the operator

Pg(x) = (2π)−m
�

Rm
dy eixyΦ(y)

�

Rm
e−iyzg(z) dz

is bounded in Lp(Rm) and

‖Pg‖Lp(Rm) ≤ Ap,mM‖g‖Lp(Rm).

Proposition 2.2 (see [5]). If r > 2 and m,n > 0 then Hm,n
r (Rs×R) ⊂

Wm,n
r (Rs × R), and

‖u‖Wm,n
r (Rs×R) ≤ c‖u‖Hm,nr (Rs×R).

Moreover if m,n ∈ N then Hm,n
r = Wm,n

r .
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Proposition 2.3 (see [1]). Let u ∈ Wm,n
r (ΩT ), m,n ∈ R+ and q ≥ r.

Suppose that

κ =
3∑

i=1

(
αi +

1
r
− 1
q

)
1
m

+
(
β +

1
r
− 1
q

)
1
n
< 1.

Then
‖Dβ

t D
α
xu‖Lq(ΩT ) ≤ ε1−κ‖u‖Wm,n

r (ΩT ) + cε−κ‖u‖Lr(ΩT )

for all ε ∈ (0, 1).

Proposition 2.4. Let r ≥ 2, u ∈W 2,1
r (ΩT ) and u|t=0 = 0. Then

‖u‖
W

1,1/2
r (ΩT ) ≤ c(T

1/r + T 1/2)‖u‖W 2,1
r (ΩT ).

Proof. First we note that

(2.4)
�

Ω

T�

0

T�

0

|u(x, t)− u(x, t′)|r
|t− t′|1+r/2

dt′ dt dx

≤ T r/2
�

Ω

T�

0

T�

0

|u(x, t)− u(x, t′)|r
|t− t′|1+r dt′ dt dx ≤ T r/2‖u‖r

W 0,1
r (ΩT ).

Next we have

‖u‖Lr(ΩT ) ≤ ‖u‖W 1,0
r (ΩT )(2.5)

≤ T 1/r‖u‖L∞(0,T ;Lr(Ω)) ≤ T 1/r‖u‖W 2,1
r (ΩT ),

where in the last inequality we use u|t=0 ≡ 0. From (2.4) and (2.5) we get
the assertion.

During our considerations we will use well known results such as the
imbedding theorems for Sobolev spaces. All constants are denoted by c.

3. Problem in the half space. We consider the linear system

(3.1)

ut − µ∆u− ν∇divu+ a∇η = f,

ηt + bdiv u = h,

u|x3=0 = g,

u|t=0 = 0, η|t=0 = 0,

u, η → 0 as x3 →∞
in the half space x3 ≥ 0. To solve (3.1) we need some results for the heat
equation.

To simplify the considerations we assume that all the given data are
smooth. The desired result will follow by a limit passage.
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We examine the following problem in the half space:

(3.2)

wt − (µ+ ν)∆w = div f,

w|x3=0 = w0,

w|t=0 = 0,

w → 0 as x3 →∞.

Lemma 3.1. Let f ∈ Lr(D4) and w0 ∈ W
1−1/r,1/2−1/(2r)
r (R3). Then

there exists a unique solution of problem (3.2) such that w ∈ W 1,0
r (D4

T )
and the following estimate holds:

(3.3) ‖∇w‖Lr(D4
T ) ≤ c(T )(‖f‖Lr(D4

T ) + ‖w0‖W 1−1/r,1/2−1/(2r)
r (R3

T )),

where D4 = Rx′ × [0,∞)x3 × [0, T ]t.

Proof. First we consider (3.2) in the homogeneous case:

(3.4)

wt − (µ+ ν)∆w = 0,

w|x3=0 = φ,

w|t=0 = 0,

w → 0 as x3 →∞,

where φ ∈W 1−1/r,1/2−1/(2r)
r (R3).

Applying the Fourier transform to (3.4)1 yields

r′
2
w − w,33 = 0,

where r′ =
√
iξ0/(µ+ ν) + |ξ′|2, and using (3.4)4 we get a solution of (3.4):

w = F−1
t,x′ [φe

−r′x3 ].

We have to show that w ∈W 1,0
r . In [4, Lemma 3.2] we have shown that

(3.5) ‖∂x′F−1
t,x′ [φe

−r′x3 ]‖Lr(D4) ≤ c‖φ‖W 1−1/r,1/2−1/(2r)
r (R3).

Here we only estimate ∂3w, which was not explicitly given in [4]. We have

(3.6) ∂3w = −F−1
t,x′ [φr

′e−r
′x3 ] = −F−1

t,x′

(
iξ0
µ+ ν

+ |ξ′|2
)
e−r

′x3

r′
φ.

Estimates for |ξ′|2(e−r
′x3/r)φ can be found in [4] or deduced from (3.5).

