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On the class of functions defined in a halfplane
and starlike with respect to the boundary point

by Adam Lecko (Rzeszów)

Abstract. The purpose of this paper is to study the class S∗∞(H) of univalent analytic
functions defined in the right halfplane H and starlike w.r.t. the boundary point at infinity.
An analytic characterization of functions in S∗∞(H) is presented.

1. Introduction. The aim of this paper is to study the class S∗∞(H)
of univalent analytic functions defined in the right halfplane H and starlike
w.r.t. the boundary point at infinity.

The geometric definition of functions in S∗∞(H) is clear: together with ev-
ery point w ∈ f(H), the radial halfline with endpoint at w lies in f(H). This
property was considered in [4, 6] where properties of functions in S∗∞(H) with
the additional (so called) hydrodynamic normalization and a generalization
were examined.

In this paper, developing another method based on the Julia Lemma
reformulated in H, we are able to improve the results of [6] considerably.
The main results are presented in Theorems 3.1–3.3. Instead of the class P
used in [6] of functions having positive real part in H and hydrodynamically
normalized we introduce the class P(α;H) of functions also having positive
real part in H but with the boundary property which follows from the Julia
Lemma. It is shown that P(α;H) is essentially larger than P . The key ge-
ometric property of functions in S∗∞(H) is preserving starlikeness in every
halfplane contained in H; this is proved in Theorem 3.1. Having this inner
geometric behaviour we are able to find an analytic characterization of the
class S∗∞(H) in terms of the corresponding class P(α;H); this is the subject
of Theorems 3.2 and 3.3.

Examples of functions show usefulness of these results.
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2. The Julia Lemmas. Let C = C ∪ {∞}, D = {z ∈ C : |z| < 1} and
T = ∂D. For each k > 0, we define the oricycle

Ok =
{
z ∈ D :

|1− z|2
1− |z|2 < k

}
.

It is a disk in D whose boundary circle ∂Ok is tangent to T at z = 1. The
center of Ok is at (1/(1 + k), 0) and its radius is k/(k + 1).

For ξ ∈ D define the Möbius transformation

ϕξ(z) =
z − ξ
1− ξz

, z ∈ C \ {1/ξ}.

For every ξ ∈ D the function ϕξ is an analytic automorphism of D. The set
of all analytic automorphisms of D will be denoted by Aut(D). It is well
known that f ∈ Aut(D) iff there exist ξ ∈ D and λ ∈ T such that f(z) =
λϕξ(z), z ∈ D, i.e. every analytic automorphism of D is the composition of
a rotation and a Möbius transformation.

The set of all analytic functions ω in D such that |ω(z)| < 1 for z ∈ D
will be denoted by B.

The following lemma ([3]; see also [1, p. 56]) is the basis for our consid-
erations.

Lemma 2.1 (Julia). Let ω ∈ B. Assume that there exists a sequence (zn)
of points in D such that

(2.1) lim
n→∞

zn = 1, lim
n→∞

ω(zn) = 1,

(2.2) lim
n→∞

1− |ω(zn)|
1− |zn|

= α <∞.

Then

(2.3)
|1− ω(z)|2
1− |ω(z)|2 ≤ α

|1− z|2
1− |z|2 , z ∈ D,

and hence, for every k > 0,

ω(Ok) ⊂ Oαk.
Equality in (2.3) for some z ∈ D can occur only for ω ∈ Aut(D), i.e., for
ω(z) = λϕξ(z), z ∈ D, where ξ ∈ ∂O1/α and λ = (1 − ξ)/(1 − ξ). In
particular , equality holds for ξ = (α− 1)/(α+ 1) and λ = 1.

Remark 2.1. Since
1− |ω(z)|

1− |z| ≥
1− |ω(0)|
1 + |ω(0)| , z ∈ D,

for every ω ∈ B, the constant α defined in (2.2) is positive (see [1, p. 43]).

The Julia Lemma can be easily reformulated for the right halfplane.
First we introduce some notations. Let Hc = {z ∈ C : Re z > c}, c ≥ 0, and
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H = H0. Let A(H) denote the set of all analytic functions in H and let

P(H) = {q ∈ A(H) : Re q(w) > 0, w ∈ H}.

Lemma 2.2. Let q ∈ P(H). Assume that there exists a sequence (wn) of
points in H such that

(2.4) lim
n→∞

wn =∞, lim
n→∞

q(wn) =∞,

(2.5) lim
n→∞

{ |q(wn) + 1| − |q(wn)− 1|
|wn + 1| − |wn − 1| · |wn + 1|

|q(wn) + 1|

}
= α <∞.

