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Laurent series expansion
for solutions of hypoelliptic equations

M. Langenbruch (Oldenburg)

Abstract. We prove that any zero solution of a hypoelliptic partial differential oper-
ator can be expanded in a generalized Laurent series near a point singularity if and only
if the operator is semielliptic. Moreover, the coefficients may be calculated by means of a
Cauchy integral type formula. In particular, we obtain explicit expansions for the solutions
of the heat equation near a point singularity. To prove the necessity of semiellipticity, we
additionally assume that the index of hypoellipticity with respect to some variable is 1.

This paper is concerned with expansions of zero solutions of hypoellip-
tic partial differential operators near isolated singularities. For holomorphic
functions, such an expansion is provided by the well known Laurent series.
This has been extended to zero solutions of elliptic partial differential op-
erators by several authors (see Harvey and Polking [3], Wachman [15]; for
solutions of elliptic systems see Tarkhanov [12, 13]). For solutions of hypoel-
liptic operators, such expansions apparently are not known (see Ligocka [10,
Problem 4.5]), and they will be discussed in the present paper.

To be more specific, we start with an appropriate extension of the Lau-
rent series expansion for holomorphic functions to the case of solutions of
partial differential operators (see Hörmander [4] and the next section for the
relevant notations):

Let P (D) be a hypoelliptic partial differential operator with constant
coefficients in n variables and with degP =: m. Let

C∞P (U) := {f ∈ C∞(U) | P (D)f = 0}

denote the zero solutions of P (D) on an open set U ⊂ Rn. Without loss of
generality we can assume that the canonical nth unit vector is noncharac-
teristic for P (D). We fix an elementary solution E for P (D) and consider
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series of the form ∑

a∈I
ca∂

aE(0.1)

where cα ∈ C and

I := {a ∈ Nn0 | 0 ≤ an ≤ m− 1}.
(0.1) can be considered as a (generalized) Laurent series for solutions of

P (D): in fact, in the case of holomorphic functions, P (D) is the Cauchy–Rie-
mann operator ∂ := 1

2(∂1 + i∂2), m := degP = 1 and I = {(a, 0) | a ∈ N0}.
We can take the canonical elementary solution E(x) := 1/(π(x1 + ix2)) for
∂ and (0.1) then turns into

−1∑

k=−∞
ck(x1 + ix2)k,(0.2)

which is the principal part of a general Laurent series.
Let % = (%1, . . . , %n) ∈ [1,∞[n be the index of hypoellipticity of P (D).

Then E|Rn\{0} is in the Gevrey class Γ %(Rn \ {0}), and therefore, the series
(0.1) uniformly converges on compact subsets of Rn \ {0} if

(0.3) (ca)a∈I ∈ ΛI(%) := {(ca)a∈I | sup
a∈I
|ca|C |a|a%a <∞ for any C ≥ 1}.

In the case of holomorphic functions, % = (1, 1) since ∂ is elliptic. (0.3) then
just means that in (0.2), ck = O(εk/k!) for any ε > 0, which is equivalent
to the convergence of (0.2) on R2 \ {0}.

An appropriate version of a theorem on Laurent series expansion for
zero solutions of P (D) near an isolated singularity is thus provided by the
following property (P ): Let I and % be as above. Let U ⊂ Rn be open and
0 ∈ U .

(P ) For any f ∈ C∞P (U \ {0}), there are (ca)a∈I ∈ ΛI(%) and g ∈ C∞P (U)
such that

f =
∑

a∈I
ca∂

aE + g|U\{0}.

Let %n = 1. We will show that then P (D) satisfies (P ) for some U iff P (D)
satisfies (P ) for any U iff P (D) is semielliptic. Moreover, the coefficients
(ca)a∈I can be calculated from f by means of a generalized Cauchy type
integral formula (see Remark 2.1).

The proofs are based on the results of Langenbruch [7, 8], especially on
a Grothendieck type duality for zero solutions of hypoelliptic operators.

We finally discuss the classification of poles and removable singularities
for solutions of hypoelliptic equations.
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1. Preliminaries. In this section, some material is provided which is
needed to prove the main results in Section 2.

In this paper, P (D) always denotes a partial differential operator with
constant coefficients in n variables. Let C∞P (U) denote the C∞ zero solutions
of P (D) on U .