Here we examine only

(3.7) I = F−1
t,x′

[
ξ0
e−r

′x3

r′
φ

]
= c∂tF−1

t,x′

[
e−r

′x3

r′
φ

]
= c∂tΓ ∗ φ = cΓt ∗ φ,

where

Γ (t, x) =
1

(4π(µ+ ν)t)3/2
e−|x|

2/(4(µ+ν)t).
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We know that � dt Γt = 0, so we have

(3.8) I(t, x) =
∞�

0

dt
�
dy′ Γt(t′, y′, x3)[φ(t− t′, x′ − y′)− φ(t, x′ − y′)],

where

Γt = −3
2
· 1

(4π(µ+ ν))3/2
· 1
t5/2

e−|x|
2/(4(µ+ν)t)

+
1

(4π(µ+ ν))3/2
· |x|2

4(µ+ ν)t7/2
e−|x|

2/(4(µ+ν)t) = K1 +K2.

Then we have

(3.9) ‖I‖Lr(R3) ≤
�
dt

�
dy′ (|K1|+ |K2|)N(t) = I1 + I2,

where

(3.10) N(t) = ‖φ(x′ − y′, t′ − t)− φ(x′ − y′, t′)‖Lr(R2
y′×Rt′ ).

Now,

I1 ≤ c
( �

dt
�
dx′

1
t(5/2−m)r

e−|x|
2/(4(µ+ν)t)Nr(t)

)1/r

(3.11)

×
( �

dt
�
dx′

1
tmr∗

e−|x|
2/(4(µ+ν)t)

)1/r∗

,

where r∗ = r/(r − 1). We consider the last integral

J1 =
�
dt

�
dx′

1
tmr∗

e−|x|
2/(4(µ+ν)t) =

�
dt t1−mr

∗
e−x

2
3/(4(µ+ν)t).

Taking w = x2
3/(4(µ+ ν)t) we obtain

J1 = c
�
dw

x2
3

w2

(
x2

3

w

)1−mr∗

e−w = cx2+2−2mr∗
3

�
dww−2−1+mr∗e−w.

For finiteness of J1 we need −3 +mr∗ > −1 or

(3.12) m > 2− 2
r
.

Thus we get

(3.13) J1 = cx4−2mr∗
3 .

We have
(4− 2mr∗)

r

r∗
= 4r − 4− 2mr.

To estimate ‖I1‖Lr(D4) we have to examine
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�
dx3 I

r
1 ≤

�
dx3

�
dx′

�
dt x4r−4−2mr

3
1

t(5/2−m)r
e−|x|

2/(4(µ+ν)t)Nr(t)(3.14)

=
�
dx3

�
dx′

�
dt x4r−4−2mr

3 t(m−5/2)r+αe−|x|
2/(4(µ+ν)t) N

r(t)
tα

=
�
dx3

�
dt x4r−4−2mr

3 t(m−5/2)r+α+1e−x
2
3/(4(µ+ν)t) N

r(t)
tα

.

We consider

J2 =
�
dx3 x

4r−4−2mr
3 t(m−5/2)r+α+1e−x

2
3/(4(µ+ν)t).

Taking w = x3/(4(µ+ ν)t)1/2 we get

J2 =
�
dww4r−2mr−4t1/2+2r−mr−2+(m−5/2)r+α+1e−w

2
.

J2 is independent of t if

1/2 + 2r −mr − 2 + (m− 5/2)r + α+ 1 = 0,

which gives

(3.15) α =
1
2

+
1
2
r

and J2 is finite if 4r − 2mr − 4 > −1 or

(3.16) m < 2− 3
2r
.

From (3.12) and (3.16) we can find m. Then by (3.14) and (3.10),
�
dx3 I

r
1 ≤ c

�
dt

�
dt′

�
dx′
|φ(x′, t′ − t)− φ(x′, t′)|r

tα

and by (3.15) and (2.1) we get

(3.17) ‖I1‖Lr(D4) ≤ c‖φ‖W 0,1/2−1/(2r)
r (R3).

The case of I2 is almost the same. Thus by Theorem 2.1 we obtain ∂3w ∈
Lr(D4), which together with the results of [4] gives

(3.18) ‖∇w‖Lr(D4) ≤ c‖φ‖W 1−1/r,1/2−1/(2r)
r (R3).

To finish the proof of Lemma 3.1 we have to consider problem (3.2) in
the whole space

(3.19)
wt − (µ+ ν)∆w = div f,

w|t=0 = 0,

where supp f ⊂ D4. Applying the Fourier transform to (3.19)1 gives

r∗2w =
3∑

k=1

iξkfk,
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where r∗ =
√
iξ0/(µ+ ν) + |ξ|2. Then we get

w = F−1
t,x

[∑3
k=1 iξkfk
r∗2

]

and by Theorem 2.1 we see that

(3.20) ‖∇w‖Lr(R4) + ‖F−1|ξ0|1/2Fw‖Lr(R4) ≤ c‖f‖Lr(R4).

From (3.20) we see that

(3.21) ‖ϕTw‖H1,1/2
r (R4) ≤ c(T )‖f‖Lr(R4),

where ϕT (·) ∈ C∞0 (R) and ϕT |[0,T ] ≡ 1. Hence by Proposition 2.2 we get

(3.22) ‖w‖
W

1,1/2
r (R3×[0,T ]) ≤ c(T )‖f‖Lr(R3×[0,T ]).

To solve (3.2) we consider the solution in the form

(3.23) w = w1 + w2,

where w2 is the solution of problem (3.19) and w1 is the solution of problem
(3.4) with φ = w0 − w2|x3=0. From (3.18) and (3.22) we get (3.3).

