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Countable Compat Sattered T2 Spaesand Weak Forms of ACbyKyriakos KEREMEDIS, Evangelos FELOUZIS and Eleftherios TACHTSISPresented by Czesªaw BESSAGA
Summary. We show that:(1) It is provable in ZF (i.e., Zermelo�Fraenkel set theory minus the Axiom of ChoieAC) that every ompat sattered T2 topologial spae is zero-dimensional.(2) If every ountable union of ountable sets of reals is ountable, then a ountableompat T2 spae is sattered i� it is metrizable.(3) If the real line R an be expressed as a well-ordered union of well-orderable sets,then every ountable ompat zero-dimensional T2 spae is sattered.(4) It is not provable in ZF+¬AC that there exists a ountable ompat T2 spaewhih is dense-in-itself.

1. Notation and terminology. Let (X, T ) be a topologial spae.(i) X is said to be ompat i� every open over of X has a �nite sub-over.(ii) X is said to be dense-in-itself i� it has no isolated points.(iii) X is said to be zero-dimensional i� eah of its points has a neigh-borhood base onsisting of lopen (losed and open) sets.(iv) X is said to be a Baire spae i� ⋂

D = X for every ountable family
D of dense open sets of X. (In ZF, a ompat T2 spae is Baire i� itannot be overed by ountably many nowhere dense sets, i.e., setswhose losure has empty interior; see [3℄).2000Mathematis Subjet Classi�ation: 03E25, 03E35, 54A35, 54D10, 54D30, 54D80,54E35, 54E52, 54G12.Key words and phrases: axiom of hoie, weak axioms of hoie, ompat spaes,Hausdor� spaes, ountable spaes, metrizable spaes, zero-dimensional spaes, satteredspaes, Baire spaes. [75℄
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For any topologial spae (X, T ), let

Iso(X) = {x ∈ X : x is isolated in X}.By trans�nite reursion we de�ne a dereasing sequene (Xα)α∈Ord of losedsubspaes of X as follows:
X0 = X,

Xα+1 = Xα \ Iso(Xα),

Xα =
⋂

{Xβ : β < α} for α limit.The set Xα, α ∈ Ord, is alled the αth Cantor�Bendixson derivative of X.A topologial spae (X, T ) is alled sattered i� Iso(Y ) 6= ∅ for eahnon-empty subspae Y of X. Clearly, X is sattered i� there exists an or-dinal α0 suh that Xα0
= ∅. If X is sattered, then the ordinal number

