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Functions uniformly quiet at zero and existence results
for one-parameter boundary value problems

by G. L. Karakostas and P. Ch. Tsamatos (Ioannina)

Abstract. We introduce the notion of uniform quietness at zero for a real-valued
function and we study one-parameter nonlocal boundary value problems for second order
differential equations involving such functions. By using the Krasnosel’skĭı fixed point
theorem in a cone, we give values of the parameter for which the problems have at least
two positive solutions.

1. Introduction. Recently the authors [17] introduced the notion of a
real-valued function “quiet at zero”, as follows:

A continuous function f : [0,∞) =: R+ → R, with f(x) > 0 when x > 0,
is said to be quiet at zero if for each T > 0 there is a µ > 0 such that for all
τ ∈ [0, T ],

(1.1) sup{f(x) : x ∈ [0, τ ]} ≤ µ inf{f(x) : x ∈ [τ, T ]}.
For instance, if f is increasing in a right neighborhood of 0, or f(0) > 0,
then it is quiet at zero. Also it is easy to see that in (1.1) the constant µ is
always greater than or equal to 1.

In this paper we extend the above notion by defining functions “uni-
formly quiet at zero”. This is the case when the bound µ does not depend
on T :

Definition. A continuous function f : R+ → R, with f(x) > 0 when
x > 0, will be said to be uniformly quiet at zero if there is a µ ≥ 1 such that
inequality (1.1) is satisfied for all T > 0 and all τ ∈ (0, T ).

It is clear that if f is monotone and limx→∞ f(x) > 0, then it is uniformly
quiet at zero.

Now consider the following boundary value problem:

(p(t)x′)′ + λq(t)f(x) = 0, a.e. t ∈ [0, 1],(1.2|λ)
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x(0) = 0,(1.3)

x′(1) =
1�
η

x′(s) dg(s),(1.4)

with f : R+ → R being uniformly quiet at zero. The real-valued functions
p, q, g are defined at least on the interval [0, 1], η ∈ (0, 1) and λ is a positive
parameter. The integral in (1.4) is meant in the sense of Riemann–Stieltjes.
Also we assume that p(1) = 1, as well as � 1

η
(1/p(s)) dg(s) < 1 and so

(1.5) α :=
(

1−
1�
η

1
p(s)

dg(s)
)−1

> 0.

This problem is a nonlocal boundary value problem which includes as
special cases multipoint boundary value problems considered by several au-
thors during the last decade. More details about this problem can be found
e.g. in the papers [16–19] and in their references.

Our purpose here is to show that under the assumption that f is uni-
formly quiet at zero and satisfies some rather mild conditions, there are
at least two positive solutions for the above boundary value problem. The
most appropriate tool, which is used to guarantee both the existence of so-
lutions as well as their positivity, is the following well known theorem due
to Krasnosel’skĭı [20].

Theorem 1.1. Let B be a Banach space and let K be a cone in B. As-
sume that Ω1, Ω2 are open subsets of B, with 0 ∈ Ω1 ⊂ clΩ1 ⊂ Ω2, and
let

A : K ∩ (clΩ2 \Ω1)→ K

be a completely continuous operator such that either

‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2,

or
‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (clΩ2 \Ω1).

In this theorem ∂Ω denotes the boundary and clΩ the closure of the
set Ω. We follow the technique in [16, 17] and apply this theorem twice, so
that our conclusion follows. The results here are motivated mainly by the
papers [15–17].

The paper is organized as follows. In Section 2 we elaborate a little on
the notion of a function uniformly quiet at zero. Some examples are also
given to illustrate this concept. In Section 3, by using the notion of uniform
quietness at zero, we find neighborhoods of λ in which the boundary value
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problem (1.2|λ), (1.3), (1.4) has at least two positive solutions, under various
conditions.

2. Some facts about quietness at zero. If f is uniformly quiet
at zero, then it is quiet at zero, but not conversely. We present two ex-
amples.

(a) Let f a real-valued continuous function on [0,∞), with f(x) > 0,
defined as follows: Its graph passes through the points (1/(2n), 1/

√
2n) and

(1/(2n+ 1), 1/(2n+ 1)) of the plane, for all n ≥ 1, and it is linear between
these points. If for T = 1 there is a µ ≥ 1 such that condition (1.1) holds,
then, for all large n, we must have

1√
2n
≤ µ 1

2n− 1
,

which is a contradiction. This means that f is not quiet at zero.

