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Summary. We consider the problem of valuation of American (call and put) options
written on a dividend paying stock governed by the geometric Brownian motion. We
show that the value function has two different but related representations: by means of
a solution of some nonlinear backward stochastic differential equation, and by a weak
solution to some semilinear partial differential equation.

1. Introduction. We consider a financial market model in which the
price dynamics of a dividend paying stock Xs,x evolves (under the equiva-
lent martingale measure P ) according to the stochastic differential equation
(SDE) of the form

(1.1) Xs,x
t = x+

t�

s

(r − d)Xs,x
θ dθ +

t�

s

σXs,x
θ dWθ, t ∈ [s, T ].

Here x > 0, W is a standard Wiener process, d ≥ 0 is the dividend rate on
the stock, r ≥ 0 is the risk-free interest rate and σ > 0 is the volatility.

It is well known (see, e.g., [8, Section 2.5]) that the arbitrage-free value
of an American option with payoff function g : R → [0,∞) and expiration
time T is given by

(1.2) V (s, x) = sup
s≤τ≤T

Ee−r(τ−s)g(Xs,x
τ ),

where E denotes the expectation with respect to P and the supremum is
taken over all stopping times with respect to the standard augmentation
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{Ft} of the filtration generated byW . From [6] we also know that the optimal
stopping problem and, a fortiori, the value function V are related to the
solution (Y s,x, Zs,x,Ks,x) of the reflected backward stochastic differential
equation (RBSDE)

(1.3)

Y s,x
t = g(Xs,x

T )−
T�

t

rY s,x
θ dθ +Ks,x

T −K
s,x
t −

T�

t

Zs,xθ dWθ, t ∈ [s, T ],

Y s,x
t ≥ g(Xs,x

t ), t ∈ [s, T ],

Ks,x is increasing, continuous, Ks,x
s = 0,

T�

s

(Y s,x
t − g(Xs,x

t )) dKs,x
t = 0,

via the equality

(1.4) V (s, x) = Y s,x
s , (s, x) ∈ QT ≡ [0, T ]× R.

Formula (1.4) when combined with general results on connections between
RBSDEs and parabolic PDEs proved in [4] provides a probabilistic proof of
the fact that V = {V (s, x) : (s, x) ∈ QT } with V (s, x) given by (1.2) is a
viscosity solution of the obstacle problem (or, in another terminology, the
variational inequality)

(1.5)
{

min(u(s, x)− g(x),−LBSu(s, x) + ru(s, x)) = 0, (s, x) ∈ QT ,
u(T, x) = g(x), x ∈ R,

where LBS is the Black and Scholes differential operator defined by

LBSu = ∂su+ (r − d)x∂xu+
1
2
σ2x2∂2

xxu.

In the present paper we concentrate on the American call and put options
with exercise price K > 0 for which the payoff function is given by

g(x) =
{

(x−K)+, call option,
(K − x)+, put option.

We prove that in that case the process Ks,x has the form

(1.6) Ks,x
t =


t�

s

(dXs,x
θ − rK)+1{Y s,xθ =g(Xs,x

θ )} dθ, call option,

t�

s

(rK − dXs,x
θ )+1{Y s,xθ =g(Xs,x

θ )} dθ, put option,

for t ∈ [s, T ], i.e. the first two components (Y s,x, Zs,x) of the solution of
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(1.3) solve the usual (nonreflected) BSDE

Y s,x
t = g(Xs,x

T ) +
T�

t

(−rY s,x
θ + q(Xs,x

θ , Y s,x
θ )) dθ(1.7)

−
T�

t

Zs,xθ dWθ, t ∈ [s, T ],

where

q(x, y) =

(dx− rK)+1(−∞,g(x)](y), call option,

(rK − dx)+1(−∞,g(x)](y), put option,

for x, y ∈ R. The above result is in fact a reformulation of the representation
for the Snell envelope of the discounted payoff process ξt = e−r(t−s)g(Xs,x

t ),
t ∈ [s, T ] (see Section 3). Therefore our contribution here consists in pro-
viding a new proof of the last statement and clarifying relations between
(1.3) and (1.7). We also hope that our proof of the representation for the
Snell envelope for ξ will be of interest, because in contrast to other proofs
known to us it avoids considering the parabolic free-boundary value problem
associated with the optimal stopping problem (1.2).

Formula (1.6) has an analytical counterpart. Let %(x) = (1 + |x|2)−α,
x ∈ R, where α is chosen so that

	
R %

2(x)x2 dx <∞. By a solution of (1.5)
we understand a pair (u, µ) consisting of a measurable function u : QT → R
with some regularity properties and a Radon measure µ on QT such that

(1.8)


LBSu = ru− µ,
u(T ) = g, u ≥ g,

�

QT

(u− g)%2 dµ = 0

(see Section 2 for details). We prove that (1.8) has a unique solution (u, µ)
such that µ is absolutely continuous with respect to the Lebesgue measure
and

(1.9) dµ(t, x) = q(x, u(t, x)) dt dx.