min{α : Xα = ∅} is alled the Cantor�Bendixson rank of the sattered spae
X and it is denoted by |X|CB. It is straightforward to see that if (X, T ) is aompat sattered spae, then |X|CB is a suessor ordinal.Next we list the topologial and set-theoretial statements involved inthis paper.CCM: Every ountable ompat T2 spae is metrizable.CCS: Every ountable ompat T2 spae is sattered.CC0M and CC0S stand for CCM and CCS, respetively, with the addi-tional requirement that the spaes involved are zero-dimensional.CAC(R): Every ountable family of non-empty sets of reals has a hoiefuntion.CUC(R): A ountable union of ountable sets of reals is ountable.WO-AC(R): For every family A of non-empty sets of reals there exists afuntion f suh that f(x) is a non-empty well-orderable subset of x for all
x ∈ A.2. Introdution and some preliminary results. In [5, Theorem 2.2℄it is shown that the statement:CCM: Every ountable ompat T2 spae is metrizable,is a theorem of ZF+CAC(R). However, CCM is not a theorem of ZF. Inpartiular, a Cohen foring model of ZF is onstruted in [5, Theorem 3.4℄in whih there exists a ountable ompat sattered T2 spae whih is notseond ountable, hene not metrizable. Therefore, CCM, as well as thestatement that every ountable ompat sattered T2 spae is metrizable, arenot deduible from the ZF axioms alone.
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In the present paper, we shall show that a stritly weaker priniple thanCAC(R), namely CUC(R), su�es in order to establish that CCS impliesCCM. This is done in Theorem 8. To ahieve our goal, we �rst show in The-orem 7 that every ompat sattered T2 spae is zero-dimensional is provablein ZF. The mehanism of this proof is the key to establish Theorem 8. Fromthe above we infer that every ountable ompat sattered T2 spae is metriz-able does not imply CAC(R) in ZF. (The original Cohen model, model M1in [2℄, satis�es CUC(R) and the negation of CAC(R).)In the realm of ountable ompat T2 spaes, we prove in Theorem 10that the weak hoie priniple WO-AC(R) implies CC0S. Thus, under theaforementioned axiom, the notions of �zero-dimensional� and �sattered� o-inide for the lass of ountable ompat T2 spaes. In Theorem 12 it isshown that CC0S is stritly weaker than WO-AC(R) in ZF. Furthermore,in the latter theorem we prove that the statement that there exists a ount-able ompat zero-dimensional T2 spae whih is dense-in-itself (i.e., thenegation of CC0S) is not deduible from the axioms of ZF set theory.As might be expeted, for ountable ompat T2 spaes the notions of�sattered� and �Baire spae� are losely related. Arnold Miller's list of in-teresting problems, posted on his webpage, inludes the following question(Problem 13.3 in Setion 13 titled �not AC�):In ZF, does every ountable ompat T2 spae have an isolated point?The above problem is referred to as Marianne Morillon's question. Mo-rillon (http://www2.univ-reunion.fr/�mar/question.html) also poses the fol-lowing question:In ZF, is every ountable ompat T2 spae a Baire spae?Our �rst easy result shows that the topologial statements of the abovetwo questions are equivalent to CCS.Theorem 1. The following statements are equivalent in ZF:(a) Every ountable ompat T2 spae is a Baire spae.(b) Every ountable ompat T2 spae has at least one isolated point.() CCS.(d) In every ountable ompat T2 spae (X, T ) the set of isolated pointsis dense. In partiular , every ountably in�nite ompat T2 spae

(X, T ) has an in�nite disrete subspae.Proof. Let (X, T ) be a ountable ompat T2 spae.(a)⇒(b). If X has no isolated points then X is not a Baire spae (sin-gletons in a dense-in-itself T2 spae are losed nowhere dense sets), ontra-diting our hypothesis.
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(b)⇒(), ()⇒(d). These are straightforward.(d)⇒(a). By hypothesis X has at least one isolated point x. Sine x is inevery dense open subset of X it follows that X is a Baire spae as required.From Theorem 1 it follows that the answer to Morillon's question dependson the answer to the following question:Does there exist a model of ZF in whih there is a ountable, dense-in-itself , ompat Hausdor� spae?In the next theorem, we give equivalent versions of the above problem.Theorem 2. The following statements are equivalent in ZF:(i) There is a ountable dense-in-itself ompat T2 spae.(ii) On every ountably in�nite set one an de�ne a dense-in-itself om-pat T2 topology.(iii) Every ountable ompat T2 spae embeds in a ountable dense-in-itself ompat T2 spae.Proof. (i)⇒(ii). Let (Y,Q) be a ountable dense-in-itself ompat T2spae and X a ountably in�nite set. Let f : Y → X be a bijetion. It anbe readily veri�ed that T = {f(O) : O ∈ Q} is a dense-in-itself ompat T2topology on X.(ii)⇒(iii). Fix a ountable ompat T2 spae (X, T ). Let Q be a dense-in-itself ompat T2 topology on ω. Clearly, the Tikhonov produt (Y,W) of

(X, T ) and (ω,Q) is a dense-in-itself ompat T2 spae and (X, T ) embedsin (Y,W).(iii)⇒(i). This is straightforward.We will need the following results. We leave the proof of Theorem 5 asan easy exerise for the interested reader.Theorem 3 (Good�Tree, [1℄). (ZF) Urysohn's metrization theorem:Every regular , seond ountable topologial spae is metrizable.Theorem 4 (Keremedis-Tahtsis, [5℄). (ZF) Every ountable ompatT2 spae (X, T ) with a well-orderable base for T is metrizable.Theorem 5. (ZF) Every ompat T2 spae is T4.Theorem 6 (Keremedis�Tahtsis, [4℄). The following statements areequivalent in ZF:

(i) WO-AC(R).
(ii) R is the union of a well-orderable family of well-orderable sets.