Then

(2.6) Re q(w) ≥ 1
α

Rew, w ∈ H,

and hence, for every c > 0,

q(Hc) ⊂ Hc/α.

The result is sharp. Equality in (2.6) can occur only for

(2.7) q(w) =
1
α
w + it, w ∈ H, t ∈ R.

In particular , equality holds for

q(w) =
1
α
w, w ∈ H.

Proof. Define

(2.8) ω(z) =
q

(
1 + z

1− z

)
− 1

q

(
1 + z

1− z

)
+ 1

, z ∈ D.

For the sequence (wn) of points in H let

zn =
wn − 1
wn + 1

, n ∈ N,

be the corresponding sequence of points in D. Since limn→∞ wn = ∞, we
have limn→∞ zn = 1. From (2.4) it follows that

lim
n→∞

ω(zn) = lim
n→∞

q(wn)− 1
q(wn) + 1

= 1

so (2.1) holds. In view of (2.5) and (2.8) we see that
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(2.9) lim
n→∞

1− |ω(zn)|
1− |zn|

= lim
n→∞

1−
∣∣∣∣
q(wn)− 1
q(wn) + 1

∣∣∣∣

1−
∣∣∣∣
wn − 1
wn + 1

∣∣∣∣

= lim
n→∞

{ |q(wn) + 1| − |q(wn)− 1|
|wn + 1| − |wn − 1| · |wn + 1|

|q(wn) + 1|

}
= α <∞.

Hence (2.2) holds. On the other hand, by (2.8) we have

(2.10) q(w) =
1 + ω(z)
1− ω(z)

,

where w = (1 + z)/(1− z), z ∈ D, so

Re q(w) =
1− |ω(z)|2
|1− ω(z)|2 , Rew =

1− |z|2
|1− z|2 .

Hence (2.3) yields the assertion.
Suppose now that q(w0) ∈ ∂Hc/α for some w0 ∈ ∂Hc and c > 0. Then

z0 = (w0−1)/(w0 +1) ∈ D lies on the oricycle ∂O1/c and ω(z0) ∈ ∂Oα/c. By
the Julia Lemma this holds only for ω(z) = λϕξ(z), z ∈ D, where ξ ∈ ∂O1/α

and λ = (1− ξ)/(1− ξ). Using (2.10) we find that

q(w) =
1 + λϕξ(z)
1− λϕξ(z)

=
|1− ξ|2
1− |ξ|2 w − i

2 Im ξ

1− |ξ|2 =
1
α
w + it,

where t ∈ R.
In particular, t = 0 for ξ = (α − 1)/(α + 1) and λ = 1, which yields

q(w) = w/α.

Remark 2.2. By Remark 2.1 and (2.9), α defined in (2.5) is positive.

Suppose now that the sequence (wn) consists of only positive real num-
bers. Then we can formulate the following corollary.

Corollary 2.1. Let q ∈ P(H). Assume that there exists a sequence
(xn) of positive real numbers such that

(2.11) lim
n→∞

xn =∞, lim
n→∞

q(xn) =∞,

(2.12) lim
n→∞

{
(|q(xn) + 1| − |q(xn)− 1|) xn + 1

|q(xn) + 1|

}
= 2α <∞.

Then q(Hc) ⊂ Hc/α for every c > 0. The result is sharp and (2.7) is the
extremal function.

If also the sequence (q(xn)) consists of only positive real numbers then
we have

Corollary 2.2. Let q ∈ P(H). Assume that there exists a sequence
(xn) of positive real numbers such that q(xn) is a positive real number for
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every n ∈ N, limn→∞ xn =∞ and

(2.13) lim
n→∞

q(xn)
xn

=
1
α
<∞.

Then q(Hc) ⊂ Hc/α for every c > 0. The result is sharp and (2.7) is the
extremal function.

Since (xn) tends to infinity, by (2.13) the same holds for (q(xn)). By
Remark 2.2, α > 0.

It is possible to consider stronger assumptions instead of (2.4). We can
set

lim
n→∞

q(wn)
wn

= β,

with the sequence (wn) tending to infinity, which implies that limn→∞ q(wn)
=∞. Then we have

Corollary 2.3. Let q ∈ P(H). Assume that there exists a sequence
(wn) of points in H such that

lim
n→∞

wn =∞, lim
n→∞

q(wn)
wn

= β 6= 0,

1
|β| lim

n→∞

{ |q(wn) + 1| − |q(wn)− 1|
|wn + 1| − |wn − 1|

}
= α <∞.

Then q(Hc) ⊂ Hc/α for every c > 0. The result is sharp and (2.7) is the
extremal function.