Lemma 3.2. Let f ∈ Lr(D4) and g ∈ W 2−1/r,1−1/(2r)
r (R3). Then there

exists a unique solution of the problem

(3.24)

ut − µ∆u = f,

u|x3=0 = g,

u|t=0 = 0,

u→ 0 as x3 →∞,
such that u ∈W 2,1

r (D4
T ) and the following estimate holds:

(3.25) ‖Dtu‖Lr(D4
T ) + ‖D2

xu‖Lr(D4
T )

≤ c(T )(‖f‖Lr(D4
T ) + ‖g‖

W
2−1/r,1−1/(2r)
r (R3

T )).

Proof. The proof is an easy consequence of the proof of Lemma 3.1.

Using Lemmas 3.1 and 3.2 we show the following result.

Lemma 3.3. Let g ∈ W
2−1/r,1−1/(2r)
r (R3). Then there exists a unique

solution of the problem

(3.26)

vt − µ∆v − ν∇div v + a∇η = 0,

ηt + bdiv v = 0,

v|x3=0 = g,

v|t=0 = 0, η|t=0 = 0

v, η → 0 as x3 →∞
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such that v ∈ W 2,1
r (D4

T ) and ∇η,∇ηt ∈ Lr(D4
T ) and the following estimate

holds:

(3.27) ‖Dtv‖Lr(D4
T ) + ‖D2

xv‖Lr(D4
T ) + ‖∇η‖Lr(D4

T ) + ‖∇ηt‖Lr(D4
T )

≤ c(T )‖g‖
W

2−1/r,1−1/(2r)
r (R3

T ),

where D4
T = R2

x′ × [0,∞)x3 × [0, T ]t.

Proof. To solve (3.26) we apply the Fourier–Laplace transform

Lγ [v] = u(s, ξ′, x3) =
�
e−st

�
e−iξ

′x′u(t, x′, x3) dt dx′,

Lγ [η] = q(s, ξ′, x3) =
�
e−st

�
e−iξ

′x′η(t, x′, x3) dt dx′,

where s = γ + iξ0 with γ > 2ab/(µ+ ν).

Note. The above transformation can be treated as the Fourier trans-
form because we are interested in the results which are local in time. Thus
we will be able to use the relation

x(t) = L−1
γ Lγ [x(t)] = eγtF−1F [e−γtx(t)].

After taking the Fourier–Laplace transform, (3.26)1,2 reads

su1 − µ[−|ξ′|2u1 + u1,33]− νiξ1[iξ1u1 + iξ2u2 + u3,3] + iaξ1q = 0,

su2 − µ[−|ξ′|2u2 + u2,33]− νiξ2[iξ1u1 + iξ2u2 + u3,3] + iaξ2q = 0,

su3 − µ[−|ξ′|2u3 + u3,33]− ν[iξ1u1 + iξ2u2 + u3,3],3 + aq,3 = 0,

sq + biξ1u1 + biξ2u2 + bu3,3 = 0

and after some calculations we get (3.26) in the form

(3.28)

u1,33 = r2u1 + iξ1αq,

u2,33 = r2u2 + iξ2αq,

u3,3 = −iξ1u1 − iξ2u2 −
s

b
q,

q,3 = −βr2u3 − βiξ1u1,3 − βiξ2u2,3,

u|x3=0 = g,

u, q → 0 as x3 →∞,
where

r2 = s/µ+ |ξ′|2, arg r ∈ (−π/4, π/4),

α =
νs+ ab

µb
, β =

bµ

(µ+ ν)s+ ab
.
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Solving (3.28) we get


u1

u2

u3


 = φ1




0
−1/r
−iξ2/r2


 e−rx3 + φ2



−1/r

0
−iξ1/r2


 e−rx3(3.29)

+ φ3



−ξ1/λ3

−ξ2/λ3

−i


 e−λ3x3 ,

q = φ3
i(−r2 + λ2

3)
λ3

e−λ3x3 ,

where

λ3 =

√
s2

(µ+ ν)s+ ab
+ |ξ′|2, arg λ3 ∈ (−π/4, π/4).

To compute φi we use the boundary condition (3.28)5

(3.30)



g1

g2

g3


 =




0 −1/r −ξ1/λ3

−1/r 0 −ξ2/λ3

−iξ2/r2 −iξ1/r2 −i





φ1

φ2

φ3


 .

From (3.30) we get

(3.31)



φ1

φ2

φ3


 =




rξ1ξ2
−λ3r+|ξ′|2

r(λ3r−ξ2
1)

−λ3r+|ξ′|2
ir2ξ2

−λ3r+|ξ′|2
r(λ3r−ξ2

2)
−λ3r+|ξ′|2

rξ1ξ2
−λ3r+|ξ′|2

ir2ξ1
−λ3r+|ξ′|2

−λ3ξ1
−λ3r+|ξ′|2

−λ3ξ2
−λ3r+|ξ′|2

−iλ3r
−λ3r+|ξ′|2






g1

g2

g3




Applying (3.29)2 we get

q =
( −λ3ξ1
−λ3r + |ξ′|2 g1 +

−λ3ξ2
−λ3r + |ξ′|2 g2 +

−iλ3r

−λ3r + |ξ′|2 g3

)

× i(−r2 + λ2
3)

λ3
e−λ3x3 .