Compat Sattered Spaes 79
3. Main results. A. J. Ostaszewski ([7, p. 515℄) proves that ompatsattered T2 topologial spaes are zero-dimensional. However, his proof isarried out in the ZFC axiom system. We show next that the axiom of hoieis not really needed.Theorem 7. (ZF) Every ompat sattered T2 spae is zero-dimensional.Proof. Fix a ompat sattered T2 spae (X, T ) and let α = |X|CB beits Cantor�Bendixson rank. Then α = β + 1 for some β ∈ Ord.For every i ≤ β, let Gi = Iso(Xi). Clearly, X =

⋃

i≤β Gi. We shall showthat for every i ≤ β and every point x ∈ Gi there exists a subset Vx of Tsuh that:(1) For every x ∈ Gi, Vx is a neighborhood base at x onsisting of lopensubsets of X.(2) For every x ∈ Gi and every V ∈ Vx, V ⊂ (
⋃

j<i Gj) ∪ {x}.For i = 0, if x ∈ G0 = Iso(X), then we set Vx = {{x}}.For i ≤ β, assume that (1) and (2) hold for all x ∈ Gj , j < i, and let
x ∈ Gi. We �rst note that there exists an open neighborhood Vx of x suhthat V x ⊂ (

⋃

j<i Gj) ∪ {x}. To see this, onsider the following two ases:(a) i = β. Then Gi is �nite. Let Vx be an open neighborhood of x suhthat V x ⊂ (Gi\{x})
c. Clearly V x∩Gi = {x} and sine X =

⋃

j≤β Gjit follows that Vx is as required.(b) i < β. Sine Xi+1 is losed and Gi = Iso(Xi), and x /∈ Xi+1, thereis an open neighborhood Ox of x whih avoids Xi+1 and meets Gionly in x. Let Vx be an open neighborhood of x suh that V x ⊂ Ox.Then Vx is as required.Clearly, ∂Vx = V x\Vx ⊂
⋃

j<i Gj , and by the indution hypothesis itfollows that U =
⋃

y∈∂Vx
Vy is a over of ∂Vx. Let W be a �nite suboverof U . Then W =

⋃

W is a lopen set inluding ∂Vx and Fx = V x\W = Vx\Wis a lopen neighborhood of x suh that Fx ⊂ (
⋃

j<i Gj) ∪ {x}.From the above it follows that the olletion
Vx =

{

V ⊂
(

⋃

j<i

Gj

)

∪ {x} : V is a lopen neighborhood of x
}

is non-empty and obviously Vx is a neighborhood base at x. This ompletesthe proof of the theorem.Theorem 8. Under CUC(R), CCS i� CCM.Proof. (CCS ⇒ CCM). Let (X, T ) be a ountable ompat satteredT2 spae. Let α = |X|CB, Gi = Iso(Xi) for all i ∈ α, and for eah x ∈ X,let Vx be the lopen neighborhood base at x whih was onstruted in the
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proof of Theorem 7. We will show that the lopen base B =

⋃

{Vx : x ∈ X}for T is ountable. Then Theorem 3 will imply that X is metrizable.For every i ∈ α, put Bi =
⋃

{Vx : x ∈
⋃

j≤i Gj}.
Claim. For eah i ∈ α, Bi is a ountable set.Proof of Claim. For i = 0, B0 = {{x} : x ∈ G0} is learly ountable.For i < α, assume that Bj , j < i, is ountable. By CUC(R) it followsthat ⋃