Suppose again that the sequence (wn) consists of only positive real num-
bers. Then we have

Corollary 2.4. Let q ∈ P(H). Assume that there exists a sequence
(xn) of positive real numbers such that

lim
n→∞

xn =∞, lim
n→∞

q(xn)
xn

= β ∈ C \ {0}

and

(2.14)
1
|β| lim

n→∞
{|q(xn) + 1| − |q(xn)− 1|} = 2α <∞.

Then q(Hc) ⊂ Hc/α for every c > 0. The result is sharp and (2.7) is the
extremal function.

A special case of Lemma 2.2 was proved in [6]. Let us recall this result.

Theorem 2.1 ([6]). Let q ∈ P(H). If the following limit exists:

(2.15) lim
w→∞

(q(w)− w) = a 6=∞,

then q(Hc) ⊂ Hc for every c > 0.
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Remark 2.3. The normalization (2.15) generalizes the so called hydro-
dynamic normalization (a = 0). Notice that Re a ≥ 0. The method of proof
of Theorem 2.1 was based on the maximum principle for harmonic functions.

Now we show that Theorem 2.1 is a special case of Lemma 2.2. In fact we
will prove that Theorem 2.1 is a consequence of Corollary 2.1. From (2.15)
it follows that

(2.16) lim
w→∞

q(w) =∞,
(2.17) lim

w→∞
Re(q(w)− w) = Re a, lim

w→∞
Im(q(w)− w) = Im a.

Since by (2.15),

lim
w→∞

(q(w)− w) = lim
w→∞

w

(
q(w)
w
− 1
)

= a,

we have

(2.18) lim
w→∞

q(w)
w

= 1.

By (2.15) there exists a sequence (xn) of positive real numbers such that
limn→∞ xn = ∞ and limn→∞(q(xn) − xn) = a. By (2.16), limn→∞ q(xn)
= ∞ so (2.11) is satisfied. Writing q(xn) = un + ivn, by (2.17) we have
limn→∞(un − xn) = Re a and consequently,

(2.19) lim
n→∞

un =∞.

Also

(2.20) lim
n→∞

vn = Im a

from (2.17). Since by (2.19) and (2.20),

lim
n→∞

∣∣∣∣1 +
1

q(xn)

∣∣∣∣
2

= lim
n→∞

(un + 1)2 + v2
n

u2
n + v2

n

= lim
n→∞

(
1 +

1
un

)2

+
(
vn
un

)2

1 +
(
vn
un

)2 = 1,

(2.18) yields

(2.21) lim
n→∞

xn + 1
|q(xn) + 1| = lim

n→∞

xn

(
1 +

1
xn

)

|q(xn)|
∣∣∣∣1 +

1
q(xn)

∣∣∣∣
= 1.
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Using (2.19) and (2.20) we obtain

(2.22) lim
n→∞

{|q(xn) + 1| − |q(xn)− 1|}

= lim
n→∞

{
√

(un + 1)2 + v2
n −

√
(un − 1)2 + v2

n}

= lim
n→∞

{
4un√

(un + 1)2 + v2
n +

√
(un − 1)2 + v2

n

}

= lim
n→∞





4√(
1 +

1
un

)2

+
(
vn
un

)2

+

√(
1− 1

un

)2

+
(
vn
un

)2





= 2.

This result together with (2.21) yields (2.12) for α = 1. Hence the conclusion
of the theorem follows.

Examples. 1. In fact, the conditions (2.4) and (2.5) are more general
than (2.15). As an example, take

q(w) = i logw + w + π/2, w ∈ H.
It is easy to verify that Re q(w) > 0 for w ∈ H.

Let (xn) be a sequence of positive real numbers such that limn→∞ xn=∞.
Then

lim
n→∞

q(xn) = lim
n→∞

{xn + π/2 + i log xn} =∞

so (2.11) is true.
Repeating exactly calculations (2.21) and (2.22) with un = xn + π/2,

vn = log xn and using the elementary fact that limn→∞(log xn)/xn = 0 we
infer that the limit (2.12) exists with α = 1.

On the other hand

lim
w→∞

(q(w)− w) = lim
w→∞

(i logw + π/2) =∞

so (2.15) does not hold.
2. Every function q ∈ P(H) of the form

(2.23) q(w) = βw + o(w), w ∈ H,
with β > 0 satisfies the assumptions of Corollary 2.4. Let (xn) be a sequence
of positive real numbers such that limn→∞ xn =∞. Then

lim
n→∞

q(xn)
xn

= β + lim
n→∞

o(xn)
xn

= β.
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Let o(xn) = sn + ivn and q(xn) = βxn + sn + ivn for n ∈ N. Since

lim
n→∞

o(xn)
xn

= lim
n→∞

(
sn
xn

+ i
vn
xn

)
= 0

we have
lim
n→∞

sn
xn

= 0, lim
n→∞

vn
xn

= 0.