Moreover, for each (s, x) ∈ QT such that x 6= 0,

(1.10) (Y s,x
t , Zs,xt ) = (u(t,Xs,x

t ), σx∂xu(t,Xs,x
t )), t ∈ [s, T ], P -a.s.,

i.e. (1.3) provides a probabilistic representation for the first component u
of a solution of (1.8). In particular, V = u. Formula (1.9) is an analytical
analogue of (1.6).

From (1.8), (1.9) it follows that V is a solution of the semilinear Cauchy
problem

(1.11) LBSu = ru− q(·, u), u(T, ·) = g.
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The above problem was considered in [2, 3] as an alternative to the obstacle
problem formulation (1.5) and the free boundary problem formulation (see,
e.g., [8, Section 2.7]). In [2] it is shown that (1.11) has a unique viscosity
solution (since q is discontinuous, the standard definition of a viscosity solu-
tion is modified appropriately) and V = u. Our approach to (1.5) via (1.8)
shows that in fact (1.11) results from a better understanding of the nature
of solutions of (1.5).

2. Obstacle problem for the Black and Scholes equation. In this
section we prove existence, uniqueness and stochastic representation of so-
lutions of the obstacle problem (1.8). We begin with the precise definition
of solutions of (1.8).

Let Qst = [s, t]×R, Qt = Q0t, and let R denote the space of all functions
% : R→ R of the form %(x) = (1 + |x|2)−α, x ∈ R, for some α ≥ 0 such that	
R %

2(x)x2 dx <∞.
Given % ∈ R we denote by L2,%(R) the Hilbert space of functions u on R

such that u% ∈ L2(R) equipped with the inner product 〈u, v〉2,% =
	
R uv%

2 dx.
Similarly, by L2,%(Qst) we denote the Hilbert space of functions u on Qst
such that u% ∈ L2(Qst) with the inner product 〈u, v〉2,%,s,t =

	
Qst

uv%2 dx dt.
If s = 0 we drop the subscript s in the notation. Set H% = {η ∈ L2,%(R) :
x∂xη(x) ∈ L2,%(R)}, W% = {η ∈ L2(0, T ;H%) : ∂tη ∈ L2(0, T ;H−1

% )}, where
H−1
% is the space dual to H%. By 〈·, ·〉%,T we denote the duality pairing

between L2(0, T ;H%) and L2(0, T ;H−1
% ). Finally, V = W% ∩ C(QT ).

We say that a pair (u, µ), where u ∈ V and µ is a Radon measure on
QT , is a solution of the obstacle problem (1.8) if

(2.1) u(T ) = g, u ≥ g,
�

QT

(u− g)%2 dµ = 0

and the equation

(2.2) LBSu = ru− µ

is satisfied in the strong sense, i.e. for every η ∈ C∞0 (QT ),

〈∂tu, η〉%,T + 〈LBSu, η〉%,T = r〈u, η〉2,%,T −
�

QT

η%2 dµ,

where

〈LBSu, η〉%,T = 〈(r − d)x∂xu, η〉2,%,T −
1
2
σ2〈∂xu, ∂x(x2η%2)〉2,T .

We say that a pair (u, µ) satisfies (2.2) in the weak sense if µ is a Radon
measure on QT , u ∈ L2(0, T ;H%) ∩ C([0, T ],L2,%(R)) and for every η ∈
C∞0 (QT ),
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〈u, ∂tη〉%,T − 〈LBSu, η〉%,T = 〈h(T ), η(T )〉2,% − 〈u(0), η(0)〉2,%
− r〈u, η〉2,%,T +

�

QT

η%2 dµ.

Let {Ft} denote the standard augmentation of the natural filtration
generated by W . By a solution of RBSDE (1.3) we understand a triple
(Y s,x, Zs,x,Ks,x) of {Ft}-progressively measurable processes on [s, T ] such
that

(2.3) E sup
t∈[s,T ]

|Y s,x
t |2 <∞, E

T�

s

|Zs,xt |2 dt <∞, E|Ks,x
T |

2 <∞

and (1.3) is satisfied P -a.s. A pair (Y s,x, Zs,x) of {Ft}-progressively measur-
able processes is a solution of BSDE (1.7) if (1.7) holds P -a.s. and Y s,x, Zs,x

satisfy the integrability conditions (2.3).
From the general results proved in [4] it follows that (1.3) has a unique

solution. We shall prove that the third component Ks,x of the solution is
absolutely continuous.