{Bj : j < i} is ountable. To terminate the indution, it su�es toshow that for every x ∈ Gi, Vx is ountable. Fix any H ∈ Vx. For every
F ∈ Vx we set
U = {F ∩ H} ∪

{

V ∈
⋃

j<i

Bj : V ⊂ F \ H
}

∪
{

V ∈
⋃

j<i

Bj : V ⊂ H \ F
}

.Then U is a over of the lopen set F ∪ H. Let W be a �nite subover of Uand put
W1 =

⋃

{W ∈ W : W ⊂ F \ H}, W2 =
⋃

{W ∈ W : W ⊂ H \ F}.It follows that F = (H \
⋃

W2) ∪ (
⋃

W1). Thus, every set F ∈ Vx an beexpressed in terms of the set H and a �nite subset W of ⋃

j<i Bj . Sine
⋃

j<i Bj is ountable, the set [
⋃

j<i Bj ]
<ω is also ountable and onsequently

Vx is ountable as required.From the Claim it readily follows that for all x ∈ X, Vx is ountable.Thus, by CUC(R), the lopen base B for T is ountable. Hene, X is metriz-able as desired.(CCM ⇒ CCS) This is straightforward.Theorem 9. (ZF)(i) CCS+CC0M i� CCM.(ii) CCM i� every ountable ompat T2 spae topologially embeds inthe set Q of all rational numbers.Proof. (i) In view of Theorem 7, this is straightforward.(ii)(⇒) Let (X, T ) be a ountable ompat metrizable spae. Then X issattered and has a ountable base C. Let {Dn : n ∈ ω} be an enumerationfor the set [C]<ω of all �nite subsets of C. Let also B be the lopen basefor T de�ned in the proof of Theorem 8. We show that B is ountable.To this end, de�ne a funtion f : B → [C]<ω by setting for eah V ∈ B,
f(V ) = DnV

, where nV = min{n ∈ ω : V =
⋃

Dn}. Sine eah V ∈ B is aompat set and C is a base for T , it follows that f(V ) is de�nable for all
V ∈ B. Furthermore, it an be readily veri�ed that f is one-to-one, hene Bis ountable. Follow now the proof of Theorem 2 in [6, p. 287℄, in order toverify that X topologially embeds in Q.(ii)(⇐) This is straightforward.
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Theorem 10. WO-AC(R) implies CC0S.Proof. Let (X, T ) be a ountable, zero-dimensional, ompat T2 spae.In view of Theorem 1 it su�es to show that Iso(X) 6= ∅. Assume on theontrary that X is dense-in-itself. We shall reah a ontradition by provingthat |R| ≤ |X|.Let B be a base for X onsisting of lopen sets, and by WO-AC(R) let

A = {Bn : n ∈ ℵ}, ℵ a well-ordered ardinal and Bn an in�nite well-orderableset for eah n ∈ ℵ, be a family suh that B =
⋃

A.By indution on the length of sequenes in <N2 =
⋃

{n2 : n ∈ N} weshall onstrut a family {Bs : s ∈ <N2} suh that:(1) For all s ∈ <N2, Bs is a ompat, zero-dimensional, dense-in-itselfsubspae of X.(2) For all s ∈ <N2 and t ∈ 2, B
s
a

t
⊂ Bs, where for s = (s1, . . . , sn)and t ∈ 2, sat = (s1, . . . , sn, t), n ∈ N, i.e. the onatenation of thesequene s with the element t of 2.(3) For all s ∈ <N2, B

s
a

0
∩ B

s
a

1
= ∅.For the �rst step of the indution we argue as follows: Without loss of gen-erality assume that X ∈ B0 and let Γ0 be the Boolean subalgebra of P(X)whih is generated by B0. Sine B0 is well-orderable, it follows that so is Γ0.Let S0 = Ult(Γ0) be the Stone spae of Γ0, i.e., the spae of ultra�lters of