Repeating the calculations in (2.21) and (2.22) with un = βxn + sn and vn
we obtain

lim
n→∞

xn + 1
|q(xn) + 1| =

1
β

and

lim
n→∞
{|q(xn) + 1| − |q(xn)− 1|}

= lim
n→∞





4√(
1+ 1

βxn+sn

)2
+
(

vn
βxn+sn

)2
+
√(

1− 1
βxn+sn

)2
+
(

vn
βxn+sn

)2



=2

since

lim
n→∞

vn
βxn + sn

= lim
n→∞

vn/xn
β + sn/xn

= 0.

Hence (2.12) holds with α = 1/β.
The class of functions of the form (2.23) is essentially larger than this

normalized by (2.15). The function q(w) = βw +wµ, w ∈ H, for β > 0 and
µ ∈ [0, 1) is of the form (2.23).

3. Starlike functions defined in a halfplane. Classical geometric
properties like starlikeness and convexity of analytic functions in the right
halfplane were studied in [2, 6].

For v ∈ C, let l+[v] = {sv : s ∈ [1,+∞)} be the radial halfline with
endpoint at v.

Let us start with the following definitions.

Definition 3.1. A simply connected domain Ω ⊂ C, Ω 6= C, with
∞ ∈ ∂Ω is called starlike with respect to the boundary point at infinity if
the halfline l+[v] is contained in Ω for every v ∈ Ω. The set of all such
domains will be denoted by Z∗∞.

Remark 3.1. Observe that the origin lies outside every domain in Z∗∞.
Indeed, assume that 0 ∈ Ω for some Ω ∈ Z∗∞. Since Ω 6= C, there exists a
finite point v0 ∈ ∂Ω such that [0, v0) ⊂ Ω. Hence l+[v] does not lie in Ω for
any point v of the segment [0, v0).
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Definition 3.2. Let S∗∞(H) denote the class of all univalent analytic
functions f in H such that f(H) ∈ Z∗∞. Functions belonging to S∗∞(H) will
be called starlike w.r.t. the boundary point at infinity.

It is obvious that for every f ∈ S∗∞(H) there is some point on the bound-
ary of H which “corresponds” to infinity on the boundary of f(H). In what
follows we will use a kind of boundary normalization for every f ∈ S∗∞(H)
by saying that ∞ ∈ ∂H corresponds to ∞ ∈ ∂f(H). Since, in general, we
cannot extend a function f to ∂H, in order to be precise, we will apply the
notion of prime ends to formulate this normalization. Below we construct a
prime end p∞(Ω) for every Ω ∈ Z∗∞ and next using the Prime End Theorem
we associate ∞ ∈ ∂H with p∞(Ω).

Construction of a prime end for a domain starlike w.r.t. the boundary
point at infinity. For an arbitrary domain in Z∗∞ we introduce a special null
chain (Cn).

Let us recall that a crosscut of a domain G ⊂ C is an open Jordan arc
C in G such that C = C ∪ {a, b}, where a, b ∈ ∂G.

Let Ω ∈ Z∗∞. Since Ω 6= C, there exists a finite boundary point v0 of Ω
such that l+[v0] \ {v0} lies in Ω. For each t ∈ (0,∞) set C(t) = {v ∈ C :
|v − v0| = t|v0|}. It is clear that Ω ∩ C(t) 6= ∅ for every t ∈ (0,∞). By
[5, Proposition 2.13, p. 28], for every fixed t ∈ (0,∞) there are countably
many crosscuts Ck(t) ⊂ C(t), k ∈ N, of Ω. We denote by Ω0(t) ⊂ Ω the
component of Ω \ C(t) containing the halfline l+[(1 + t)v0] \ {(1 + t)v0},
and by Q(t) ∈ ⋃k∈N Ck(t) the crosscut containing the point (1 + t)v0. So
Q(t) ⊂ ∂Ω0(t). Let now (tn) be a strictly increasing sequence of points
in (0,∞) such that limn→∞ tn = ∞ and let (Q(tn)) be the corresponding
sequence of crosscuts of Ω. It is easy to observe that

(a) Q(tn) ∩Q(tn+1) = ∅ for every n ∈ N.
(b) Ω0(tn+1) ⊂ Ω0(tn) for every n ∈ N.
(c) diam# Q(tn)→ 0 as n→∞, where diam#B is the spherical diameter

of the set B ⊂ C.