For a compact set K ⊂ U , the quotient space C∞P (U \K)/C∞P (U) may be
considered as the space of singularities on K of zero solutions of P (D). We
first show that this space is independent of U . As a consequence, property
(P ) from our introduction is independent of U (see Corollary 1.2).

1.1. Remark. Let K ⊂ U be compact. The canonical mapping

i : BVK(P ) := C∞P (Rn \K)/C∞P (Rn)→ C∞P (U \K)/C∞P (U)

is an isomorphism.

Proof. Obviously, i is well defined and injective. Let g ∈ C∞P (U \ K).
Choose ϕ ∈ C∞0 (U) such that ϕ = 1 near K. Then P (D)(ϕg) can trivially be
extended to a function h ∈ C∞0 (U \K). Let E be a distributional elementary
solution for P (D). Then f := gϕ− E ∗ h ∈ C∞(Rn \K) and

P (D)f = P (D)(gϕ)− h = 0 on Rn \K
by the definition of h. Similarly, f − g = g(ϕ− 1)− E ∗ h ∈ C∞(U) and

P (D)(f − g) = 0 on U.

Thus, i([f ]) = [g], and i is surjective.

Let % be the index of hypoellipticity of P (D) (see Hörmander [4, Sec-
tion 11]) and let

Γ %(U) :=
{
f ∈ C∞(U)

∣∣∣∣∀K ⊂⊂ U ∃C ≥ 1 : sup
x∈K, a∈Nn0

|f (a)(x)|
C |a|a%a

<∞
}
.

1.2. Corollary. The following are equivalent :

(i) P (D) satisfies (P ) for some U.
(ii) P (D) satisfies (P ) for any U.

(iii) P (D) satisfies (P ) for U := Rn.

Proof. (i)⇒(iii). Let f ∈ C∞P (Rn \ {0}) and choose (ca)a∈I and g ∈
C∞P (U) for f |U\{0} by (P ) for U . Since E ∈ Γ %(Rn \{0}) (by Hörmander [4,
Theorem 11.4.12]) and (ca)a∈I ∈ ΛI(%) (see (0.3)), the series

∑
a∈I ca∂

aE
converges on Rn \ {0}. Since

g̃ := f −
∑

a∈I
ca∂

aE ∈ C∞P (Rn \ {0}) and g̃|U\{0} = g|U\{0}

by (P ) for U , we have g̃ ∈ C∞P (Rn).
(iii)⇒(ii). Let f ∈ C∞P (U \ {0}). Choose f̃ ∈ C∞P (Rn \ {0}) and g1 ∈

C∞P (U) by Remark 1.1 such that f = (f̃ + g1)|U\{0}. With (ca)a∈I ∈ ΛI(%)
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and g ∈ C∞P (Rn) chosen for f̃ by (P ) for Rn, we get

f =
∑

a∈I
ca∂

aE + (g1 + g)|U\{0}.

This proves (P ) for U .

We now briefly introduce the duality theory for germs of zero solutions of
hypoelliptic operators (see Langenbruch [8] for more details): Let K ⊂ Rn
be compact. The space of germs of C∞ zero solutions of P (D) near K is

C∞P (K) := lim ind
U⊃⊃K

C∞P (U).

It is endowed with the locally convex inductive limit topology τK . If P is not
elliptic, then τK is not separated (see Langenbruch [8, Bemerkung 1.1]). Let
NP (K) := ker τK and JU,K : C∞P (U) → C∞P (K) be the canonical mapping.
Then NP (U,K) := (JU,K)−1(NP (K)) is closed in C∞P (U) and

C̃∞P (K) := C∞P (K)/NP (K) = lim ind
U⊃⊃K

(C∞P (U)/NP (U,K))

topologically. The canonical (restriction) mappings J̃U,V : C∞P (U)/NP (U,K)
→ C∞P (V )/NP (V,K) are well defined, compact and injective if V is relatively
compact in U . Therefore,

C̃∞P (K) is a (DFS)-space.(1.1)

Let P̌ (D) := P (−D). A bilinear form ( , ) : C∞P (Rn \ K) × C∞
P̌

(K) → C
is defined in the following way: Let g ∈ C∞

P̌
(K) be defined on U ⊃⊃ K.

