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On the existence for the Dirichlet problem
for the compressible linearized Navier—Stokes
system in the L,-framework

by P1oTR BOGUSEAW MUCHA and
WOJICIECH ZAJACZKOWSKI (Warszawa)

Abstract. The existence of solutions to the Dirichlet problem for the compressible
linearized Navier—Stokes system is proved in a class such that the velocity vector belongs
to VV,«Q’1 with » > 3. The proof is done in two steps. First the existence for local problems
with constant coefficients is proved by applying the Fourier transform. Next by applying
the regularizer technique the existence in a bounded domain is shown.

1. Introduction. In a bounded domain {2 in R? with boundary S we
consider the initial-boundary value problem for the compressible linearized
Navier—Stokes system:

Cus — pAu —vVdivu + AVn = F,
+ Bdivu = H,

(1.1) n
u|5T = G,
ult—o = o,  Nl=0 =10,
where u(x,t) = (u1(z,t),us(z,t),us(x,t)) is the velocity vector, n(x,t)
the density, u, v constant positive viscosity coefficients and A(z,t), B(z,t),
C(z,t) positive functions from C*(§2 x [0,T]).

We prove the existence of solutions for system (1.1). The main result of
this paper is the following

THEOREM 1. Letr > 3, S € W2 Y™ F € L.(27), H € W°(027),
G e W2 YY) (60 g € WETHT(0), o € WHR), A, B,C € C*(2x
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[0,T]) with a > 0 and
0<Cy <A(z,t),B(z,t),C(x,t) < C* < 0.
Then there exists a unique solution of problem (1.1) such that
we WrH(Qr), neW(Qr), 0 €W (02r)

and the following estimate holds:

(1.2)  ullywzr gp + Inllwroom + Imellwroop
<Oz + 1 HIwroop + 1Glyz-1/ma-1en g,

+ IIUOllwg—z/r(Q) + lImollywroo]s

where 27 = 2% (0,T), Sp =S x(0,T) and C(T) is an increasing function
of T.

The proof of Theorem 1 is divided into two steps. In the first step the
existence for the corresponding local problems with constant coefficients is
proved by applying the Fourier transform. In the second step the regularizer
technique is used to prove the existence in a bounded domain and with
nonvanishing initial data.

In the first step after localizing system (1.1) and freezing its coefficients
we apply the Fourier transform to obtain a system of ordinary differential
equations. Solving them explicitly we estimate them directly applying the
Marcinkiewicz theorem [2, 3]. Hence we omit the difficulties with construct-
ing and estimating the corresponding potentials.

Our estimates are new, quite simple and original. We think that it is an
interesting direction.

2. Notation. In our considerations we will need the anisotropic Sobolev
spaces W™ (Qr) where m,n € Ry U{0}, > 1 and Qr = Q x (0,T) with
the norm

T T
21 Nullyrrgn = V@ O dedt+ > { D (e, b)]" da dt
0Q 0Q

0<|m/|<[|m]]

o Dr D u(a! 1)
+ Z SdtH| ( l‘)erT(m [(xu) ) da da’
0 QQ

|m/ |=[|m|]

T
+ Y (VD u@, 0| da dt
0<|n’|<[Inf) © Q

TT | ryn] (n] INE:
|D;"u(z, t) — Dy (x,t')] /
+ S dfﬂS S [t — ¢/[lFr(n—Tn]) dt dt’,

Q 00
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where s = dim @, [a] is the integral part of o, and D} = 8% ... 9% where
l=(l,...,1s)is amultiindex. If @) is a manifold the above norms are defined
by using a partition of unity.
In the case when Q1 = R® x R we can apply the Fourier transform and
(2.2) ||U”H:”’”(Rs+l) = HUHLT(RSﬂLl)
+ || Fr 2 €A €)1 retr)y + |1 Fra [l T(E, €)1 o1y

where u(§, &) is the Fourier transform of u(z,t),
U, &) = Ve e P u(a, t) o dt = Fy o [u] (€, &)
and F~! the inverse transform

Fralti)(z,t) = (2m) 26D [ o [ 7h(¢, &) dé dEo

t,x

where € = (§1,...,&) and £ - = &1 + ... + s,
We also define the space V(Qr) as the closure

V(Qr) = W”'”V(QT)’

where

(2.3) lallv@ry = lellyomy + ety o o

In the proof we will use the following results.