Now we assume that g1 = g2 = 0 (other cases are similar). Then

(3.32) q =
−iλ3r

−λ3r + |ξ′|2 g3
i(−r2 + λ2

3)
λ3

e−λ3x3 .

Since

(3.33)
∣∣∣∣ξ
j1
0 ξ

j2
1 ξ

j3
2 ∂

j1
ξ0
∂j2ξ1∂

j3
ξ2

(
(−r2 + λ2

3)
−λ3r + |ξ′|2 ·

r

iξ1 + ξ2

)∣∣∣∣ ≤ c,

where jk = 0 or 1, and (with r′ =
√
iξ0/(µ+ ν) + |ξ′|2)

(3.34)
∣∣∣∣
e−λ3x3

e−r′x3

∣∣∣∣ ≤ c,
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which follows from arg(λ3 − r′) ∈ (−π/2, π/2) and Re(λ3 − r′) > 0 with
γ > 2ab/(µ+ ν), and since we also have

(3.35) |sj1ξj21 ξ
j3
2 ∂

j1
s ∂

j2
ξ1
∂j3ξ2 (λ3 − r′)| ≤ c,

where jk = 0 or 1, it follows that

q =
r2 + λ2

3

−λ3r + |ξ′|2 ·
r

iξ1 + ξ2
e−x3(λ3−r′)(iξ1 + ξ2)g3e

−r′x3(3.36)

= Ξ(iξ1 + ξ2)g3e
−r′x3 .

Obviously (iξ1 + ξ2)g3 ∈ W
1−1/r,1/2−1/(2r)
r . Thus by (3.33)–(3.35) we see

that Ξ satisfies the conditions for multipliers, and by Theorem 2.1 we get

(3.37) Dx′η ∈ Lr(D4).

We have to show the regularity in x3. We have

∂x3q =
r2 + λ2

3

−λ3r + |ξ′|2 rλ3e
−λ3x3g3

=
r2 + λ2

3

−λ3r + |ξ′|2 r(λ3 − r′)e−λ3x3g3 +
r2 + λ2

3

−λ3r + |ξ′|2 rr
′e−λ3x3g3

= G1 +G2.

G1 can be estimated in the same way as for the x′ regularity. So we treat
only G2:

(3.38) G2 =
r2 + λ2

3

−λ3r + |ξ′|2 ·
rr′

s+ |ξ′|2 e
−(λ3−r′)x3(s+ |ξ′|2)e−r

′x3g3

and one can see that∣∣∣∣ξ
j1
0 ξ

j2
1 ξ

j3
2 ∂

j1
ξ0
∂j2ξ1∂

j3
ξ2

(
r2 + λ2

3

−λ3r + |ξ′|2 ·
rr′

s+ |ξ′|2 e
−(λ3−r′)x3

)∣∣∣∣ ≤ c,

where jk = 0 or 1. So by Theorem 2.1 we have G2 ∈ Lr if F−1[se−r
′x3g3]

∈ Lr; but repeating (3.7)–(3.17) for I we get

(3.39) ‖F−1[se−r
′x3g3]‖Lr = ‖Γ,tx3 ∗ g3‖Lr ≤ c‖g3‖W 2−1/r,1−1/(2r)

r
.

Thus we get q ∈W 1,0
r and η ∈W 1,0

r(loc)(D
4) and

(3.40) ‖∇η‖Lr(D4) ≤ c‖g‖W 2−1/r,1−1/(2r)
r (R3).

And from (3.29)–(3.31) we get

∇v|x3=0 ∈W 1−1/r,1/2−1/(2r)
r (R3)

and

(3.41) ‖∇v|x3=0‖W 1−1/r,1/2−1/(2r)
r (R3) ≤ c‖g‖W 2−1/r,1−1/(2r)

r (R3).
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We show this for one term:

∂3u3|x3=0 = φ1
iξ2
r

+ φ2
iξ1
r

+ φ3iλ3(3.42)

=
iξ1λ3(r − λ3)
−λ3r + |ξ′|2 g1 +

iξ2λ3(r − λ3)
−λ3r + |ξ′|2 g2 +

−r(|ξ′|2 − λ2
3)

−λ3r + |ξ′|2 g3

= (U1
,3 + U2

,3 + U3
,3)|x3=0,

where

U1 = − iξ1λ3(r − λ3)
r(−λ3r + |ξ′|2)

g1e
−rx3 ,

U2 = − iξ2λ3(r − λ3)
(−λ3r + |ξ′|2)r

g2e
−rx3 ,

U3 = −−(|ξ′|2 − λ2
3)

−λ3r + |ξ′|2 g3e
−rx3 .