Choose ϕ ∈ C∞0 (U) such that ϕ = 1 near K. Then

(f, g) := 〈f, P (−D)(ϕg)〉, f ∈ C∞P (Rn \K),(1.2)

is defined and is independent of the choice of ϕ.
For a locally convex space E, let E ′b denote the dual space endowed with

the strong topology. A central tool for the considerations in this paper is
provided by the following generalization of the Grothendieck duality:

1.3. Theorem (Langenbruch [8, Satz 2.4]). Let P (D) be hypoelliptic
and let K ⊂ Rn be compact. The bilinear form (1.2) provides a topologi-
cal isomorphism between BVK(P ) := C∞P (Rn \K)/C∞P (Rn) and (C̃∞

P̌
(K))′b.

2. Isolated singularities. The main results on Laurent series expan-
sion of zero solutions of hypoelliptic operators are proved in this section.
We have seen in Corollary 1.2 that we may restrict our considerations to
f ∈ C∞P (Rn \{0}). We will first show that such expansions are unique under
mild assumptions (see Remark 2.1).

In the following, P (D) will always denote a hypoelliptic operator with
degP =: m and index of hypoellipticity % such that the canonical nth unit
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vector en is noncharacteristic for P . Let

I := {a ∈ Nn0 | 0 ≤ an ≤ m− 1}.
2.1. Remark. Let f ∈ C∞P (Rn\{0}). Assume that for some compact set

K and some open set U with 0 ∈ K ⊂ U , there are (ca)a∈I ∈ CI , g ∈ C∞P (U)
and elementary solutions Ea of P (D) such that

∑

a∈I
ca∂

aEa converges in C(U \K)(2.1)

and

f |U\K =
∑

a∈I
ca∂

aEa + g|U\K .(2.2)

Then (ca)a∈I and g are uniquely determined. For a := (b, j) ∈ I we have

ca = (f,Xa)(2.3)

where ( , ) is the bilinear form from (1.2) and Xa = X(b,j) is the (unique)
solution of the Cauchy problem

P (−D)X(b,j) = 0 on Rn, ∂knX(b,j)(x
′, 0) = x′bδkj/b! on Rn−1.(2.4)

Proof. X(b,j) exists by the Cauchy–Kovalevskaya theorem since en is non-
characteristic. We choose ϕ ∈ C∞0 (U) in (1.2) such that ϕ = 1 near K. Since
the series in (2.1) converges in C∞P (U \K), we then have

(f,X(b,j)) =
∑

(d,k)∈I
c(d,k)(∂

(d,k)E(d,k),X(b,j))

=
∑

(d,k)∈I
c(d,k)〈∂(d,k)δ,X(b,j)〉 = c(b,j).

Thus, (ca)a∈I is uniquely determined, and g is therefore also unique on U\K,
hence also on U , since zero solutions with compact support vanish.

Formula (2.3) can be considered as a generalized Cauchy type integral
formula. In fact, the bilinear form ( , ) from (1.2) can also be calculated using
χV , the characteristic function of an open zero neighbourhood V , instead of
ϕ ∈ C∞0 (Rn).

Thus

ca = (f,Xa) = 〈f, P (−D)(XaχV )〉 =
∑

06=b
〈fP (b)(−D)Xa, (−D)bχV 〉/b!.

(−D)bχV is a distribution with support in ∂V and the right-hand side is a
sum of integrals over ∂V if V has smooth boundary. In this way, (2.3) pro-
vides an explicit integral formula for concrete operators (e.g. the Laplacian
or the heat equation), if V is chosen suitably.
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Using Xa from (2.4) for a ∈ I, we define the mapping

L : C∞P (Rn \ {0})→ CI , L(f) := ((f,Xa))a∈I .(2.5)

Let

ΛI(%,C) :=
{

(ca)a∈I
∣∣∣ ‖(ca)‖C :=

(∑

a∈I
|ca|2a2%a/C2|a|

)1/2
<∞

}
,

ΓI(%,C) :=
{

(ca)a∈I
∣∣∣ |(ca)|C :=

(∑

a∈I
|ca|2C2|a|/a2%a

)1/2
<∞

}
.