THEOREM 2.1 (Marcinkiewicz theorem; see [3]). Suppose that the func-
tion @ : R™ — C is smooth enough and there exists M > 0 such that for
every x € R™ we have

ok P

— | <M, 0<k<m, 1< <...<jp<m.
ale...axjk

‘le . 'xjk‘

Then the operator

Pg(z) = (2m)™™ | dye™d(y) | e ¥7g(2)d>
R™ R™
is bounded in L,(R™) and
1PgllL,@m) < ApmMllgllL, @m)-
PROPOSITION 2.2 (see [5]). If > 2 and m,n > 0 then H™"(R* xR) C
wmm(R® x R), and
HUHW!“"(RSX]R) < CHUHH?'"(RSXR)-

Moreover if m,n € N then H™" = W™".
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PROPOSITION 2.3 (see [1]). Let w € W™™(2r), m,n € Ry and g > r.

Suppose that
3
:;<ai+%—é>%+<ﬂ+%—é>%<l.
Then
ID? DS ull L, (20 < €' Fullwynn (@r) + e lullL, (r)
for all e € (0,1).
PROPOSITION 2.4. Letr > 2, u € W2 (£27) and uli=o = 0. Then

a2y < T+ TV ullyys .

Proof. First we note that

(2.4) 5§ § ,t_t,Pj/j)' dt dt d

_ \|7T
N ECUETCAIIoRE T2 ullyos
200

|t _ t/|1+r
Next we have

(2.5) [ull, 20y < lullyroco,
S Tl/T”u”Lm(O,T;LT(Q)) < Tl/THuHWg,l(QT)’
where in the last inequality we use u|i—g = 0. From (2.4) and (2.5) we get

the assertion.

During our considerations we will use well known results such as the
imbedding theorems for Sobolev spaces. All constants are denoted by c.

3. Problem in the half space. We consider the linear system
— pAuy —vVdivu + aVn = f,

n +bdivu = h,
(3.1) Ulzs—0 = ¢,

u’t:O = 07 U‘t:O = 07

u,n—0 asxz3 — o0
in the half space 3 > 0. To solve (3.1) we need some results for the heat
equation.

To simplify the considerations we assume that all the given data are
smooth. The desired result will follow by a limit passage.
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We examine the following problem in the half space:
wy — (u+v)Aw = div f,
W|zy=0 = Wo,
(3.2) l25=0 = w0
w‘t:o = 07
w— 0 asx3 — oo.

LEMMA 3.1. Let f € L.(D*) and wy € Wq}fl/r’l/Qfl/(%)(R?’). Then
there exists a unique solution of problem (3.2) such that w € W19 (D%)
and the following estimate holds:

(3-3) IVwllL, sy < (DU FlL, @) + lwollyr-r/mrr2=17em gs ),
where D* = Ry x [0,00), x [0,T];.
Proof. First we consider (3.2) in the homogeneous case:
wy — (u+v)Aw = 0,

w‘mgzo - (bJ

w|t=0 = Oa

(3.4)
w—0 asz3— 00,

where ¢ € Wﬁfl/hlp*l/(%) (R3).
Applying the Fourier transform to (3.4); yields

2
' w — w33 = 0,

where 1’ = /i€ /(1 + v) + |¢'|2, and using (3.4), we get a solution of (3.4):
w= .7-";931, [qﬁe*’"’”].

We have to show that w € WC. In [4, Lemma 3.2] we have shown that

(85) 0w F, Slee ]

L, (D4) < C||¢||W’,}71/r,1/271/(27‘)(RS) .

Here we only estimate d3w, which was not explicitly given in [4]. We have

_ —r'z — 250 e*’r’ﬂ?s
39 aw=Fllore 0 = E b (20 1) e

Estimates for |¢/|2(e”"'#3 /r)¢ can be found in [4] or deduced from (3.5).
Here we examine only

B 677’/%3 B 677‘,373
3.7) I=F,, [50 - ¢] = cOLF, { ¢] = O, % ¢ = I}y % ¢,
where
It z) = 1 oo/ (au)t)

(r(u+ )t
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We know that {dt I, = 0, so we have

3.8)  I(t,z)= | dt\dy Lty w3)p(t — ', 2" — o) — ¢(t, 2" — y)],
0
where
3 1 1 2
rn=_2._ - = ~lalf/pt)t)
‘T Un(ur ) B2
1 |z[?

