Concave domains with trivial biholomorphic invariants

by Witold Jarnicki (Kraków) and Nikolai Nikolov (Sofia)

Abstract. It is proved that if F is a convex closed set in \mathbb{C}^n , $n \geq 2$, containing at most one (n-1)-dimensional complex hyperplane, then the Kobayashi metric and the Lempert function of $\mathbb{C}^n \setminus F$ identically vanish.

Let D be a domain in \mathbb{C}^n . Denote by $\mathcal{O}(\mathbb{C}, D)$ and $\mathcal{O}(\Delta, D)$ the spaces of all holomorphic mappings from \mathbb{C} to D and from the unit disc $\Delta \subset \mathbb{C}$ to D, respectively. Let $z, w \in D$ and $X \in \mathbb{C}^n$. The Kobayashi metric and Lempert function are defined by (cf. [1])

$$K_D(z, X) = \inf\{|\alpha|^{-1} : \exists f \in \mathcal{O}(\Delta, D), \ f(0) = z, \ f'(0) = \alpha X\},\$$

 $\ell_D(z, w) = \inf\{\tanh^{-1}|\alpha| : \exists f \in \mathcal{O}(\Delta, D), \ f(0) = z, \ f(\alpha) = w\}.$

These invariants can be characterized as the largest metric and function which decrease under holomorphic mappings and coincide with the Poincaré metric and distance on Δ .

It is well known that if D is a bounded domain in \mathbb{C}^n , or a plane domain whose complement contains at least two points, then $K_D(z,X) > 0$ for $X \neq 0$ and $\ell_D(z,w) > 0$ for $z \neq w$. On the other hand, the Kobayashi metric and the Lempert function of a plane domain whose complement contains at most one point identically vanish. Note also that there are domains in \mathbb{C}^n with bounded connected complements and non-vanishing Kobayashi metrics and Lempert functions. For example, if z_0 is a strictly pseudoconvex boundary point of a domain D in \mathbb{C}^n , $n \geq 2$, then (cf. [2])

$$\lim_{z \to z_0} \frac{K_D(z, X)}{\|X\|} = \infty$$

uniformly in $X \in \mathbb{C}^n \setminus \{0\}$, and

$$\lim_{z \to z_0} \inf_{w \in D \setminus U} \ell_D(z, w) = \infty$$

for any neighborhood U of z_0 .

2000 Mathematics Subject Classification: Primary 32H15. Key words and phrases: Kobayashi metric, Lempert function.

A set D in \mathbb{C}^n is called *concave* if its complement $\mathbb{C}^n \setminus D$ is a convex set. The purpose of this note is to characterize the concave domains in \mathbb{C}^n , $n \geq 2$, whose Kobayashi metrics and Lempert functions identically vanish.

THEOREM 1. Let D be a concave domain in \mathbb{C}^n , $n \geq 2$. Then the following statements are equivalent:

- (i) $\mathbb{C}^n \setminus D$ contains at most one (n-1)-dimensional complex hyperplane;
- (ii) for any $z \in D$, $X \in \mathbb{C}^n \setminus \{0\}$ there is an injective $f \in \mathcal{O}(\mathbb{C}, D)$ such that f(0) = z, f'(0) = X;
- (iii) for any $z, w \in D$, $z \neq w$ there is an injective $f \in \mathcal{O}(\mathbb{C}, D)$ such that f(0) = z, f(1) = w;
 - (iv) $K_D \equiv 0$;
 - (v) $\ell_D \equiv 0$.

Proof. The implications (ii) \Rightarrow (iv) and (iii) \Rightarrow (v) are trivial.

The implications (iv) \Rightarrow (i) and (v) \Rightarrow (i) follow from the fact that Δ is the universal covering of $\mathbb{C} \setminus \{0,1\}$.

Now, we prove that $(i)\Rightarrow(ii)$ and $(i)\Rightarrow(iii)$.