We need to have U i ∈ W 2,1
r . From (3.33) we see that it is enough to have

F−1
t,x′ [gie

−rx3 ] ∈W 2,1
r , which follows from (3.5), (3.17) and (3.39); hence

(3.43) ‖U i‖W 2,1
r
≤ c‖gi‖W 2−1/r,1−1/(2r)

r

and from the trace theorem we get (3.41).
Since η ∈W 1,0

r(loc)(D
4) (see (3.40)) problem (3.26) reduces to

(3.44)

vt − µ∆v − ν∇div v = f ′,

v|x3=0 = g,

v|t=0 = 0,

v → 0 as x3 →∞,

where f ′ = −a∇η ∈ Lr(D4
T ) and g ∈W 2−2/r,1−1/(2r)

r (R3
T ).

Taking divergence of (3.44)1 and setting w = div v we get

(3.45)

wt − (µ+ ν)∆w = div f ′,

w|x3=0 = w0,

w|t=0 = 0,

w → 0 as x3 →∞,
where f ′ ∈ Lr(D4

T ) and by (3.41) we have

w0 = div v|x3=0 ∈W 1−1/r,1/2−1/(2r)
r (R3

T ).

Applying Lemma 3.1 we get div v ∈W 1,0
r (D4

T ) and

(3.46) ‖∇v‖Lr(D4
T ) ≤ c(T )(‖f‖Lr(D4

T ) + ‖w0‖W 1−1/r,1/2−1/(2r)
r (R3

T )).
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Thus we reduce problem (3.44) to

(3.47)

vt − µ∆v = f ′′,

v|x3=0 = g,

v|t=0 = 0,

v → 0 as x3 →∞,

where f ′′ = −a∇η + ν∇div v ∈ Lr(D4
T ). Now by Lemma 3.2 we get from

problem (3.47) a solution of problem (3.26) and from (3.26)2 we obtain
∇ηt ∈ Lr(D4

T ) and we show (3.27). Hence the proof of Lemma 3.3 is finished.

Next we consider (3.1) in the whole space:

(3.48)

ut − µ∆u− ν∇divu+ a∇η = f,

ηt + bdiv u = h,

u|t=0 = 0, η|t=0 = 0.

Lemma 3.4. Let f ∈ Lr(D4) and h ∈ W 1,0
r (D4). Then problem (3.48)

has a unique solution u ∈ W 2,1
r(loc)(R

4), ηtx ∈ Lr(R4) and the following
estimate holds:

(3.49) ‖Dtu‖Lr(R3×(0,T )) + ‖D2
xu‖Lr(R3×(0,T )) + ‖Dxη‖Lr(R3×(0,T ))

+ ‖DtDxη‖Lr(R3×(0,T )) ≤ c(‖f‖Lr(R3×(0,T )) + ‖h‖W 1,0
r (R3×(0,T ))).

To solve (3.48) we apply the Fourier transform

F [u] = v(s, ξ) =
�
e−st

�
e−iξxu(t, x) dx dt,

F [η] = q(s, ξ) =
�
e−st

�
e−iξxη(t, x) dx dt,

where s = iξ0. In these terms (3.48) reads

(3.50)

(s+ µ|ξ|2 + νξ2
1)v1 + νξ1ξ2v2 + νξ1ξ3v3 + iaξ1q = f1,

νξ2ξ1v1 + (s+ µ|ξ|2 + νξ2
2)v2 + νξ2ξ3v3 + iaξ2q = f2,

νξ3ξ1v1 + νξ3ξ2v2 + (s+ µ|ξ|2 + νξ2
3)v3 + iaξ3q = f3,

ibξ1v1 + ibξ2v2 + ibξ3v3 + sq = g

or

(3.51) A



v1

v2

v3

q


 =



f1

f2

f3

h


 ,
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where

A =



s+ µ|ξ|2 + νξ2

1 νξ1ξ2 νξ1ξ3 iaξ1
νξ2ξ1 s+ µ|ξ|2 + νξ2

2 νξ2ξ3 iaξ2
νξ2ξ1 νξ3ξ2 s+ µ|ξ|2 + νξ2

3 iaξ3
ibξ1 ibξ2 ibξ3 s


 .

From (3.51) we express the solution by the formula


v1

v2

v3

q


 = A−1



f1

f2

f3

h


 ,

where A−1 is defined by (here r2 = s+ µ|ξ|2)

(3.52)



r2s+(νs+ab)(ξ2
2+ξ2

3)
r2(r2s+(νs+ab)|ξ|2)

−(νs+ab)ξ1ξ2
r2(r2s+(νs+ab)|ξ|2)

−(νs+ab)ξ1ξ3
r2(r2s+(νs+ab)|ξ|2)

−iaξ1
r2s+(νs+ab)|ξ|2

−(νs+ab)ξ2ξ1
r2(r2s+(νs+ab)|ξ|2)

r2s+(νs+ab)(ξ2
1+ξ2

3)
r2(r2s+(νs+ab)|ξ|2)

−(νs+ab)ξ2ξ3
r2(r2s+(νs+ab)|ξ|2)

−iaξ2
r2s+(νs+ab)|ξ|2

−(νs+ab)ξ1ξ3
r2(r2s+(νs+ab)|ξ|2)

−(νs+ab)ξ3ξ2
r2(r2s+(νs+ab)|ξ|2)

r2s+(νs+ab)(ξ2
1+ξ2

2)
r2(r2s+(νs+ab)|ξ|2)

−iaξ3
r2s+(νs+ab)|ξ|2

−ibξ1
r2s+(νs+ab)|ξ|2

−ibξ2
r2s+(νs+ab)|ξ|2

−ibξ3
r2s+(νs+ab)|ξ|2

r2+ν|ξ|2
r2s+(νs+ab)|ξ|2




One can check that

(3.53) |r2s+ (νs+ ab)|ξ|2| ≥ c|ξ0| · |ξ|2.
Using (3.52) and (3.53) we can reduce (3.48) to a parabolic system and

easily get (3.49).