: —lz*/ (At _ o1 K
TR W0 € L

Then we have

(3.9) 1), o) < §at§dy’ (K| + [Ko)N () = 1 + I,
where

(3.10) N = o' — 4/t~ 1) = 0z — 4/ )|, a2, <z
Now,

1 —|z|? v r Hr

1/r*
X (SdtSdml ZL/m%e352/(4(M+V)t)> 7

where r* = r/(r — 1). We consider the last integral

J = Sdtsdffl tW}T* e*\m\Q/(4(M+U)t) _ Sdt tlfmr* efxg/(4(li+u)t)‘

Taking w = 23/(4(u + v)t) we obtain
ZL‘2 ZL‘2 1—mr . .
Ji1 = cxdw —z <—3> e = cx§+272mr de w2TEmr e,
w? \ w

For finiteness of J; we need —3 +mr* > —1 or

2
(3.12) m>2— 2.

r
Thus we get
(3.13) Jy = cxa
We have

(4 —2mr™) L* =4r —4 —2mr.
r

To estimate ||I1]|z, p+) we have to examine
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r—4—2mr 1 —|x|? v
(3.14)  \das I} <\dus\da'\dtas "> = © o7/ (ut)) N (1)
_ de38dxlsdt x§r7472m7t(m75/2)7’+o¢67|x|2/(4(u+u)t) Ntrogt)
N™(t)

deg S dt $§T—4—2m7’t(m75/2)7‘+a+1efzg/(ﬁl(lﬂrl/)t) p

We consider
Jo = Sdl‘i’) x§r7472mrt(m—5/2)r+a+16—z§/(4(,u+u)t)‘
Taking w = x3/(4(p + v)t)"/? we get
Jo = de QU4Tf2m'r74t1/2+27‘71ﬂr72+(17”L75/2)7‘Jr0¢+1efw2 )
Jo is independent of ¢ if
1242r—mr—24+(m-5/2)r+a+1=0,

which gives

(3.15) = 1—1—1
. a=g+or
and Js is finite if 4r — 2mr —4 > —1 or

3
3.16 <2——.
( ) m 2r

From (3.12) and (3.16) we can find m. Then by (3.14) and (3.10),

0 =) =0l

Sdfnglf < chtSdt’S
and by (3.15) and (2.1) we get

(3.17) 11|z, ey < CH¢HWSJ/2—1/<2”(R3)'

The case of I3 is almost the same. Thus by Theorem 2.1 we obtain Jsw €
L, (D*), which together with the results of [4] gives

(3.18) HV'IUHLT(]D)AL) < C||(Z)HW’}—1/7‘,1/2—1/(27‘) (R3)"

To finish the proof of Lemma 3.1 we have to consider problem (3.2) in
the whole space

wy — (p+v)Aw = div f,

w|t=0 = 07

(3.19)

where supp f C D*. Applying the Fourier transform to (3.19); gives

3
2 .

r*tw = E &k [
=1
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where r* = /i€ /(1 + v) + |£]2. Then we get
3 .
w— ftizl [Zk:l égkfk}
) T‘*
and by Theorem 2.1 we see that
(3.20) IVwl L, @y + IF ol Fullz, ey < ellfllz. @e)-
From (3.20) we see that
(321) il a2 gy < Dl
where 7 (-) € C°(R) and @1, 7) = 1. Hence by Proposition 2.2 we get
(3.22) lwllyy1r2 g o 2y < TSIz, 3 x10,71)-
To solve (3.2) we consider the solution in the form
(3.23) w = w; + wa,

where wy is the solution of problem (3.19) and w; is the solution of problem
(3.4) with ¢ = wg — wa|zs—0. From (3.18) and (3.22) we get (3.3).

LEMMA 3.2. Let f € L.(D*) and g € Wt/ en) (R3). Then there
exists a unique solution of the problem

up — pAu = f,

Ulgs—0 = 9,
(3.24) [2s=0 = 9

U’t:O = Oa

u—0 as 3 — o0,
such that w € W21(D%.) and the following estimate holds:
(3.25) [ Dsullr, sy + II1D2ull L, 1)
< cA(T)(Ifllz, @) + lgllyyz-1rmi-1/en g )
Proof. The proof is an easy consequence of the proof of Lemma 3.1.