Γ0 having the olletion U = {Up = {F ∈ S0 : p ∈ F} : p ∈ Γ0} as a base forits topology. Then S0 is a ompat zero-dimensional T2 spae (ompatnessfollows without using any form of hoie sine Γ0 is well-orderable).We assert that S0 is a ountable set. To see this, �rst let A = {
⋂

F :
F ∈ S0}. By ompatness of X, it follows that eah member of A is anon-empty set. Moreover, A is pairwise disjoint. Indeed, let F ,G ∈ S0 besuh that F 6= G. Let V ∈ F \G and assume that there exists an element x ∈
(
⋂

F)∩(
⋂

G). Then V c ∈ G for G is an ultra�lter of Γ0, and x ∈ V ∩V c = ∅,a ontradition. Thus, A is ountable and the funtion f : S0 → A de�nedby f(F) =
⋂

F for all F ∈ S0 is one-to-one. It follows that S0 is a ountableset and an be e�etively enumerated.By Theorem 4 we dedue that S0 is a metrizable spae, moreover Iso(S0)
= S0. As |S0| ≥ 2 (if V ∈ Γ0, let F and G be the ultra�lters of Γ0 generatedby the �lters F = {U ∈ Γ0 : V ⊂ U} and G = {U ∈ Γ0 : V c ⊂ U}respetively; the onstrution of F and G an be done without employingany hoie priniple sine Γ0 is well-orderable) and Iso(S0) = S0, it followsthat S0 has at least two isolated points, say F and G. Assume that F is lessthan G aording to some presribed enumeration of S0. It is well knownthat the atoms of a Boolean algebra orrespond to the isolated points ofits Stone spae. Thus, there exist unique disjoint elements pF , qG ∈ Γ0 suh
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that UpF = {F} and UqG = {G}. Now, pF and qG , being lopen subsets of
(X, T ), are ompat, zero-dimensional, dense-in-itself subspaes of X. Put
B〈0〉 = pF and B〈1〉 = qG .Assume now that we have onstruted sets Bs for all dyadi sequenesof length n. Let s be any suh sequene and let Sn be the Stone spae of theBoolean subalgebra Γn of P(Bs) whih is generated by {O ∩ Bs : O ∈ Bn}.As in the �rst step of the indution we may prove that Sn is a ountable(with an e�etive enumeration) ompat metrizable spae, hene we mayhoose two isolated points of Sn, say F and G. Assume that F is less than
G aording to some presribed enumeration of Sn. Let pF and qG be theunique atoms of Γn suh that UpF = {F} and UqG = {G}. Put B

s
a

0
= pFand B

s
a

1
= qG . The indution is terminated.For every g ∈ 2N, let Gg =

⋂

{Bg|n : n ∈ N}. Sine {Bg|n : n ∈ N} is adesending family of non-empty losed subsets of X, it follows that Gg 6= ∅and we may hoose ug = min(Gg) where the minimum is taken with respetto some presribed enumeration of X. By ondition (3) it follows that for all
s, t∈2N, if s 6=t, then for some n∈N, Bs|n ∩Bt|n =∅. Therefore, the funtion
F : 2N → X de�ned by F (g) = ug for all g ∈ 2N is injetive, hene |R| ≤ |X|.This is a ontradition, thus X has at least one isolated point as desired.From the proof of Theorem 10 it is apparent that all the Boolean algebrasinvolved in the indutive onstrution have the same ardinality as theirmetrizable Stone spaes. In partiular, they are both ountable. Motivatedby this observation we prove the following result.Theorem 11. Assume that for every Boolean algebra (B, +, ·), |B| ≤
|P (B)|, where P (B) is the set of all prime ideals of B. Then every om-pat zero-dimensional T2 spae (X, T ) has a base of size at most |X|. Inpartiular , every ountable ompat zero-dimensional T2 spae is metrizable.Proof. Fix a ompat zero-dimensional T2 spae (X, T ) and let B bethe Boolean algebra of all lopen subsets of X under union and intersetion.Clearly B has no free ultra�lters (i.e., ultra�lters F ⊂ B suh that ⋂