Therefore (Cn) = (Q(tn)) forms a null chain of Ω. Notice also that the
null chain (Cn) is independent of the choice of the sequence (tn). The equiv-
alence class of the null chain (Cn) defines the prime end denoted by p∞(Ω).

We can also derive that infinity is a unique principal point of the prime
end p∞(Ω). Therefore, the following proposition holds ([5, p. 39]).

Proposition 3.1. For every Ω ∈ Z∗∞ the prime end p∞(Ω) is of the
first or of the second kind.

Let g be an analytic univalent mapping of D onto Ω. Then there exists a
bijective mapping ĝ of T onto the set p(Ω) of all prime ends of Ω ([5, p. 30]).
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If h(w) = (w − 1)/(w + 1), w ∈ H, then f̂ = ĝ ◦ h is a bijective mapping of
the closed imaginary axis ∂H∪{∞} onto p(Ω). Thus there there is a unique
w0 ∈ ∂H ∪ {∞} such that p∞(Ω) = f̂(w0).

By using Proposition 3.1 and [5, Corollary 2.17, p. 35], we get

Proposition 3.2. Every function f ∈ S∗∞(H) such that p∞(f(H)) =
f̂(∞) has a radial limit

lim
R3x→∞

f(x) =∞.

To present an analytic characterization of the class S∗∞(H) we will need
the following theorem.

Theorem 3.1. Let f ∈ A(H) be univalent in H. Then f ∈ S∗∞(H) and
p∞(H) = f̂(∞) if and only if f(Hc) ∈ Z∗∞ for every c > 0.

Proof. Assume that f ∈ S∗∞(H) and w0 = ∞ corresponds to the prime
end p∞(f(H)). For each t > 1 define

qt(w) = f−1(tf(w)), w ∈ H.
Since f(H) is a domain starlike w.r.t. infinity, we have tf(w) ∈ f(H) for
every t > 1 and w ∈ H. The univalence of f shows that the function qt is
well defined for each t > 1.

Now fix t > 1 and let v0 ∈ ∂f(H) be such that l+[v0] \ {v0} ⊂ f(H).
Consider the sequence (vn) = (tnv0) of points in l+[v0] and the correspond-
ing sequence (wn) = (f−1(vn)) of points in H. Using the same notations as
before let C(tn) = {v ∈ C : |v − v0| = (tn − 1)|v0|} and let Q(tn) ⊂ C(tn)
denote the crosscut of f(H) containing the point vn. Therefore (Q(tn)) is a
null chain representing the prime end p∞(f(H)). By the Prime End Theo-
rem [5, p. 30], (f−1(Q(tn))) is a null chain in H that separates v0 and infinity
for large n. Since wn = f−1(vn) ∈ f−1(Q(tn)) and diam# f−1(Q(tn)) → 0
as n→∞, we conclude that limn→∞ wn =∞. Observe that

qt(wn) = f−1(tvn) = wn+1.

Let now

an =
|qt(wn) + 1| − |qt(wn)− 1|
|wn + 1| − |wn − 1| · |wn + 1|

|qt(wn) + 1| , n ∈ N.

Hence

an =
|wn+1 + 1| − |wn+1 − 1|
|wn + 1| − |wn − 1| · |wn + 1|

|wn+1 + 1|
for all n ∈ N. Consequently,
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lim
n→∞

(a1a2 . . . an) = lim
n→∞

{ |wn+1 + 1| − |wn+1 − 1|
|w1 + 1| − |w1 − 1| · |w1 + 1|

|wn+1 + 1|

}

= lim
n→∞





|w1 + 1|
|w1 + 1| − |w1 − 1|


1−

∣∣∣∣1−
1

wn+1

∣∣∣∣
∣∣∣∣1 +

1
wn+1

∣∣∣∣








= 0.

Hence infinitely many an must satisfy 0 < an ≤ 1, so there exists a conver-
gent subsequence (ank) such that

0 ≤ lim
k→∞

ank = α(t) ≤ 1,

which means that

lim
k→∞

{ |qt(wnk) + 1| − |qt(wnk)− 1|
|wnk + 1| − |wnk − 1| · |wnk + 1|

|qt(wnk) + 1|

}
= α(t) ≤ 1

for every fixed t > 1. In fact, in view of Remark 2.2, α(t) > 0 for every t > 1.
Hence qt satisfies the assumptions of Lemma 2.2, and since α(t) ≤ 1 for

every t > 1, we derive that

qt(Hc) ⊂ Hc/α(t) ⊂ Hc
for every c > 0. This yields tf(Hc) ⊂ f(Hc) for every t > 1. Therefore
f(Hc) ∈ Z∗∞ for every c > 0. Conversely, assume that f(Hc) ∈ Z∗∞ for every
c > 0. Since ∞ ∈ ∂f(Hc) for every c > 0 and

f(H) =
⋃

c>0

f(Hc),

it follows that ∞ ∈ ∂f(H) and f(H) ∈ Z∗∞. Observe also that there exists
a prime end p∞(f(H)) which corresponds to a point w0 ∈ ∂H ∪ {∞}. We
need to show that w0 =∞.