Using Lemmas 3.1 and 3.2 we show the following result.

LEMMA 3.3. Let g € W/t @) (R3). Then there exists a unique
solution of the problem

v — pAv —vVdive + aVn = 0,
n +bdive =0,

(3.26) olaao = 9,
vli=0 =0, 7Nli=0=0

v,n—0 asx3 — 0
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such that v € W2Y(D3) and Vi,V € L.(D}) and the following estimate
holds:

(3:27)  |IDwllp, s + |1 D3]

L. T IVallz, @) + IVaellz, o1y
< e(Dlgllyyz-1/r1-17¢0) g )
where Dk = R2, x [0,00), X [0,T];.
Proof. To solve (3.26) we apply the Fourier-Laplace transform
L[v] =u(s, & x3) = Se_StSe_Zf/‘”’u(t, 2’ x3)dtdx’,
Ly =q(s, & x3) = Se‘“&e‘ié/z/n(t, 2 x3)dtdx’,
where s = v + i€y with v > 2ab/(u + v).

NoTE. The above transformation can be treated as the Fourier trans-
form because we are interested in the results which are local in time. Thus
we will be able to use the relation

x(t) = ﬁ;lﬁv [x(t)] = e”t}"_lf[e_w:c(t)].
After taking the Fourier-Laplace transform, (3.26); o reads
suy — p[—|& Puy + uy 33) — vi€[i€1ur + i€aus + uz 3] +iak1q = 0,
sug — pu[—|&'[Pug + ua 33) — vi€ali€iur + i€aus + uz 3] + iakaq = 0,

sug — p[—|¢'|Pus + uz 33] — v[i&1ur + i€puz + uz 3] 3 + ags = 0,
sq + bi&iuy + biaus + buz 3 =0

and after some calculations we get (3.26) in the form

2 .
ui,33 = 17U + 1049,

2 .
Uz,33 = U2 + i§201q,

. . S
(3.28) us 3z = —i&1u1 — t&ous — 5‘17
q3 = —frius — Biiuy s — Bilaus s,
Ulzs=0 = 9,
u,q — 0 as x3 — o0,
where

r?=s/p+l€fP,  argr e (~m/4,7/4),
vs+ ab bu
, pf=-—"7F-—.
b (u+v)s+ab

o =
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Solving (3.28) we get

Uy 0 —1/r
(3.29) ug | =1 —1/r | e " + o 0 e "
us —’Lfg/T’z —’Lfl/T’z
—&1/ A

+ g3 | —&/Ns | e,
—1

i(_r2 + )\g) —/\313

q=¢3 )\—3 € ,
where
2
s
A3 = \/m +1¢'2, argAs € (—n/4,7/4).
To compute ¢; we use the boundary condition (3.28)5
g1 0 =1/r =& /X3 ¢1
(330) g2 = —l/T 0 —52/)\3 ¢2
g3 —i&/r?  —i&y/r? —1 ®3
From (3.30) we get
r&1€2 r(Asr—£3) ir?es
o1 “XarHEP —XerdEP —XarH[ETP g1
— | rosr—ed ré¢ ir’g
(3'31) 2 —A3i"+\§/2|2 —)\31"14-\25/|2 —)\3T+|1§’\2 92
¢3 —A3é1 —A3é> —iAaT gs

=Asr+[E2 =Asr+[E]2 —Asr+[E]?
Applying (3.29), we get

= ( —A3é1 o+ —A3é2 o+ —iA3T g
—)\37’ + |€/‘2 ! —)\37' + |€/‘2 2 —)\37‘ + |€/’2 5
02 2
« w e~ AsT3
A3
Now we assume that g; = go = 0 (other cases are similar). Then
—idgr i(=r*+23)
3.32 = e 3T,
Since
2 2
3.33 J1 32 73 51 §I2 5I3 ( r 3/ . : ) <e,
( ) 0 &% &0 &1 Sz(_)\3r+’£/|2 &+ & =
where ji, = 0 or 1, and (with r’ = \/i&/(u + v) + |£'|?)
e—)\gl‘g
(3.34) — | <gq
e—’l" xrs3
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which follows from arg(As — ') € (—n/2,7/2) and Re(A3 — ') > 0 with
v > 2ab/(u + v), and since we also have

(3.35) |57 7301 0108 (Ns — 1) < e,
where jr = 0 or 1, it follows that

2 )\2 , ,
(3.36) s L ey 4 £5)gge """

1= D+ 167 6+ 6
= E(Z§1 +§2)g36_’”/x3.