Lemmas 3.3 and 3.4 gives the result of this section.

Lemma 3.5. Let f ∈ Lr(D4), h ∈ W 1,0
r (D4), g ∈ W 2−1/r,1−1/(2r)

r (R3).
Then problem (3.1) has a unique solution u ∈ W 2,1

r(loc)(D
4), ηtx ∈ Lr(D4)

and the following estimate holds:

(3.54) ‖Dtu‖Lr(D4
T ) + ‖D2

xu‖Lr(D4
T ) + ‖Dxη‖Lr(D4

T ) + ‖DtDxη‖Lr(D4
T )

≤ c(T )(‖f‖Lr(D4
T ) + ‖h‖W 1,0

r (D4
T ) + ‖g‖

W
2−1/r,1−1/(2r)
r (R3

T )).

4. Problem in a bounded domain. To solve problem (1.1) in a
bounded domain Ω we have to define a partition of unity. We take two
collections of open sets: {ω(k)} and {Ω(k)} such that ω(k) ⊂ Ω(k) ⊂ Ω,⋃
k ω

(k) = Ω and
⋃
k Ω

(k) = Ω with k ∈ M ∪ N where if k ∈ M then
Ω(k) ∩ S = ∅ and if k ∈ N then ω(k) ∩ S 6= ∅.

We assume that
sup
k

diamΩ(k) ≤ 2λ
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for some λ small enough. Let ζ(k) be a smooth function such that 0 ≤
ζ(k) ≤ 1 and ζ(k)(x) = 1 for x ∈ ω(k), ζ(k)(x) = 0 for x ∈ Ω \ Ω(k) and
|Dν

xζ
(k)(x)| ≤ c/λ|ν| and 1 ≤∑k(ζ(k))2 ≤ N0.

Let

π(k) =
ζ(k)

∑
l(ζ

(l))2
.

It is easy to see that π(k) = 0 for x ∈ Ω \Ω(k), |Dν
xπ

(k)(x)| ≤ c/λ|ν| and
∑

k

π(k)ζ(k) = 1.

We denote by ξ(k) a fixed point of ω(k) for k ∈ M, and of ω(k)∩S for k ∈ N .
Let us consider a local coordinate system y = (y1, y2, y3) with center

at ξ(k). If k ∈ N then the boundary part S̃(k) = S ∩ Ω(k) is described
by y3 = F (y1, y2). We choose the local system such that F (0) = 0 and
∇F (0) = 0. From S ∈W 2−1/r

r we have F ∈W 2−1/r
r . Extend F to F in such

a way that
F (y1, y2, 0) = F (y1, y2) and F ∈W 2

r

as well as

F ∈ C1+α with 0 < α < 1− 3/r and |∇F | ≤ cλα.
Now we can transform Ω(k) into the halfspace by

z = Φk(y) = (Id− F )(y).

Let y = Yk(x) be a transformation to the local coordinates y which
consists of translations and rotations.

We introduce the following notation:

(4.1) L(x, t; ∂x)(u, η) =
(
L1(x, t; ∂x)(u, η)
L2(x, t; ∂x)(u, η)

)

where(
L1(x, t; ∂x)(u, η)
L2(x, t; ∂x)(u, η)

)
=
(
C(x, t)ut − µ∆u− ν∇div u+ A(x, t)∇η

ηt +B(x, t) divu

)
.

In this section we obtain the existence for the following problem:

(4.2)

L(x, t; ∂x)(u, η) = (f, h)T ,

u|ST = g,

u|t=0 = 0, η|t=0 = 0.

Define f (k)(x, t) = ζ(k)f(x, t), h(k)(x, t) = ζ(k)h(x, t) and g(k)(x, t) =
ζ(k)g(x, t).

For k ∈ M we define

(u(k), η(k))(x, t) = R(k)(f (k)(x, t), h(k)(x, t))
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where (u(k), η(k))(x, t) is a solution of the Cauchy problem

L(ξ(k), 0; ∂x)(u(k), η(k)) = (f (k), h(k))T .

For k ∈ N we define

(û(k), η̂(k))(z, t) = R(k)(f̂ (k)(z, t), ĥ(k)(z, t); ĝ(k)(z, t)),

where (û(k), η̂(k))(z, t) = Z−1(u(k), η(k))(x, t) is a solution of the problem

L(ξ̂(k), 0; ∂z)(û(k), η̂(k)) = (f̂ (k), ĥ(k))T ,

û(k)|z3=0 = ĝ(k).