We now prove a useful necessary condition for a weaker form of property (P ).
Let

R : C̃∞P ({0})→ CI , R(f) := (f (a)(0))a∈I .(2.6)

Let BC := {x ∈ Rn | |x| ≤ C}.
2.2. Theorem. Let P (D) have the following property :

(P1) for any f ∈ C∞P (Rn \ {0}) there are C ≥ 1, (ca)a∈I , g ∈ C∞P (Rn)
and elementary solutions Ea of P (D) such that

(ca)a∈I ∈ ΛI(%,C) and f |Rn\BC =
(∑

a∈I
ca∂

aEa + g
)∣∣∣
Rn\BC

.

Then there is C ≥ 1 such that

L : C∞P (Rn \ {0})→ ΛI(%,C) is continuous(2.7)

and

R ◦ tL = id : ΓI(%,C)→ CI .(2.8)

Proof. (a) Since (ca)a∈I ∈ ΛI(%,C), the sum
∑

a∈I ca∂
aE converges on

Rn \ BC1 for some C1 ≥ 1 (see Trèves [14, Chap. 7] or Langenbruch [7,
Section 2]).

By (P1) and Remark 2.1,

L(C∞P (Rn \ {0})) ⊂ ΛI(%,∞) := ind lim
C→∞

ΛI(%,C).

By the closed graph theorem, L : C∞P (Rn\{0})→ ΛI(%,∞) is continuous. By
Grothendieck’s lemma (Meise–Vogt [11, 24.33]), L(C∞P (Rn\{0})) ⊂ ΛI(%,C)
for some C ≥ 1, and (2.7) follows.

(b) Since C∞P (Rn) ⊂ kerL and since ΛI(%,C)′ = ΓI(%,C), by (1.1) and
the duality in Theorem 1.3 we see that tL : ΓI(%,C) → C̃∞

P̌
({0}) is defined

and continuous. Since R ◦ tL and id are continuous, (2.8) has to be checked
only on the canonical orthonormal basis {ea | a ∈ I}. Notice that R([Xa]) =
ea for a ∈ I. To prove (2.8), it thus suffices to show that

(f, tL(ea)) = (f,Xa) for a ∈ I and f ∈ C∞P (Rn \ {0}).(2.9)
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This is seen as follows: for b ∈ I we have

(∂bE, tL(ea)) = 〈L(∂bE), ea〉 = 〈eb, ea〉 = (∂bE,Xa).

Thus, (2.9) holds for f ∈ F := span{∂bE | b ∈ I}, and thus for any f ∈
C∞P (Rn \ {0}) since, by assumption, f is contained in the closure of F in
C∞P (Rn \BC) for some C ≥ 1.

By (2.8), tL((ca)a∈I) can be interpreted as the solution of a pointwise
Cauchy problem for P (−D) with data in ΓI(%,C). Thus (2.8) is an E. Borel
type theorem for C∞

P̌
({0}).

For m̃ := (m1, . . . ,mn) ∈ Nn and α ∈ Nn0 let |α : m̃| :=
∑
αk/mk.

A polynomial P is called semielliptic (with index m̃) if

P (x) =
∑

|α:m̃|≤1

bαx
α and Pm̃(x) :=

∑

|α:m̃|=1

bαx
α 6= 0 if 0 6= x ∈ Rn.

2.3. Theorem. Let %n = 1. If P (D) satisfies (P1), then P (D) is semi-
elliptic.

Proof. (a) Let

P (x′, xn) =
∑

k≤m
Qk(x′)xkn and HP (x′) :=

∑

k<m

|Qk(x′)|1/(m−k).

It is easily seen that

|P (x′, xn)| ≤ C1(HP (x′) + |xn|)m.(2.10)

On the other hand, since % is the index of hypoellipticity of P and %n = 1,
we have ( ∑

k≤n−1

|xk|1/%k + |xn|
)m

=
(∑

k≤n
|xk|1/%k

)m
≤ C(1 + |P (x′, xn)|)(2.11)

(see Hörmander [4, Chap. 11, especially Lemma 11.1.4 and Theorem 11.4.1]).
(b) We haveHP (x′) ≤ C2(1+

∑
k≤n−1 |xk|1/%k) for any x′ ∈ Rn−1. Indeed,

by Langenbruch [9, (5.9)] there is C3 ≥ 1 such that

1/C3 ≤ HP̌ (ξ)/DP (ξ) ≤ C3 for ξ ∈ Rn−1,

where DP (ξ) := sup{|λ| | P (−ξ,−λ) = 0}. To show (b), we thus have to
estimate DP (ξ). By (2.7) and Theorem 1.3, the mapping tL : ΓI(%,C) →
C̃∞
P̌

({0}) is continuous. Let

ΓB := {(ck) ∈ CN | sup
k
|ck|/(k!Bk) <∞}.