Obviously (i&1 + &2)g3 € W Yr2EED  phgs by (3.33)—(3.35) we see
that = satisfies the conditions for multipliers, and by Theorem 2.1 we get

(3.37) Dym € L.(D*).
We have to show the regularity in x3. We have
r2 4+ A2
a — 3 )\ —)\3:E3
a:3q —)\37’+|§,|2r 36 g3
r? 4+ )3 r? + A3
= 3 p(Ag—r)e Mgy 4+ 3 ppleT e
Derjep e T e e ”
=Gy + Gs.

G1 can be estimated in the same way as for the z’ regularity. So we treat
only Ga:

B r2 +)\§ rr!
R s+ e

and one can see that

2 2 /
e ol o2or S em s ) < ¢
0 51 52 €0 761 &2 <—A37’+ ’61‘2 s+ ’61‘2 —

where ji = 0 or 1. So by Theorem 2.1 we have Gy € L, if F~![se™"'%3 gq]
€ L,; but repeating (3.7)—(3.17) for I we get

(3:39) || F Mse " "ogy]]

(338) Go 6_()\3—7”/)903(8 + ‘§,|2)6_T/x3g3

L, = [ Dtas * g3llz, < cllgsllype-1/ra-1r@n.
Thus we get ¢ € W0 and n € W:(’I%C) (D*) and
(340) HV?]HLT(DAL) < C||g||WE—I/'r-,l—l/(Zr)(Rg).
And from (3.29)—(3.31) we get
V'U|q;3:0 c erfl/r,l/Qfl/(Qr) (RS)
and

(3.41) va|x3:0||W}—l/r',1/2—1/(2r)(R3) < CHgHW3_1/1"1_1/(27‘)(]R3)'
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‘We show this for one term:
(3.42) 83U3’3;3:o =@ % + @9 % + P3iAg
_i&A3(r — A3) i§2A3(1 — A\3) —r(|€']* = A3)
= 2 91 73 92+ 12 93
=31+ €| —Asr + €] —Asr + €]

= (U}S + U,23 + U,%)|x3:07

where

i1 A3(r — As) _

Ul — _ r:v3’
r(—ar+[e) 7
2'52)\3(7’ — Ag) _

U2 — rT3
(Fhor +1E P

. _(’£,|2 — )‘%) gge—rmg

a7 + |€]2 :
We need to have U € W21, From (3.33) we see that it is enough to have
F; Llgie™™*2] € W', which follows from (3.5), (3.17) and (3.39); hence

s L

U? =

(3.43) 10 21 < ellgillyyz-1/ma-1/ce0
and from the trace theorem we get (3.41).
Since n € er(’l(:)c) (D*) (see (3.40)) problem (3.26) reduces to
vy — pAv — vVdive = f/,

U|w3:0 =g,

(3.4
) U’t:O = 07

v—0 asxz3— o0,
where f' = —aVn € L,(D}) and g € W2 2/mi=1/an) (R3.).
Taking divergence of (3.44); and setting w = divv we get

wy — (p+v)Aw = div f,
W|z3—0 = Wo,
(3.45) l25=0 = o

w’t:O = Oa

w— 0 as T3 — 00,
where f' € L,.(D%) and by (3.41) we have
wo = div v|g,—o € WEH/m/2-1 (RS,
Applying Lemma 3.1 we get dive € W°(D3) and
(3.46) IVollz, sy < (DS, i) + lwollyya-rrmrrz=1reo gs)-
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Thus we reduce problem (3.44) to

-
Vlz3=0 = 9,
U’t:O:()v

v—0 asxz— o0,

where " = —aVn + vVdive € L,.(D}). Now by Lemma 3.2 we get from
problem (3.47) a solution of problem (3.26) and from (3.26)2 we obtain
Vn, € L.(D}) and we show (3.27). Hence the proof of Lemma 3.3 is finished.

Next we consider (3.1) in the whole space:

uy — pAu — vVdivu + aVn = f,
(3.48) ne + bdivu = h,

uly=0 =0,  nf=0 = 0.