Now we can define the operator R, called the regularizer , by

Rd =
( ∑

k∈M∪N
π(k)(x)u(k)(x, t),

∑

k∈M∪N
π(k)η(k)(x)η(k)(x, t)

)
,

where

d
(k)

=
{

(f (k)(x, t), h(k)(x, t))T , k ∈ M,
Zk[(f̂ (k)(z, t), ĥ(k)(z, t); ĝ(k)(z, t))T ], k ∈ N ,

and

(u(k), η(k))(x, t) =
{
R(k)(f (k)(x, t), h(k)(x, t)), k ∈M,
ZkR

(k)[(f (k)(z, t), h(k)(z, t); g(k)(z, t))], k ∈ N ,

Let

(4.3) β = λα +
T 1/r + T 1/2

λ
+ ε+ c(ε)T 1/r +

Tα

λ
,

where 0 < α < 1− 3/r and ε, c(ε) will be defined by (4.10).

Lemma 4.1. Let f ∈ Lr(ΩT ) and h ∈W 1,0(ΩT ). Then

(4.4) LR(f, h) = (f, h) + T (f, h),

where T is a bounded operator with small norm if β is small enough.

Proof. We have

LR(f, h) =
∑

k∈M∪N
(L(x, t; ∂x)(π(k)u(k), π(k)η(k))−π(k)L(x, t; ∂x)(u(k), η(k)))

+
∑

k∈M∪N
π(k)(L(x, t; ∂x)− L(ξ(k), 0; ∂x))(u(k), η(k))

+
∑

k∈M
π(k)L(ξ(k), 0; ∂x)(u(k), η(k))

+
∑

k∈N
π(k)Zk(L(ξ̂(k), 0; ∂z −∇F∂z)− L(ξ̂(k), 0; ∂z))Z−1

k (u(k), η(k))

+
∑

k∈N
π(k)ZkL(ξ̂(k), 0; ∂z)Z−1

k (u(k), η(k)) = (f, h) + T (f, h).
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To estimate the operator T we apply Propositions 2.3 and 2.4:

(4.5)
∥∥∥
∑

k

L1(x, t; ∂x)(π(k), η(k))− π(k)L1(x, t; ∂x)(u(k), η(k))
∥∥∥
Lr

≤ c
∥∥∥
∑

k

|∇π| · |u(k)|
∥∥∥
Lr

+ c
∥∥∥
∑

k

|∇π| · |∇u|
∥∥∥
Lr

+ c
∥∥∥
∑

k

|∇π| · |η|
∥∥∥
Lr

≤ c T
1/r + T 1/2

λ

∥∥∥
∑

k

|u|
∥∥∥
W 2,1
r

+ c
Tα

λ

∥∥∥
∑

k

|η|
∥∥∥
Vr
≤ cβ(‖f‖Lr + ‖h‖W 1,0

r
)

and

(4.6)
∥∥∥
∑

k

L2(x, t; ∂x)(πu, πη)− πL2(x, t; ∂x)(u, η)
∥∥∥
W 1,0
r

≤ c
∥∥∥
∑

k

|∇π| · |u|
∥∥∥
W 1,0
r

≤ c T
1/r + T 1/2

λ

∥∥∥
∑

k

|u|
∥∥∥
W 2,1
r

≤ cβ(‖f‖Lr + ‖g‖W 1,0
r

)

and

(4.7)
∥∥∥
∑

k

π(L1(x, t; ∂x)− L1(ξ, 0; ∂x))(u, η))
∥∥∥
Lr

≤ cλα
(∥∥∥
∑

k

|u|
∥∥∥
W 2,1
r

+
∥∥∥
∑

k

|η|
∥∥∥
W 1,0
r

)
≤ cβ(‖f‖Lr + ‖g‖W 1,0

r
)

and

(4.8)
∥∥∥
∑

k

π(L2(x, t; ∂x)− L2(ξ, 0; ∂x))(u, η)
∥∥∥
W 1,2
r

≤ cλα
∥∥∥
∑

k

|∇u|
∥∥∥
W 1,0
r

≤ cβ(‖f‖Lr + ‖g‖W 1,0
r

)

and

(4.9)
∥∥∥
∑

k∈N
πZk[(L1(ξ̂, 0; ∂z −∇F∂z)− L1(ξ̂, 0; ∂z))Z−1

k (u, η)]
∥∥∥
Lr

≤ c
∥∥∥
∑

k

|∇2F | · |∇u|
∥∥∥
Lr

+ c
∥∥∥
∑

k

|∇F | · |∇2u|
∥∥∥
Lr

+ c
∥∥∥
∑

k

|∇F | · |η|
∥∥∥
Lr

≤ cβ(‖f‖Lr + ‖g‖W 1,0
r

) + c
∥∥∥
∑

k

|∇2F | · |∇u|
∥∥∥
Lr
.

To estimate the last term we note that

‖∇u‖Lr(0,T ;L∞(Ω)) ≤ ε‖u‖W 2,1
r (ΩT ) + c(ε)‖u‖Lr(ΩT ),
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hence ∥∥∥
∑

k

|∇2F | · |∇u|
∥∥∥
Lr
≤ c(ε+ c(ε)T 1/r)(‖f‖Lr + ‖g‖W 1,0

r
)(4.10)

≤ cβ(‖f‖Lr + ‖g‖W 1,0
r

).