For g ∈ C̃∞
P̌

({0}), let J(g) := (∂kng(0))k≥0. Since %n = 1,

J : C̃∞
P̌

({0})→ Γ := ind lim
B→∞

ΓB
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is continuous. Hence, S := J ◦ tL : ΓI(%,C) → Γ is continuous, and Gro-
thendieck’s lemma (Meise–Vogt [11, 24.33]) implies that for some B ≥ 1,

S : ΓI(%,C)→ ΓB is continuous.(2.12)

Let ξ ∈ Rn−1 and choose λ ∈ C such that P (−ξ,−λ) = 0. Then g(ξ,λ) :=
exp(i〈(ξ, λ), ·〉) ∈ C∞

P̌
(Rn), and (2.12) can be applied to R(g(ξ,λ)). Since

P (−D)g(ξ,λ) = 0, for any j ∈ N0 there are finitely many da, a ∈ I, such
that ∂jt g(ξ,λ) =

∑
da∂

ag(ξ,λ). Since R(tL(R(g(ξ,λ)))) = R(g(ξ,λ)) by (2.8) we
deduce that

S(R(g(ξ,λ))) = J(g(ξ,λ)).

The estimate from (2.12) thus implies: there is C4 ≥ 1 such that for any
(ξ, λ) as above,

exp(|λ|/(2B)) ≤ 2 sup(|λ/B|k/k!) = 2 sup |∂kng(ξ,λ)(0)|/(k!Bk)

≤ C4

(∑

a∈I
|∂ag(ξ,λ)(0)|2C2|a|/a2%a

)1/2

= C4

(∑

a∈I
|(ξ, λ)a|2C2|a|/a2%a

)1/2

≤ C1(1 + |λ|)m−1 exp
( ∑

k≤n−1

C%k|ξk|1/%k
)
.

We have thus proved that

DP (ξ) ≤ C6

(
1 +

∑

k≤n−1

|ξk|1/%k
)
.

(c) By (2.10), (2.11) and (b) there is C7 ≥ 1 such that for x ∈ Rn,

(2.13)
( ∑

k≤n−1

|xk|1/%k + |xn|
)m/

C7

≤ |P (x)| ≤ C7

( ∑

k≤n−1

|xk|1/%k + |xn|
)m

if |x| ≥ C7.

With fixed ξ ∈ Rn, we now apply this to ξλ = (λ%1ξ1, . . . , λ
%nξn) for large λ.

By the right-hand side of (2.13),

P (x) =
∑

|a:m̃|≤1

cax
a

for m̃ = (m/%1, . . . ,m/%n), while the left-hand side of (2.13) implies that

Pm̃(x) 6= 0 if 0 6= x ∈ Rn.
Pm̃ also satisfies (2.13). We apply this to the monomials Pm̃(tek) for the
canonical unit vectors ek, and conclude that m/%k ∈ N. Thus, P is semi-
elliptic with index m̃.
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2.4. Theorem. Let P be semielliptic with index m̃ = (m1, . . . ,mn) and
let mn = m. Then P (D) satisfies (P ) for any U with (ca)a∈I given by (2.3).

Proof. (a) We will show that

R : C̃∞P ({0})→ ΓI(%) := ind lim
C→∞

ΓI(%,C) is bijective,(2.14)

where R is given by (2.6). Assuming this for a moment, we conclude that
L ◦ tR(eα) = eα for any α ∈ I (with L defined in (2.5)). Hence rangeL ⊂
ΛI(%) := proj limC→0 ΛI(%,C), and L = (tR)−1, since tR is bijective and
ΛI(%) = ΓI(%)′. For f ∈ C∞P (Rn\{0}), we thus have (ca)a∈I := L(f) ∈ ΛI(%).
Hence

∑
a∈I ca∂

aE converges in C(Rn \ {0}) since E ∈ Γ %(Rn \ {0}). By
Remark 2.1 we have

L
(
f −

∑

a∈I
ca∂

aE
)

= 0,

hence f −∑a∈I ca∂
aE can be extended to a zero solution on Rn since L =

(tR)−1 is injective. Thus, (P ) is proved for U := Rn and therefore for any U
by Corollary 1.2.