LEMMA 3.4. Let f € L.(D*) and h € WH°(D*). Then problem (3.48)
has a unique solution u € Wf(’lloc) (RY), ntx € Lo(R*) and the following
estimate holds:

(3.49) | DsullL, ®ex(0,1)) + 1D2ull L, &3 x (0,7)) + 1 Danlll L. (2 x (0,1
+ 1D Doz, s x0,1)) < eIl fllL, ®sx 0,1y + 1Rllwiogsxo.1))-

To solve (3.48) we apply the Fourier transform
Flul =v(s,§) = Se_St S e~ %%y (t, ) dx dt,
Flnl = q(s,&) = e~ {e“"n(t, z) dx dt,
where s = i&y. In these terms (3.48) reads

(s + plé|” + v vy + v€1&ue + véi€sus +iakiq = fu,
v&&ivt + (s + plé|® + vE3)va + v€asvs + iaaq = fa,

(3.50) , ,
v€3&1v1 + v€3&avs + (s + pl€]” + v€3)vs + iasq = fa,
1b€1v1 + ib&ovg + 1b€3v3 +sq = ¢
or
U1 f1
3.51 Al = |2,
(3:51) v3 f3
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where
s+ plél? + vé v§182 v€1€3 1a&y
A 23731 s+ plé]* +vEl v€2€3 iay
vé2€1 v€3&2 s+ plEl? +vE3 iaks
’Lbfl 2b§2 zb£3 S
From (3.51) we express the solution by the formula
U1 h
V2 1| f2
= A ,
U3 I3
q h
where A~ is defined by (here 72 = s + u|¢]?)
(3.52)
M r2s+(vstab)(£34€2) —(vs+ab)€i€a —(vs+ab)€i1&s —iay ]
r2(r2s+(vs+ab)[€]?)  r2(r2s+(vs+adb)[€]?)  r2(r2s+(vs+ab)[€]?)  rZs+(vs+ab)|€|?
—(vstab)&a€y r’s+(vs+ab)(£54£3) —(vstab)éaks —iao
r2(r2s+(vs+ab)[€]2)  r2(r2s+(vs+ab)[€]2) r2(r2s+(vs+ab)|€]?) r2s+(vs+tab)|€]?
—(vst+ab)éiés —(vstab)ésés r?s+(vs+ab) (£3+£3) —iags
r2(r2s+(vs+ab)[€]?2)  r2(r2s+(vs+ab)[£]?2) r2(rZs+(vs+ab)|€]?) rZs+(vs+ab)|€]?
—ibEy —ib&y —ibEs rtul¢)?
r2s+(vs+ab)|€|? r2s+(vs+ab)|€|? r2s+(vs+ab)|€|? r2s+(vs+ab)|E[?
One can check that
(3.53) r%s + (vs + ab)|€[*| > c|éo] - €)%

Using (3.52) and (3.53) we can reduce (3.48) to a parabolic system and
easily get (3.49).

Lemmas 3.3 and 3.4 gives the result of this section.

LEMMA 3.5. Let f € Ly(D%), h € WhO(D#), g € W2~ V™17 (Rs),
Then problem (3.1) has a unique solution u € W (DY), . € Lp(DY)

r(loc)
and the following estimate holds:

(3.54) [ Drul

Loty + I1D3ull sy + 1Denll L, sy + 1DeDanll 2. o4,

< AT)IF N L, @ty + 1hllwromsy +l9llyz-rrmi-ven g ).

4. Problem in a bounded domain. To solve problem (1.1) in a
bounded domain {2 we have to define a partition of unity. We take two
collections of open sets: {w®} and {2®} such that w® c 2® c
Upgw® = 2 and |, 2*) = 2 with k € M UN where if & € M then
Q*) NS =0andif k€N then w® NS £ 0.

We assume that

sup diam Q) < 2\
k
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for some A small enough. Let ¢(*) be a smooth function such that 0 <
¢k < 1and ¢(®(z) =1 for 2 € w®, (F(z) =0 for z € 2\ 2K and
D5¢® ()] < /A and 1< 32, (¢W)? < No.