If $F := \mathbb{C}^n \setminus D$ contains exactly one complex hyperplane, we may assume that $D = (\mathbb{C} \setminus \{0\}) \times \mathbb{C}^{n-1}$ and z = (1, 0, ..., 0). Let $X = (X_1, ..., X_n)$, $X \neq 0$, and $w = (w_1, ..., w_n)$. For any integer $j \in \{2, ..., n\}$, set

$$f_j(\eta) = \begin{cases} X_j \eta & \text{if } X_j \neq 0, \\ \exp(X_1 \eta) - 1 - X_1 \eta & \text{if } X_j = 0, \end{cases}$$

and

$$\widetilde{f}_{j}(\eta) = \begin{cases} w_{j}\eta & \text{if } w_{j} \neq 0, \\ w_{1}^{\eta} - 1 + (1 - w_{1})\eta & \text{if } w_{j} = 0. \end{cases}$$

Then $f(\eta) = (\exp(X_1\eta), f_2(\eta), \dots, f_n(\eta))$ and $\widetilde{f}(\eta) = (w_1^{\eta}, \widetilde{f}_2(\eta), \dots, \widetilde{f}_n(\eta))$ are injective holomorphic mappings from \mathbb{C} to D such that f(0) = z, f'(0) = X and $\widetilde{f}(0) = z, \widetilde{f}(1) = w$.

Assume now that F contains no (n-1)-dimensional complex hyperplanes and let $z \in D$. Since F coincides with its hull with respect to the real-valued linear functions on \mathbb{C}^n , there are two polynomials $\ell_1, \ell_2 : \mathbb{C}^n \to \mathbb{C}$ of degree 1 such that $\ell_1 - \ell_1(0)$ and $\ell_2 - \ell_2(0)$ are linearly independent and

$$\operatorname{Re}(\ell_1(z)) > 0 = \max_{\Gamma} \operatorname{Re}(\ell_1) = \max_{\Gamma} \operatorname{Re}(\ell_2).$$

Replacing ℓ_2 by $\ell_1 + \varepsilon \ell_2$, where $\varepsilon > 0$ is small enough, we may assume that

$$\operatorname{Re}(\ell_2(z)) > 0 \ge \max_{F} \operatorname{Re}(\ell_2).$$

So, if $D \ni z = (z_1, \ldots, z_n)$ and $\mathbb{C}^n \setminus \{0\} \ni X = (X_1, \ldots, X_n)$, after a translation and a linear change of coordinates, we may assume that $\text{Re}(z_1) > 0$, $\text{Re}(z_2) > 0$ and

$$F \subset G := \{ \zeta \in \mathbb{C}^n : \operatorname{Re}(\zeta_1) \le 0, \operatorname{Re}(\zeta_2) \le 0 \}.$$

If $X_1 = X_2 = 0$, then the mapping $f(\eta) = z + \eta X$ has the properties required in (ii). Otherwise, we may assume that $X_2 \neq 0$ and for $\lambda > 0$, set

$$\varphi(t) = \begin{cases} \frac{z_2 X_1}{X_2 \lambda (1 - \exp(z_2 \lambda))} & \text{for } t \in [0, \lambda], \\ \frac{z_2 X_1}{X_2 \lambda \exp(z_2 \lambda) (\exp(z_2 \lambda) - 1)} & \text{for } t \in (\lambda, 2\lambda], \end{cases}$$
$$f_j(\eta) = z_j + \eta X_j \quad \text{for } j = 2, \dots, n,$$
$$f_1(\eta) = z_1 + \int_0^{2\lambda} \varphi(t) \exp(t f_2(\eta)) dt.$$

Then $f = (f_1, \ldots, f_n)$ is an injective holomorphic mapping from \mathbb{C} to \mathbb{C}^n and f(0) = z, f'(0) = X. Note that if $\text{Re}(f_2(\eta)) \leq 0$, then

$$|f_1(\eta) - z_1| \le \int_0^{2\lambda} |\varphi(t)| dt.$$

Since the last integral tends to 0 as $\lambda \to \infty$, it follows that $f \in \mathcal{O}(\mathbb{C}, D)$ for any $\lambda \gg 1$, which completes the proof of (i) \Rightarrow (ii).