To this end, fix c > 0 and suppose that w0 6=∞. Let v0 ∈ f(H) be such
that l+[v0] \ {v0} ⊂ f(H).

Let C(t) = {v ∈ C : |v−v0| = t|v0|}, t > 0. Repeating the construction of
a null chain for the domain f(H) and using the same notation letQ(t), t > 0,
denote the crosscut of f(H) containing the point (1+t)v0. Choosing a strictly
increasing sequence (tn) of points in (1,∞) such that limn→∞ tn = ∞ let
(Q(tn)) be the corresponding sequence of crosscuts of f(H) which represents
the prime end p∞(f(H)) corresponding in a unique way to w0 ∈ ∂H∪ {∞}.
By the Prime End Theorem, (f−1(Q(tn))) is a null chain that separates in H
the points w0 and v0 for large n. Since v0 6=∞ and diam# f−1(Q(tn))→ 0
as n→∞ we see that

(3.1) f−1(Q(tn)) ∩Hc = ∅
for large n.
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On the other hand, f(Hc) is in Z∗∞, which implies that Q(tn)∩f(Hc) 6= ∅
for large n ∈ N. This contradicts (3.1) and finally proves that w0 = ∞, so
p∞(f(H)) = f̂(∞). The proof of the theorem is finished.

In the proof of the next theorem we need the lemma below.

Lemma 3.1. If f ∈ A(H) is univalent in H and f(w) 6= 0 for w ∈ H,
then

(3.2)
∣∣∣∣
f ′(x)
f(x)

∣∣∣∣ ≤
2
x
, x > 0.

Proof. Since f ∈ A(H) is univalent in H, the function

g(z) = f

(
1 + z

1− z

)
= f(w), z ∈ D,

where w = (1 + z)/(1− z), is analytic univalent in D and maps it onto the
domain Ω = f(H). Hence

|g′(z)|
dist(g(z), ∂g(D))

≤ 4
1− |z|2

for z ∈ D (see [5, p. 92]). For any υ 6∈ Ω, the above shows that
∣∣∣∣
g′(z)

g(z)− υ

∣∣∣∣ ≤
4

1− |z|2
for z ∈ D. Hence ∣∣∣∣

f ′(w)
f(w)− υ

∣∣∣∣ ≤
8

|w + 1|2 − |w − 1|2
for w ∈ H. Therefore for υ = 0 and w = x > 0 we obtain (3.2).

To present an analytic characterization of the class S∗∞(H) it is useful to
define the following class of functions.

Definition 3.3. For α > 0 let P(α;H) be the subclass of all functions
q ∈ P(H) satisfying (2.4) and (2.5).

Theorem 3.2. If f ∈ S∗∞(H) and p∞(f(H)) = f̂(∞), then there exists
α ∈ (0, 1] and a function q ∈ P(α;H) such that

f ′(w)
f(w)

=
2

q(w)
, w ∈ H.

Proof. Define

q(w) = 2
f(w)
f ′(w)

, w ∈ H.

Since f ′(w) 6= 0 in H, q is analytic in H.
We will prove that q is in P(α;H) for some α ∈ (0, 1].
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1. First we show that Re q(w) > 0 for w ∈ H, i.e.

Re
{
f ′(w)
f(w)

}
> 0, w ∈ H.

Remark 3.1 yields 0 6∈ f(H). Therefore the function

γc = ∂Hc 3 w 7→ arg f(w)

is well defined on the analytic arc γc. We use the following parametrization:

(3.3) γc : w = γ(y) = c+ iy, y ∈ R.
From Theorem 3.1 it follows that f(Hc) ∈ Z∗∞ for every c > 0. This means
geometrically that the function

(3.4) R 3 y 7→ arg f(γ(y))

is monotonic on the analytic arc γc for every c > 0. Since f is a conformal
mapping, it preserves the orientation of γc. We have

d

dy
arg f(γ(y)) =

d

dy
Im log f(γ(y)) = Im

{
γ′(y)

f ′(γ(y))
f(γ(y))

}
(3.5)

= Re
{
f ′(γ(y))
f(γ(y))

}
≥ 0

for y ∈ R. By the above

(3.6) Re
{
f ′(w)
f(w)

}
≥ 0

for w ∈ H.
Assume now that equality holds in (3.6) for some w0 ∈ H. By the max-

imum principle for harmonic functions it holds in the whole halfplane H,
which implies that there exists b ∈ R \ {0} so that

f ′(w)
f(w)

≡ bi, w ∈ H.