(b) Consider a real function f defined at least on [0,∞), with f(x) > 0
when x > 0, f(0) = 0, f(2k+ 1) = 2k+ 1 for k = 0, 1, 2, . . . , f(2k) = 4k2 for
k = 1, 2, . . . and linear in-between. It is increasing on [0, 2], thus it is quiet
at zero. If f were uniformly quiet at zero, then there would exist a µ ≥ 1
satisfying (1.1). Hence, for each k large enough and T > 2k,

sup{f(x) : x ∈ [0, 2k]} ≤ µ inf{f(x) : x ∈ [2k, T ]},
and so 4k2 ≤ µ(2k + 1), a contradiction. Thus f is not uniformly quiet at
zero.

A function uniformly quiet at zero has the following characteristic:

Proposition 2.1. Let f be a function uniformly quiet at zero and let
q : [0, 1]→ R+ be a continuous function not identically zero. Then, for each
r ∈ (0, 1) and all increasing functions u : [0, 1]→ R+,

(2.1)
1�
0

q(s)f(u(s)) ds ≤ ξr
1�
r

q(s)f(u(s)) ds,

where ξr is the constant defined by

ξr :=
� r0 q(s) ds
� 1
r
q(s) ds

µ+ 1.

Proof. Let µ ≥ 1 be a constant satisfying (1.1) for all T > 0 and τ ∈
(0, T ). Let also r ∈ (0, 1) be fixed and consider any increasing function
u : [0, 1] → R+. We set u(1) =: T and u(r) =: τ . Since u is increasing, we
have τ ≤ T . Moreover we observe that
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1�
0

q(s)f(u(s)) ds =
r�
0

q(s)f(u(s))ds+
1�
r

q(s)f(u(s)) ds

≤ sup
w∈[0,τ ]

f(w)
r�
0

q(s) ds+
1�
r

q(s)f(u(s)) ds

≤ � r0 q(s) ds
� 1
r
q(s) ds

·
supw∈[0,τ ] f(w)

infw∈[τ,T ] f(w)

1�
r

q(s)f(u(s)) ds

+
1�
r

q(s)f(u(s)) ds

≤
( � r0 q(s) ds

� 1
r
q(s) ds

µ+ 1
) 1�
r

q(s)f(u(s)) ds = ξr

1�
r

q(s)f(u(s)) ds.

If f is increasing, then inequality (2.1) proved in Proposition 2.1 holds
with µ = 1 and ξr = � 1

0 q(s) ds/ � 1
r
q(s) ds. And this constant ξr is the best

possible: set u(t) = constant.

3. Existence of two solutions of the boundary value problem
(1.2|λ), (1.3), (1.4). In this section we investigate the existence of positive
solutions of the boundary value problem (1.2|λ), (1.3), (1.4). In most studies
of the existence of positive solutions for such second order boundary value
problems, a common assumption is the existence of the limit of the frac-
tion f(u)/u as u approaches 0 and ∞ (see [1–15]). Here, we weaken these
assumptions and use the lower and upper limits at these points. Our pur-
pose is to define an interval of the real line for the parameter λ so that the
corresponding boundary value problem (1.2|λ), (1.3), (1.4) has at least two
positive solutions.

Denote by I the interval [0, 1], and by C(I) the space of all continuous
functions x : I → R. Let C1

0 (I) be the space of all functions x : I → R
whose first derivative x′ is absolutely continuous on I and x(0) = 0. This is
a Banach space with the norm ‖ ‖ defined by

‖x‖ := sup{|x′(t)| : t ∈ I}.
Also, we denote by L+

1 (I) the space of all functions x : I → R+ which are
Lebesgue integrable on I, endowed with its usual norm ‖ ‖1.

By a solution of the problem (1.2|λ), (1.3), (1.4) we mean a function
x ∈ C1

0 (I) satisfying (1.4) and (1.2|λ) for almost all t ∈ I.
As indicated in [16, 17], the problem (1.2|λ), (1.3), (1.4) is equivalent

to the operator equation x = Aλx, x ∈ C1
0 (I), where Aλ is the operator
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defined by

(3.1) Aλx(t) := λαP (t)
1�
η

Φ(f(x))(s) dg(s) + λ

t�
0

Φ(f(x))(s) ds,

where we have set

P (t) :=
t�
0

1
p(s)

ds, t ∈ I,

Φ(y)(t) :=
1
p(t)

1�
t

q(s)y(s) ds, t ∈ I, y ∈ C(I).

Notice that α is the number defined in (1.5). We also set

D :=
1�
η

Φ(P )(s) dg(s) and H :=
1�
η

Φ(1)(s) dg(s).