F = ∅).Thus, |X| = |P (B)| and our assumption implies that |B| ≤ |X|. Sine B isa base for X the desired result follows.Theorem 12.(i) The negation of CC0S, i.e. the statement �there exists a ountableompat zero-dimensional T2 spae whih is dense-in-itself", is notprovable in ZF + ¬AC.(ii) CC0S is stritly weaker than CAC(R) in ZF.(iii) None of the statements CCS, CCM, CC0S, and CC0M implies
WO-AC(R) in ZF.(iv) In ZF, CC0S does not imply CUC(R).
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Proof. (i) By Theorem 10 we know that ¬CC0S implies ¬WO-AC(R),i.e., R annot be written as a well-orderable union of well-orderable sets.Sine ¬WO-AC(R) fails in the Feferman�Lévy foring model (model M9in [2℄; in it, R an be expressed as a ountable union of ountable sets) itfollows that ¬CC0S is not provable in ZF.(ii) From the proof of (i) and from Theorem 10 it follows that CC0Sholds in the model M9. Sine in M9, R is a ountable union of ountablesets and the axiom CAC(R) implies CUC(R), it follows that CAC(R) failsin M9.(iii) In Feferman's foring model (modelM2 in [2℄)CAC(R) holds, heneeah of the topologial statements listed in (iii) holds true in this model(CAC(R) implies eah of these statements, see [5℄). On the other hand,as the axiom of hoie for well-ordered families of non-empty sets holdsin M2 and R is not well-orderable in that model (see [2℄), it follows thatWO-AC(R) fails in M2.(iv) CC0S holds in M9, whereas CUC(R) fails in that model (see theproof of (i)).4. Summary. In the following table, if the entry in the row labeled `A'and olumn labeled `B' is:(1) �?�, then it is unknown whether A → B in ZF;(2) �→�, then A → B in ZF;(3) � 6→�, then A 6→ B in ZF.

CAC(R) WO − AC(R) CCS CCM CC0M CC0S

CAC(R) → 6→ → → → →

WO− AC(R) 6→ → ? ? ? →

CCS ? 6→ → ? ? →

CCM ? 6→ → → → →

CC0M ? 6→ ? ? → →

CC0S 6→ 6→ ? ? ? →

Referenes[1℄ C. Good and I. Tree, Continuing horrors of topology without hoie, Topology Appl.63 (1995), 79�90.[2℄ P. Howard and J. E. Rubin, Consequenes of the Axiom of Choie, Math. SurveysMonogr. 59, Amer. Math. So., Providene RI, 1998.[3℄ K. Keremedis, Some weak forms of the Baire ategory theorem, Math. Logi Quart.49 (2003), 369�374.



84 K. Keremedis et al.
[4℄ K. Keremedis and E. Tahtsis, On sequentially ompat subspaes of R without theaxiom of hoie, Notre Dame J. Formal Logi 44 (2003), 175�184.[5℄ �, �, Countable ompat Hausdor� spaes need not be metrizable in ZF , Pro.Amer. Math. So., to appear.[6℄ K. Kuratowski, Topology, Vol. I, Aademi Press, New York, 1966.[7℄ A. J. Ostaszewski, On ountably ompat, perfetly normal spaes, J. London Math.So. (2) 14 (1976), 505�516.K. Keremedis and E. FelouzisDepartment of MathematisUniversity of the AegeanKarlovassi, 83 200, Samos, GreeeE-mail: kker�aegean.grfelouzis�aegean.gr

E. TahtsisDepartment of Statistis andAtuarial-Finanial MathematisUniversity of the AegeanKarlovassi, 83 200, Samos, GreeeE-mail: ltah�aegean.grReeived Marh 1, 2006;reeived in �nal form May 19, 2006 (7516)