The same holds for the operator L2. Summing up (4.5)–(4.10) we get

(4.11) ‖T‖ ≤ cβ.
Lemma 4.2. Let u ∈W 2,1

r (ΩT ) and η ∈ V (Ω). Then

(4.12) RL(u, η) = (u, η) +W (u, η),

where W is a bounded operator with small norm if β is small enough.

Proof. We have

RL(u, η) =
∑

k∈N
πZkR

(k)[Z−1ζ(k)L(x, t; ∂x)(u, η)]

+
∑

k∈M
πR(k)[ζ(k)L(x, t; ∂x)(u, η)]

=
∑

k∈N
πZR[Z−1(ζL(x, t; ∂x)(u, η)− L(x, t; ∂x)(ζu, ζη))]

+
∑

k∈N
πZR[Z−1(L(x, t; ∂x)− L(ξ, 0; ∂x))(ζu, ζη)]

+
∑

k∈N
πZR[(L(ξ̂, 0; ∂z −∇F∂z)− L(ξ̂, 0; ∂z))Z−1(ζu, ζη)]

+
∑

k∈M
πR(ζL(x, t; ∂x)(u, η)− L(x, t; ∂x)(ζu, ζη))

+
∑

k∈M
πR(L(x, t; ∂x)− L(ξ, 0; ∂x))(ζu, ζη)

+
∑

k∈N
πZRL(ξ̂, 0; ∂z)Z−1(ζu, ζη) +

∑

k∈M
πRL(ξ, 0; ∂x)(ζu, ζη)

= (u, η) +W (u, η).

To estimate W it is enough to repeat the considerations for the operator
T from Lemma 4.1 to get

(4.13) ‖W‖ ≤ cβ.
From Lemmas 4.1 and 4.2 we have

Lemma 4.3. Let f ∈ Lr(ΩT ), h ∈ W 1,0
r (ΩT ), g ∈ W 2−1/r,1−1/(2r)

r (ST ).
Then there exists a unique solution of problem (4.2) such that u ∈W 2,1

r (ΩT ),
η ∈ V (ΩT ) and the following estimate holds:
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(4.14) ‖u‖W 2,1
r (ΩT ) + ‖η‖W 1,0

r (ΩT ) + ‖ηt‖W 1,0
r (ΩT )

≤ c(‖f‖Lr(ΩT ) + ‖h‖W 1,0
r (ΩT ) + ‖g‖

W
2−1/r,1−1/(2r)
r (ST )),

if T is small enough.

Proof. First we take small λ and T ≤ T∗(λ) (see (4.3)) such that β is so
small that (see (4.11) and (4.13))

(4.15) ‖T‖ < 1/2, ‖W‖ < 1/2.

Then from (4.4) and (4.12), that is,

LRd = d+ Td, RL(u, η) = (u, η) +W (u, η),

we get

LR(1 + T )−1d = d, (1 +W )−1RL(u, η) = (u, η).

By (4.15) the operators (1 + T )−1 and (1 +W )−1 are well defined, thus the
inverse to L is given by

(1 +W )−1R = R(1 + T )−1 = L−1,

which gives the solution

(u, η) = L−1d

and the estimate (4.14) comes from Lemma 3.5 and the boundedness of R.

5. Proof of Theorem 1. To show Theorem 1 we have to reduce prob-
lem (1.1) to (4.1). We define extensions u0 ∈ W 2,1

r (ΩT ) and η0 ∈ V (ΩT ) of
the initial data where

(5.1)
u0|t=0 = u0, ‖u0‖W 2,1

r (ΩT ) ≤ c‖u0‖W 2−2/r
r (Ω),

η0|t=0 = η0, ‖η0‖V (Ω) ≤ c‖η0‖W 1
r (Ω).

If u and η are written in the form

(5.2) u = u′ + u0, η = η′ + η0,

we obtain

(5.3)

Cu′t − µ∆u′ − ν∇div u′ + Aη′ = F ′,

η′t +B div u′ = H ′,

u′|ST = G′,

u′|t=0 = 0, η′|t=0 = 0,

where by (5.1) we have
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(5.4)

F ′ = F − (Cu0,t − µ∆u0 − ν∇divu0 + Aη0),

H ′ = H −B div u0,

G′ = G− u0,

‖F ′‖Lr(ΩT ) ≤ ‖F‖Lr(ΩT ) + c‖u0‖W 2−2/r
r (Ω) + c‖η0‖W 1

r (Ω),

‖H ′‖W 1,0
r (ΩT ) ≤ ‖H‖W 1,0

r (ΩT ) + c‖u0‖W 2−2/r
r (Ω),

‖G′‖
W

2−1/r,1−1/(2r)
r (ST ) ≤ ‖G‖W 2−1/r,1−1/(2r)

r (ST ) + c‖u0‖W 2−2/r
r (Ω).

By Lemma 4.3 and (5.4) we have a solution of (5.3), hence by (5.2) and
(5.1) we have a solution of (1.1) with the estimate (1.2) on the time interval
[0, T∗], where T∗ is the T from Lemma 4.3, and we see that it is fixed. To
end the proof we prolong the solution onto the intervals [T∗, 2T∗], [2T∗, 3T∗],
etc. The proof of Theorem 1 is finished.
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