It is clear that Aλ is a completely continuous operator. Now we present the
list of assumptions which we use in the following.

(H1) f : R→ R is a continuous function, with f(x) ≥ 0 when x > 0, and
uniformly quiet at zero.

(H2) The functions p, q are continuous on I and such that p > 0, q ≥ 0
and sup{q(s) : η ≤ s ≤ 1} > 0. We assume that p is nondecreasing.

(H3) The function g : I → R is increasing and g(η) = 0 < g(η+) =: b0.

If µ ≥ 1 and ξη are the constants introduced by Proposition 2.1 (due to
assumption (H1)), we set

Λ := ξη sup
s∈I

p(s), b := min
{
b0,

ΛH

α|Dηp(0)−H|

}
,

σ :=
αbDp(0)
αb+ Λ

, θ :=
p(0)

αH + ‖q‖1
.

We observe that ση ≤ H (see also [17]) and therefore the function

fi(w) := inf
{
f(z) :

ησ

H
w ≤ z ≤ w

}
, w > 0,

is well defined. We also consider the function

fs(w) := sup{f(x) : x ∈ [0, w]}, w > 0.

Next define the set

K :=
{
x ∈ C1

0 (I) : x ≥ 0, x′ ≥ 0, x is concave and
1�
η

Φ(x)(s) dg(s) ≥ σ‖x‖
}
,

which, obviously, is a cone in C1
0 (I).
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Lemma 3.1. If x is a continuous, increasing and nonnegative function
on I, then

1�
η

Φ(f(x))(s) dg(s) ≥ b0
Λ

1�
0

q(s)f(x(s)) ds.

Proof. From assumption (H3) we have

g(s) ≥ b0, s ∈ (η, 1].

By using this inequality and Proposition 2.1 we get
1�
0

q(s)f(x(s)) ds ≤ ξη
1�
η

q(s)f(x(s)) ds ≤ ξη
b0

1�
η

q(s)f(x(s))g(s) ds

= −ξη
b0

1�
η

d
( 1�
s

q(r)f(x(r)) dr
)
g(s) =

ξη
b0

1�
η

1�
s

q(r)f(x(r)) dr dg(s)

≤ Λ

b0

1�
η

1
p(s)

1�
s

q(r)f(x(r)) dr dg(s) =
Λ

b0

1�
η

Φ(f(x))(s) dg(s).

Lemma 3.2. Assume that assumptions (H1), (H2) hold and let λ > 0.
Then

AλK ⊂ K.
Proof. We observe that Aλx ≥ 0, (Aλx)′ ≥ 0 and Aλx is concave for all

x ∈ K. Moreover, from (3.1) we have

1�
η

Φ(Aλx)(s) dg(s) ≥ λα
1�
η

Φ(P )(s) dg(s)
1�
η

Φ(f(x))(s) dg(s)

= λαD

1�
η

1
p(s)

1�
s

q(r)f(x(r)) dr dg(s)

= λ
σ(αb0 + Λ)
b0p(0)

1�
η

1
p(s)

1�
s

q(r)f(x(r)) dr dg(s)

= λ
σ

p(0)

(
α+

Λ

b0

) 1�
η

1
p(s)

1�
s

q(r)f(x(r)) dr dg(s)

= λσ
α

p(0)

1�
η

1
p(s)

1�
s

q(r)f(x(r)) dr dg(s)

+ λσ
1
p(0)

· Λ
b0

1�
η

1
p(s)

1�
s

q(r)f(x(r)) dr dg(s).
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Hence, taking into account Lemma 3.1 we get
1�
η

Φ(Aλx)(s) dg(s) ≥ λσ α

p(0)

1�
η

1
p(s)

1�
s

q(r)f(x(r)) dr dg(s)

+ λσ
1
p(0)

1�
0

q(r)f(x(r)) dr

= σ(Aλx)′(0) = σ‖(Aλx)‖.
Now consider the constants

β := sup
u>0

fi(u)
u

, l0 := lim inf
u→0+

fs(u)
u

, l∞ := lim inf
u→∞

fs(u)
u

,

% :=
1
αH

, l := θmin{l−1
0 , l−1

∞ }
and we are ready to prove our first main result.

Theorem 3.3. Suppose that the functions f , p, q and g satisfy assump-
tions (H1)–(H3). If % < lβ, then for all λ in the interval (%/β, l) the bound-
ary value problem (1.2|λ), (1.3), (1.4) has at least two positive solutions.