Proof of (2.14). Let R1 be the restriction mapping defined by

R1(f) := (∂jnf( , 0))j≤m−1.

(i) R1 : C∞
P̌

(K)→ (Γ %(K))m is a topological isomorphism. This follows

from Langenbruch [7]. In fact, since P̌ is semielliptic, P̌ satisfies the assump-
tions of [7, Satz 4.4] by [7, Bemerkung 3.4(a)] and the claim follows by using
also [7, Satz 5.1], since the assumption “ν > 1” is redundant.

(ii) Let R2(f) := (∂bf(0))b∈Nn−1
0

. Then R2 : Γ %({0})→ Γ (%) is surjective
by E. Borel’s theorem in Gevrey classes (this can be proved as in the case
of rotationally invariant Gevrey classes; see e.g. Bonet–Meise–Taylor [2]).
Since R = R2 ◦ R1 by natural identifications, it is left to show that the
kernel N%({0}) of the topology of Γ %({0}) coincides with the kernel of R2,
i.e. with the functions in Γ %({0}) which are flat at 0.

N%({0}) is clearly contained in kerR2. To show the opposite inclusion,
we notice that Γ %({0})′b is isomorphic to

H% :=
{
f ∈ H(Cn−1)

∣∣∣∣ |f(z)| ≤ CN exp
(

1
N
v(z)

)
for any N ≥ 1

}

by Fourier transformation, where v(z) :=
∑

k≤n−1 |zk|1/%k . In fact, if T ∈
Γ %({0})′, then clearly T̂ is in

H̃% :=
{
f ∈ H(Cn−1)

∣∣∣∣ |f(z)| ≤ CN exp
(

1
N

(v(z) + |Im z|)
)

for any N ≥ 1
}
,
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which coincides with H% (this is proved by induction using Komatsu [6,
Theorem 1.1]). On the other hand, if f ∈ H%, then there are (cb) ∈ Γ (%)
such that f(z) =

∑
cbz

b, hence f = T̂ for T :=
∑
cbD

bδ.
We have also shown that {Dbδ | b ∈ Nn−1

0 } is total in Γ %({0})′b, and this
implies that kerR2 is contained in N%({0}).

The most important example of a semielliptic operator is the heat op-
erator P (D) := ∂1 − ∂2

2 − . . . − ∂2
n (x1 is the time variable). Then P (x) =

ix1 + x2
2 + . . .+ x2

n and P is semielliptic with m̃ = (1, 2, . . . , 2) and index of
hypoellipticity % = (2, 1, . . . , 1) (see Hörmander [4, Example 11.4.15]). The
canonical elementary solution for P (D) is given by

E(x) :=
1

(4πx1)(n−1)/2
exp(−|(x2, . . . , xn)|2/(4x1)) if x1 > 0

and E(x) = 0 if x1 ≤ 0 (Hörmander [4, Theorem 3.3.3]).
Let U be an open neighbourhood of 0 and let P (D)f = 0 on U \ {0}.

Then Theorem 2.4 leads to the following expansion: There is g ∈ C∞P (U)
such that

f = g|U\{0} +
∑

b∈Nn−1
0

cb(f)∂bx′E(x)|U\{0} −
∑

b∈Nn−1
0

db(f)∂bx′

(
xn
2x1

E(x)
)∣∣∣∣

U\{0}

where x′ = (x1, . . . , xn−1) and cb and db are given by (2.3) (or the formula
before (2.5)), i.e.,

cb(f) := (f,X(b,0)) and db := (f,X(b,1))

and X(b,j) solves the Cauchy problem (2.4):

(−∂1 − ∂2
2 − . . .− ∂2

n)X(b,j) = 0 on Rn and ∂knX(b,j)(x
′, 0) =

x′b

b!
δk,j .