But the solution

f(w) = f0(w) = a exp(ibw), w ∈ H, a ∈ C \ {0},
of the last equation is not univalent in H. So f0 6∈ S∗∞(H) and hence the
strict inequality holds in (3.6).

2. Now we prove that the function q satisfies the conditions (2.11) and
(2.12) of Corollary 2.1. Let (xn) be an arbitrary sequence of positive real
numbers such that limn→∞ xn = ∞. Since, by Remark 3.1, 0 6∈ f(H), ap-
plying Lemma 3.1 we have

|q(xn)| = 2
∣∣∣∣
f(xn)
f ′(xn)

∣∣∣∣ ≥ xn,
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which implies that limn→∞ q(xn) =∞. Moreover Lemma 3.1 yields

xn
|q(xn)| =

xn
2

∣∣∣∣
f ′(xn)
f(xn)

∣∣∣∣ ≤ 1

for n ∈ N. Take a convergent subsequence (xnk) such that

lim
k→∞

xnk
|q(xnk)| = α1 ≤ 1.

Hence

lim
k→∞

xnk + 1
|q(xnk) + 1| = lim

k→∞

xnk

(
1 +

1
xnk

)

|q(xnk)|
∣∣∣∣1 +

1
q(xnk)

∣∣∣∣
= α1.

It is easy to check that for x > 0,

|q(x) + 1| − |q(x)− 1| ≤ 2.

In particular, the last inequality holds for x = xnk so there exists a subse-
quence (xnkl ) such that

lim
l→∞
{|q(xnkl ) + 1| − |q(xnkl )− 1|} = 2α2 ≤ 2.

Consequently,

lim
l→∞

{
(|q(xnkl ) + 1| − |q(xnkl )− 1|)

xnkl + 1

|q(xnkl ) + 1|

}
= 2α1α2 = 2α,

where α ∈ [0, 1]. By Remark 2.2, α ∈ (0, 1]. In this way the function q
satisfies the assumptions of Corollary 2.1.

This ends the proof of the theorem.

Theorem 3.3. Let f ∈ A(H). Assume that there exists an α ∈ (0, 1]
and a function q ∈ P(H) with limw→∞ q(w) =∞ such that

(3.7) lim
w→∞

q(w)
w

=
1
α
.

If

(3.8)
f ′(w)
f(w)

=
2

q(w)
, w ∈ H,

then f ∈ S∗∞(H) and p∞(f(H)) = f̂(∞).

Proof. Notice that from (3.8) it follows that f is locally univalent in H.
Also f(w) 6= 0 for w ∈ H.

Now we prove that f is univalent in H.
Consider again the function (3.3) defined on the analytic arcs γc = ∂Hc

for each c > 0, parametrized by (3.4). Repeating the calculations (3.5) we
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see that the condition (3.8) implies

d

dy
arg f(γ(y)) > 0, y ∈ R,

i.e. the function (3.3) is strictly increasing on each γc. By monotonicity the
limits

ψc = lim
y→+∞

arg f(γ(y)), ϕc = lim
y→−∞

arg f(γ(y))

(possibly infinite) both exist and ψc − ϕc > 0 (see [4, Theorem 1, p. 17]).
We will prove that ψc − ϕc ≤ 2π for every c > 0.

For every c > 0 and R > c consider two arcs in H:

γc,R = {c+ iy : y ∈ [−
√
R2 − c2,

√
R2 − c2]},

σc,R = {w ∈ C : |w| = R} ∩Hc.
We will use the following parametrization:

σc,R : w = σ(t) = Reit, t ∈ [−t(c,R), t(c,R)],

where t(c,R) = arctan(
√
R2 − c2/c). The arc γc,R will be parametrized by

(3.3) where y ∈ [−
√
R2 − c2,

√
R2 − c2]}.

(a) Assume first that α ∈ (0, 1). Fix c > 0. Then by (3.7) there exists
R1 > c such that |w/q(w)| ≤ α < 1 for w ∈ H \ D(0, R1). Take R > R1.
Hence H \ D(0, R) ⊂ H \ D(0, R1).

Since γc,R ∪ σc,R is a closed curve lying in H, we have

(3.9) arg f(γ(
√
R2 − c2))− arg f(γ(−

√
R2 − c2)) = ∆γc,R arg f(w)

= Im
�

γc,R

f ′(w)
f(w)

dw = Im
�

γc,R

2
q(w)

dw = Im
�

σc,R

2
q(w)

dw

= Im
t(c,R)�

−t(c,R)

2iReit

q(Reit)
dt ≤ 2

t(c,R)�

−t(c,R)

R

|q(Reit)| dt

≤ 4t(c,R)α ≤ 2πα < 2π.