Proof. We set F := λf , Fi := λfi and Fs := λfs. From λ > %/β we have
β > %/λ and so there exists u > 0 such that fi(u)/u > %/λ. This u satisfies
Fi(u) > %u.

Consider a function x ∈ K with ‖x‖ = u. The fact that x is concave
implies that

ηx(1) ≤ x(η) ≤ x(r) ≤ x(1) ≤ ‖x‖ for every r ∈ [η, 1].

So,

σ‖x‖ ≤
1�
η

Φ(x)(s) dg(s) =
1�
η

1
p(s)

1�
s

q(r)x(r) dr dg(s)

≤ x(1)
1�
η

1
p(s)

1�
s

q(r)drdg(s) = x(1)
1�
η

Φ(1)(s) dg(s) = x(1)H.

Thus we have x(1) ≥ σ‖x‖/H, which implies that

x(r) ≥ ησ‖x‖/H, r ∈ [η, 1].

Then, for every r ∈ [η, 1] we get ησ‖x‖/H ≤ x(r) ≤ ‖x‖. Therefore, since
Fi(u) > %u, we obtain

(3.2) (Aλx)′(1)≥α
1�
η

1
p(s)

1�
s

q(r)F (x(r)) dr dg(s)≥αFi(u)H >αH%u = u.

This means that if ‖x‖ = u, then ‖Aλx‖ > ‖x‖.
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On the other hand, from λ < l ≤ θ/l∞, we have λl∞ < θ. Hence, there
exists v > u such that Fs(v) < θv.

Consider a function x ∈ K with ‖x‖ = v. Since 0 ≤ x(t) ≤ v for t ∈ I
and Fs(v) < θv we have

‖Aλx‖ = (Aλx)′(0) =
α

p(0)

1�
η

Φ(F (x))(s) dg(s) +
1
p(0)

1�
0

q(s)F (x(s)) ds(3.3)

≤ Fs(v)
[
αH

p(0)
+

1
p(0)

1�
0

q(s) ds
]

< θv

[
αH + ‖q‖1

p(0)

]
= v = ‖x‖.

Finally we set Ω1 := {x ∈ C1
0 (I) : ‖x‖ < u} and Ω2 := {x ∈ C1

0 (I) :
‖x‖ < v} and apply Theorem 1.1 by taking into account Lemma 3.2, the
fact that Aλ is a completely continuous operator and 0 < u < v. Then we
conclude that there exists a solution x1 ∈ K of the boundary value problem
(1.2|λ), (1.3), (1.4) such that u < ‖x1‖ < v.

Now, since λ < l ≤ θ/l0 or, equivalently, λl0 < θ, there exists w ∈ (0, u)
such that

(3.4) 0 ≤ Fs(w) < θw.

Fix a function x ∈ K with ‖x‖ = w. Then 0 ≤ x(r) ≤ w for r ∈ I and
(3.3) works for w in place of v, because of (3.4). Thus we get ‖Aλx‖ ≤ ‖x‖
whenever ‖x‖ = w.

We take into account Lemma 3.2 and the fact that 0 < w < u, and
we apply Theorem 1.1 to conclude that there is a solution x2 ∈ K of the
boundary value problem (1.2|λ), (1.3), (1.4) such that w < ‖x2‖ < u.

Corollary 3.4. Consider the functions f , p, q and g satisfying as-
sumptions (H1)–(H3). Moreover assume that

(H4) % < β, l0 < θ, and l∞ < θ.

Then the boundary value problem (1.2|1), (1.3), (1.4) has at least two positive
solutions.

Proof. From (H4) we can easily see that %/β < 1 < l and therefore
Theorem 3.3 applies with λ = 1.

Next consider the quantities

B := inf
u>0

fs(u)
u

, L0 := lim sup
u→0+

fi(u)
u

, L∞ := lim sup
u→+∞

fi(u)
u

and set
ζ := %max{L−1

0 , L−1
∞ }.
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We have the following theorem:

Theorem 3.5. Let f , p, q, g be as in Theorem 3.3. If Bζ < θ, then for
all λ ∈ (ζ, θ/B) the boundary value problem (1.2|λ), (1.3), (1.4) has at least
two positive solutions.

Proof. From Bλ < θ it follows that there is a constant m > 0 such
that fs(m) < (θ/λ)m, or Fs(m) ≤ θm. Thus from (3.3) we conclude that if
‖x‖ = m, then ‖Aλx‖ ≤ ‖x‖.