The solutions X(b,j) can be calculated explicitly as follows:

X(b,j) =
|b|∑

k=0

Q(Dx′)
k x
′b

b!
· x2k+j

n

(2k + j)!
for j = 0, 1

with Q(Dx′) := −∂1 − ∂2
2 − . . .− ∂2

n−1.
Notice that the Laurent series for f vanishes for x1 < 0 due to the

definition of E(x). This is in contrast to the case of elliptic operators and
implies that f is bounded on V ∩ {x | x1 < 0} if V ⊂ U . Therefore, the
classification of the singularity of f at 0 does not depend on the behaviour
of f(x) for x1 < 0 in the case of the heat equation. For general hypoelliptic
operators, the classification of isolated singularities will now be discussed
in analogy with the corresponding results for holomorphic functions: Let
U ⊂ Rn be a neighbourhood of zero and let f ∈ C∞P (U \ {0}). We say that
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f has a pole at 0 iff there are ca ∈ C and g ∈ C∞P (U) such that

f =
( ∑

|a|≤k
ca∂

aE + g
)∣∣∣
U\{0}

.

2.5. Theorem. For f ∈ C∞P (U \ {0}) the following are equivalent :

(i) f can be extended to a distribution f̃ defined on U .
(ii) There is c ≥ 1 such that

|f(x)| · |x|c ≤ c if 0 < |x| ≤ 1/c.(2.15)

(iii) There are 0 6= y ∈ Rn and c ≥ 1 such that

|f(x)| · |〈x, y〉|c ≤ c if 0 < |x| ≤ 1/c.

(iv) There are ca ∈ C and g ∈ C∞P (U) such that

f(x) =
( ∑

|a|≤k, a∈I
ca∂

aE + g
)∣∣∣
U\{0}

where I := {a ∈ Nn0 | an < degxn P}.
(v) f has a pole at 0.

Proof. The implications (iv)⇒(v)⇒(i) and (ii)⇒(iii) are trivial.
(i)⇒(ii). Since supp(P (D)f̃) ⊂ {0}, there are ca ∈ C such that

P (D)f̃ =
∑

|a|≤k
ca∂

aδ.

Thus,

f̃ =
∑

ca∂
aE + g

for some g ∈ C∞P (U). Now (ii) follows, since the estimate (2.15) is well
known for ∂aE (see e.g. Trèves [14, Chap. 7] or Langenbruch [7, Section 2]).

(iii)⇒(iv). This holds by Langenbruch [7, Satz 2.4 und Satz 1.2].

The analogue of Riemann’s theorem on removable singularities reads as
follows: Let BP (U) denote the hyperfunction zero solutions of P (D) on U .

2.6. Theorem. Let P (D) be hypoelliptic. For f ∈ C∞P (U \ {0}) the fol-
lowing are equivalent :

(i) f can be extended to f̃ ∈ BP (U).
(ii) f can be extended to f̃ ∈ C∞P (U).

(iii) ∂jnf is bounded near 0 for 0 ≤ j < degxn P .

Proof. (i)⇔(ii). This holds for any partial differential operator with con-
stant coefficients by Kaneko [5, Theorem 1].

(ii)⇒(iii). This is trivial.
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(iii)⇒(ii). Let b ∈ Nn−1
0 and 0 ≤ j < degxn P . If f satisfies (iii), then by

Lebesgue’s theorem on dominated convergence we get

lim
t↘0

�
(∂(b,j)f(x′, t)− ∂(b,j)f(x′,−t))ϕ(x′) dx′

= lim
t↘0

�
(∂jnf(x′, t)− ∂jnf(x,−t))(−∂)bϕ(x′) dx′ = 0 if ϕ ∈ C∞0 (Rn−1)

since the integrand is uniformly bounded with pointwise limit equal to 0 out-
side {0}. Thus, the relevant distributional boundary values of f all vanish,
hence (ii) follows from Langenbruch [7, Satz 1.2].

The equivalence of (i) and (ii) in Theorem 2.6 answers Problem 4.4 of
Ligocka [10]. Removable singularities of solutions of partial differential op-
erators have been studied in several classes of functions by many authors
(see the paper of Kaneko [5] and its references).
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