Let now $z, w \in D$ and $z \neq w$. As above, we may assume that $\text{Re}(z_2) > 0$, $\text{Re}(w_1) > 0$ and $F \subset G$. If $z_1 = w_1$ or $z_2 = w_2$, then the mapping $f(\eta) = z + \eta(w - z)$ has the properties required in (iii). Otherwise, we may assume that $w_2 \neq z_2$ and, for $m \in \mathbb{N}$, set

$$\lambda = \frac{(2m-1)\pi}{|z_2 - w_2|},$$

$$\varphi(t) = \begin{cases} \frac{z_2(z_1 - w_1) \exp(w_2 \lambda)}{(\exp(z_2 \lambda) - 1)(\exp(w_2 \lambda) - \exp(z_2 \lambda))} & \text{for } t \in [0, \lambda], \\ \frac{z_2(z_1 - w_1)}{(\exp(z_2 \lambda) - 1)(\exp(z_2 \lambda) - \exp(w_2 \lambda))} & \text{for } t \in (\lambda, 2\lambda], \end{cases}$$

$$f_j(\eta) = z_j + \eta(w_j - z_j) & \text{for } j = 2, \dots, n,$$

$$f_1(\eta) = w_1 + \int_{0}^{2\lambda} \varphi(t) \exp(t f_2(\eta)) dt.$$

It follows as above that for any $\lambda \gg 1$, $f = (f_1, \ldots, f_n)$ is an injective holomorphic mapping from \mathbb{C} to D with f(0) = z, f(1) = w. Taking m large enough completes the proof of (i) \Rightarrow (iii).

Theorem 1 implies the following

COROLLARY 2. Let F be the Cartesian product of n closed subsets F_1, \ldots, F_n of \mathbb{C} $(n \geq 2)$. Assume that $F_1 \neq \mathbb{C}$ and $F_n \neq \mathbb{C}$. Then

- (i) for any $z \in D := \mathbb{C}^n \setminus F$ and any $X \in \mathbb{C}^n$ there is an $f \in \mathcal{O}(\mathbb{C}, D)$ such that f(0) = z and f'(0) = X;
- (ii) for any $z \in D_1 = (\mathbb{C} \setminus F_1) \times \mathbb{C}^{n-1}$ and any $w \in D_n = \mathbb{C}^{n-1} \times (\mathbb{C} \setminus F_n)$ there is a $g \in \mathcal{O}(\mathbb{C}, D)$ such that g(0) = z and g(1) = w.

In particular, D is a domain in \mathbb{C}^n , $K_D \equiv 0$, and $\ell_D = 0$ on $D_1 \times D_n$.

Proof. Let $\mathbb{C}_* = \mathbb{C} \setminus \{0\}$, $\Delta_* = \{\eta \in \mathbb{C} : 0 < |\eta| < 1\}$ and $H = \{\eta \in \mathbb{C} : \text{Re}(\eta) \geq 0\}$. Without loss of generality, we may suppose in (i) that $z_1 \notin F_1$. After a translation and a linear change of coordinates, we may assume that $z \in G_1 := \Delta_* \times \mathbb{C}^{n-2} \times \mathbb{C}_*$, $w \in G_n := \mathbb{C}_* \times \mathbb{C}^{n-2} \times \Delta_*$ and $G_1 \subset D_1$, $G_n \subset D_n$. Since $\mathbb{C}^n \setminus (H \times \mathbb{C}^{n-2} \times H)$ is a covering of $G_1 \cup G_n$, Corollary 2 follows from Theorem 1. ■

REMARK. The authors do not know if part (ii) of Corollary 1 still holds for any two different points $z, w \in D$. (Added in proof: Cf. N. Nikolov, Entire curves in complements of cartesian products in \mathbb{C}^n , Univ. Iag. Acta Math., to appear.)

References

- [1] M. Jarnicki and P. Pflug, *Invariant Distances and Metrics in Complex Analysis*, de Gruyter, Berlin, 1993.
- [2] N. Nikolov, Behavior of invariant metrics near convex boundary points, Czech. Math. J., to appear.

Institute of Mathematics Jagiellonian University 30-059 Kraków, Poland E-mail: wmj@im.uj.edu.pl Institute of Mathematics and Informatics Bulgarian Academy of Sciences 1113 Sofia, Bulgaria E-mail: nik@math.bas.bg

Reçu par la Rédaction le 25.7.2001 Révisé le 19.2.2002 (1279)