Now, since λL0 > %, there exists n such that 0 < n < m and λfi(n) > %n
or Fi(n) > %n. Again, as in (3.2), we find that if ‖x‖ = n, then ‖Aλx‖ > ‖x‖.

Similarly, from the fact that λL∞ > %, there is a constant r > m such
that Fi(r) > %r. Thus as in the previous case we get ‖Aλx‖ > ‖x‖ whenever
‖x‖ = r.

Finally, we set Ω1 := {x ∈ C1
0 (I) : ‖x‖ < n} and Ω2 := {x ∈ C1

0 (I) :
‖x‖ < m}. Notice that u < m. Taking into account the fact that Aλ is a
completely continuous operator and Lemma 3.2, from Theorem 1.1, it follows
that there exists a solution x1 of the boundary value problem (1.2|λ), (1.3),
(1.4) such that n < ‖x1‖ < m. Similarly, since m < r, there exists a solution
x2 such that m < ‖x2‖ < r.

Corollary 3.6. Let f, p, q, g be as in Theorem 3.3. If θ > B, L0 > %
and L∞ > %, then the boundary value problem (1.2|1), (1.3), (1.4) has at
least two positive solutions.

Proof. This follows from the previous theorem and the fact that 1 ∈
(B/θ, 1/ζ).

References

[1] R. P. Agarwal and D. O’Regan, Twin solutions to singular Dirichlet problems,
J. Math. Anal. Appl. 240 (1999), 433–445.

[2] —, —, Twin solutions to singular boundary value problems, Proc. Amer. Math. Soc.
128 (2000), 2085–2094.

[3] V. Anuradha, D. D. Hai and R. Shivaji, Existence results for superlinear semiposi-
tone BVP’s, ibid. 124 (1996), 757–763.

[4] R. Avery, Existence of multiple positive solutions to a conjugate boundary value
problem, Math. Sci. Res. Hot-Line 2 (1998), 1–6.

[5] R. Avery, J. M. Davis and J. Henderson, Three symmetric positive solutions for
Lidstone problems by a generalization of the Leggett–Williams theorem, Electron. J.
Differential Equations 2000, no. 40, 15 pp.

[6] R. Avery and J. Henderson, Three symmetric positive solutions for a second order
boundary value problem, Appl. Math. Lett. 13 (2000), 1–7.

[7] C. J. Chyan and J. Henderson, Multiple solutions for 2mth-order Sturm–Liouville
boundary value problem, Comput. Math. Appl. 40 (2000), 231–237.

[8] J. M. Davis, P. W. Eloe and J. Henderson, Triple positive solutions and dependence
on higher order derivatives, J. Math. Anal. Appl. 237 (1999), 710–720.



276 G. L. Karakostas and P. Ch. Tsamatos

[9] D. R. Dunninger and H. Wang, Multiplicity of positive solutions for a nonlinear dif-
ferential equation with nonlinear boundary conditions, Ann. Polon. Math. 69 (1998),
155–165.

[10] P. W. Eloe and J. Henderson, Positive solutions and nonlinear multipoint conjugate
eigenvalue problems, Electron. J. Differential Equations 1997, no. 3, 11 pp.

[11] L. H. Erbe, S. C. Hu and H. Wang, Multiple positive solutions of some boundary
value problems, J. Math. Anal. Appl. 184 (1994), 640–648.

[12] L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differ-
ential equations, Proc. Amer. Math. Soc. 120 (1994), 743–748.

[13] J. Henderson and E. R. Kaufmann, Multiple positive solutions for focal boundary
value problems, Comm. Appl. Anal. 1 (1997), 53–60.

[14] J. Henderson and H. B. Thompson, Multiple symmetric positive solutions for a
second order boundary value problem, Proc. Amer. Math. Soc. 128 (2000), 2373–
2379.

[15] J. Henderson and H. Wang, Positive solutions for nonlinear eigenvalue problems,
J. Math. Anal. Appl. 208 (1997), 252–259.

[16] G. L. Karakostas and P. Ch. Tsamatos, Positive solutions for a nonlocal boundary
value problem with increasing response, Electron. J. Differential Equations 2000,
no. 73, 8 pp.

[17] —, —, Multiple positive solutions for a nonlocal boundary value problem with quiet
at zero response, ibid. 2001, no. 13, 11 pp.

[18] —, —, On a nonlocal boundary value problem at resonance, J. Math. Anal. Appl.
259 (2001), 209–218.

[19] —, —, Existence results for some n-dimensional nonlocal boundary value problems,
ibid., 429–438.
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