Let
C(k)

0N S

2 (C0)*

It is easy to see that 7(¥) = 0 for z € 2\ N®) |D¥7x*)(z)] < ¢/A| and
S A Z 1,
k

We denote by ¢%) a fixed point of w®) for k € M, and of w¥) NS for k € N.
Let us consider a local coordinate system y = (y1,y2,y3) with center

at £ If k € N then the boundary part S*) = SN () is described
by ys = F(y1,y2). We choose the local system such that F(0) = 0 and

VF(0) = 0. From S € Wffl/T we have F € W,?*l/r. Extend F to F in such
a way that

F(y1,42,0) = F(y1,92) and Fe W}
as well as
FecC'™ with 0<a<1-3/r and |VF|<c\™
Now we can transform 2(%) into the halfspace by
2= Pr(y) = (Id - F)(y).
Let y = Yi(x) be a transformation to the local coordinates y which

consists of translations and rotations.
We introduce the following notation:

A ok
where

Li(x,t;0.)(u,m)\ _ [ Clx,t)uy — pAu—vVdivu + A(x,t)Vn
Lo(z,t;0:)(u,m) ) N + B(x,t) divu '

In this section we obtain the existence for the following problem:
L($7 t? 81;)(”&, 77) = (f7 h)Tv
(4.2) ulsy = g,
uli=0 =0, 7n)=0 = 0.
Define f8)(z,8) = (0 f(a,t), hO(z,t) = (Ph(e,t) and g¥) (1) =

(Pg(,t).
For k € M we define

(@™, ") (@, ) = RO (f 0 (), ™ (2, 1))
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where (u®), n(®))(x,t) is a solution of the Cauchy problem
L(EW,0;0,) (u®,n®) = (0, n0)T.
For k € N we define
@",7®) (=, 1) = R® (FD (2,0, %) (2,1): 5" (=, 1)),
where (a®), (7)) (z,t) = Z71(u®, n*))(z, ) is a solution of the problem
L(EW,0:0:) (@™, 7®) = (F©, 197,
a(k)‘%:o =g,

Now we can define the operator R, called the regularizer, by

RE:( Y @B, 3w ®@y® (k)(x,t)>,

ke MUN ke MUN
where
0 _ { (f®) (@, 8), AP (2, 1)), keM,
Zil(f®) (2, 1), P (2,1); 3 (2,1))T], k€N,
and
(u(k) n(k))(m t) — R(k) (f(k) (:Evt)7 h(k) (ZL’, t))7 ke M>
’ ’ Zy RB[(f®) (z,8), B (2, 1); W) (2,1))], k€N,
Let
Tl/r T1/2 T
(4.3) =+ I e ()T

where 0 < a < 1—3/r and ¢, ¢(¢) will be defined by (4.10).
LEMMA 4.1. Let f € L.(27) and h € W1°(027). Then

(4.4) LR(f.h) = (f,h) + T(f.h),

where T is a bounded operator with small norm if 8 is small enough.
Proof. We have

LR(f,h) = > (L(x,t;0:) (7 W u®, 7Wn®)) 7 W L (21 0,) (™, n*)))
ke MUN

£ 3 At 00) — LE,050,) @M, ®)

ke MUN

+ 30 A LE®,0;0,) (™, n®)
keMm

+ > 7 Wz (LEW, 0,0, — VFO.) — L(E™,0;0.)) 2 ' (u®), n*)
keN

+ > 7MW ZLEW,0;0.) 2 (@ g ®) = (£,0) +T(f, ).
keN
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To estimate the operator T" we apply Propositions 2.3 and 2.4:

) S nte 00 = L 0.0 )

L,

<CHZ\W \u(k)]H +CHZ’W\ |wa +CHZ\W ynyH
<o T S0+

and

(46) || 32 Lot t00) (mu mn) = wLa(a B0 ()|
k

TY/7 +T1/2
SCHZ‘VM' IU‘HW}'O s¢ A HZ|U|HW
k k

< cfB(

y S BUF N, + [Rlleo)

L. +1gllwro)

and

@D [ e 0. — Lu 00 wm)|
k

r

<ox (| Ztul],.. +H2|n|H 10) S Bz, + lglhyzo)
k
and

(48) || D2 Lol t:02) — La(&,0:00))(w, n)(‘wl )

< x| 219l < 0. + gl

and

19) || Y 72U € 0:0. — VF.) ~ 4(€0:0.) 7 (]|
keN "