If now R→∞, then t(c,R)→ π/2, which implies

0 < ψc − ϕc
= lim
R→∞

(arg f(
√
R2 − c2)− arg f(−

√
R2 − c2)) ≤ 2π.

This means that f(Hc) ⊂ Vc, where Vc is the sector with vertex at the
origin and with opening angle ψc − ϕc. Since f(Hc2) ⊂ f(Hc1) for 0 < c1 <
c2, we have Vc2 ⊂ Vc1 . Hence V =

⋃
c>0 Vc is a sector with vertex at the

origin and with opening angle ψ − ϕ = sup{ψc − ϕc : c > 0}. Obviously,
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0 < ψ − ϕ ≤ 2π. As

f(H) =
⋃

c>0

f(Hc) ⊂
⋃

c>0

Vc = V,

there exists ϕ0 ∈ R such that

ϕ0 < arg f(w) = Im log f(w) = Im g(w)(3.10)

< ϕ0 + ψ − ϕ ≤ ϕ0 + 2π, w ∈ H,
where g(w) = log f(w), w ∈ H, is well defined in H. But (3.8) yields

Re
{
f ′(w)
f(w)

}
= Re{g′(w)} > 0, w ∈ H.

Now [5, Proposition 1.10, p. 16] yields the univalence of g in H. Since f(w) =
exp(g(w)), w ∈ H, using (3.10) we deduce finally that f is univalent in H.

(b) Let now α = 1. Fix c > 0. For n ∈ N there exists R1(n) > c
such that |w/q(w)| ≤ 1 + 1/n for w ∈ H \ D(0, R1(n)). For each n ∈
N take R(n) > R1(n) in such a way that limn→∞R(n) = ∞. Clearly,
H \ D(0, R(n)) ⊂ H \ D(0, R1(n)). Let γc,R(n) and σc,R(n) be defined as
in part (a). Since γc,R(n) ∪ σc,R(n) is a closed curve lying in H, we have, as
in (3.9), for each n ∈ N,

∆γc,R(n) arg f(w) ≤ 2
t(c,R(n))�

−t(c,R(n))

∣∣∣∣
R(n)eit

q(R(n)eit)

∣∣∣∣ dt

≤ 4
(

1 +
1
n

)
t(c,R(n))α ≤ 2

(
1 +

1
n

)
π,

and we complete the proof as before.

Examples. Now we present some examples of functions. The first two
examples are geometrically obvious. The first function maps univalently H
onto a slit plane, the second one maps H onto a wedge. The third example
does not exhibit an evident geometrical property. Therefore Theorem 3.3
offers a useful analytical method to check if the function is an element
of S∗∞(H).

1. f(w) =
√
w2 + a2, w ∈ H, a ≥ 0. Then

q(w) = 2
f(w)
f ′(w)

= 2
w2 + a2

w
= 2
(
w +

a2

w

)
, w ∈ H.

Consequently, q ∈ A(H), Re q(w) > 0 for w ∈ H, and limw→∞ q(w)/w = 2
so (3.7) is satisfied with α = 1/2. By Theorem 3.3, f ∈ S∗∞(H).

2. f(w) = wµ, w ∈ H, µ ∈ (0, 2]. Then

q(w) =
2
µ
w, w ∈ H.
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Consequently, q ∈ A(H), Re q(w) > 0 for w ∈ H, and limw→∞ q(w)/w = 2/µ
so (3.7) is satisfied with α = µ/2. By Theorem 3.3, f ∈ S∗∞(H) for each
µ ∈ (0, 2].

3. f(w) = (w + 1)β exp
(

1−w
1+w

)
, w ∈ H, β > 0. Then

q(w) = 2
(w + 1)2

βw + β − 2
, w ∈ H.

For β ∈ (0, 2) the function q has a pole at w = (2− β)/β so q 6∈ A(H).
For β ≥ 2, q ∈ A(H). Moreover, for w ∈ H, i.e. for w = x + iy with

x > 0, we have

Re q(w) = 2
(x+ 1)2(βx+ β − 2) + (2 + β(x+ 1))y2

(β(x+ 1)− 2)2 + β2y2 > 0.

Since limw→∞ q(w)/w = 2/β, we conclude that (3.7) is satisfied only for
β = 2, i.e. for α = 1. By Theorem 3.3, f ∈ S∗∞(H) for β = 2.
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