< zk:|v2ﬁ|- . +cHXk:|VFI-

< B(Ille, + lgllwzo) +cHZ|v2F| V|, -

VF|-|V?
LﬁCHZ' - |

To estimate the last term we note that

IVullL, 01002 < ellullwz o) +e@llullL, @),
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hence

(4.10) H Z]V2F|

c(e + e TV ) f Nz, + llgllwzo)

< BNz, + llgllwro)-
The same holds for the operator Ly. Summing up (4.5)—(4.10) we get

(4.11) 1T < ep.
LEMMA 4.2. Let u € W21 (027) and n € V(£2). Then
(4.12) RL(u,n) = (u,n) + W (u,n),

where W is a bounded operator with small norm if 8 is small enough.

Proof. We have
RL(u,n) = Y 7 ZkR® (27 ¢ L(x, t;0,) (u, )]

keN

+ > aRMCW L(x, t;0:) (u, n)]
kemM

= > 7ZR[Z7N(CL(w,;05) (u,m) — Lz, t;05) (Cu, Cn))]

keN

+ > ZRZH(L(x,t:0x) — L(€, 0: 0)) (Cu, ¢)]
keN

+ 3 mZRI(L(E,0;0. — VFO,) — L(€,0;0.)) 2~ (Cu, ¢n)]
keN

+ > wTR(CL(x, b 0x)(u, ) — L, t; 0:)(Cu, ()
keM
keM

+ Y mZRL(E,0;0:)Z (Cu, ¢n) + Y, mRL(E,050:)(Cu. ()
keN keM

= (u7 77) + W(uv 77)'

To estimate W it is enough to repeat the considerations for the operator
T from Lemma 4.1 to get

(4.13) W] < ¢p.
From Lemmas 4.1 and 4.2 we have

LEMMA 4.3. Let f € L.(27), h € WH0(027), g € W1/ (g,
Then there exists a unique solution of problem (4.2) such thatu € W21(Qr),
n € V(2r) and the following estimate holds:
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(4.14)  ullwzrop + Inllwroom + Imellwroopn
< clfllz ey + 1Rllwroan + 19llyz-1ma-a@n g 5);

if T is small enough.

Proof. First we take small A and T' < T} (\) (see (4.3)) such that [ is so
small that (see (4.11) and (4.13))

(4.15) 1T <1/2, W] <1/2.
Then from (4.4) and (4.12), that is,
LRd=d+Td, RL(u,n)=(u,n)+W(u,n),
we get
LRA+T) 'd=d, (1+W) 'RL(u,n) = (u,n).

By (4.15) the operators (1+7)~! and (1+ W)~! are well defined, thus the
inverse to L is given by

1+W)'R=RA+T)'=L""1
which gives the solution
(u,n) = L™"d

and the estimate (4.14) comes from Lemma 3.5 and the boundedness of R.

5. Proof of Theorem 1. To show Theorem 1 we have to reduce prob-
lem (1.1) to (4.1). We define extensions g € W21(£27) and 7, € V(27) of
the initial data where
(5.1) U |t=0 = o, HUOHWEJ(QT) < C"uo“wf—2/r(9)v

Tolt=0 = 10, 1Tollvay < clmollw: -
If v and 7 are written in the form
(5.2) w=u'+7o, n=1n+T7,
we obtain

Cuy — pAu' —vVdivu' + Ap' = F/,
(5.3) n, + Bdivu' = H’,
: ul’ST — G/,

U'li=0 =0, n'li=0 =0,

where by (5.1) we have
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F'=F — (Cups — pAug — vV divaug + A7),
H' = H — Bdivuy,
G' = G —uy,

G4 NI, 20y < 1Pl @) + elluollya-2/r g + ellmollw ),

||H,||Wr1’0(“QT) < ||H||W7}’O(QT) + CHUOHWT272/7~(Q)7
||G/||Wffl/rvlfl/@r)(ST) < ||GHWT271/7~7171/(27~)(ST) + CHUOHW7?72/T(Q).

By Lemma 4.3 and (5.4) we have a solution of (5.3), hence by (5.2) and
(5.1) we have a solution of (1.1) with the estimate (1.2) on the time interval
[0, Ty], where T, is the T' from Lemma 4.3, and we see that it is fixed. To
end the proof we prolong the solution onto the intervals [T, 27%], [2T%, 3T%],
etc. The proof of Theorem 1 is finished.
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