Proposition 2.1. If (Y s,x, Zs,x,Ks,x) is a solution of RBSDE (1.3)
then

(2.4) Ks,x
t −Ks,x

τ ≤
t�

τ

1{Y s,xθ =Sθ}(dX
s,x
θ − rK)+ dθ, s ≤ τ ≤ t ≤ T.

Proof. We prove the theorem in the case of call option. The proof for
put option is similar and therefore left to the reader.

Suppose that (Y s,x, Zs,x,Ks,x) is a solution of (1.3) and u is a viscosity
solution of (1.5). By [4, Theorem 8.5],

(2.5) Y s,x
t = u(t,Xs,x

t ), t ∈ [s, T ].

Set St = g(Xs,x
t ), t ∈ [s, T ], and denote by {L0

t (ξ) : t ≥ 0} the local time
at 0 of a continuous semimartingale ξ. By the Tanaka–Meyer formula, for
t ∈ [s, T ] we have

(Xs,x
t −K)+ =

t�

s

1(K,∞)(X
s,x
θ )(r − d)Xs,x

θ dθ(2.6)

+
t�

s

1(K,∞)(X
s,x
θ )σXs,x

θ dWθ +
1
2
L0
t (X

s,x −K)

and

0 = (Y s,x
t − St)− = −

t�

s

1(−∞,0](Y
s,x
θ − Sθ) dY s,x

θ(2.7)

+
t�

s

1(−∞,0](Y
s,x
θ − Sθ) dSθ +

1
2
L0
t (Y

s,x − S)
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=
t�

s

1{Y s,xθ =Sθ}(−rY
s,x
θ dθ + dKs,x

θ − Z
s,x
θ dWθ)

+
t�

s

1(K,∞)(X
s,x
θ )1{Y s,xθ =Sθ}((r − d)Xs,x

θ dθ + σXs,x
θ dWθ)

+
1
2

t�

s

1{Y s,xθ =Sθ} dL
0
θ(X

s,x −K) +
1
2
L0
t (Y

s,x − S).

Write I = {u = g} and observe that (t,K) /∈ I for all t ∈ [0, T ), because
u = V by [4, Proposition 2.3] and hence u is strictly positive. Consequently,

t�

s

1{Y s,xθ =Sθ} dL
0
θ(X

s,x −K) = 0.

Furthermore, from (2.6) and Proposition 4.2 and Remark 4.3 in [4] it fol-
lows that σXs,x

t 1(K,∞)(X
s,x
t ) = Zs,xt P -a.s. on {Y s,x

t = St}. From (2.7) we
therefore get

Ks,x
t −Ks,x

τ +
1
2
L0
t (Y

s,x − S)− 1
2
L0
τ (Y s,x − S)

=
t�

τ

r1{Y s,xθ =Sθ}Sθ dθ −
t�

τ

1{Y s,xθ =Sθ}1(K,∞)(X
s,x
θ )(r − d)Xs,x

θ dθ

=
t�

τ

1{Y s,xθ =Sθ}1(K,∞)(X
s,x
θ )((r − d)Xs,x

θ − r(X
s,x
θ −K)+)− dθ.

Hence

(2.8)

Ks,x
t −Ks,x

τ ≤
t�

τ

1{Y s,xθ =Sθ}1(K,∞)(X
s,x
θ )((r − d)Xs,x

θ − r(X
s,x
θ −K)+)− dθ.

Since, by (2.5), Y s,x is strictly positive, {Y s,x
t = g(Xs,x

t )} ⊂ {Xs,x
t > K}

and hence Ks,x increases only on the set {Xs,x
t > K}. Therefore (2.8) forces

(2.4).

Proposition 2.2. There exists at most one solution of the problem
(1.8).

Proof. Suppose that (u1, µ1), (u2, µ2) are two solutions of (1.8). Write
u = u1 − u2, µ = µ1 − µ2. Then (u, µ) satisfies (2.2) in the strong sense.
Since by standard regularization arguments we can take u as a test function
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in (2.2) and obviously (2.2) is satisfied on QtT for any t ∈ [0, T ), we have

‖u(t)‖22,% +
1
2
σ2‖x∂xu‖22,%,t,T = 〈(µ− d)x∂xu, u〉2,%,t,T + σ2〈∂xu, xu〉2,%,t,T

+ σ2〈∂xu, x2u∂x%, %〉2,t,T + r‖u‖22,%,t,T +
�

QtT

u dµ.

From the above, the fact that
	
QtT

u dµ ≤ 0, |∂x%| ≤ C% and the elementary
inequality ab ≤ εa2 + ε−1b2 we get

‖u(t)‖22,% ≤ C
T�

t

‖u(s)‖22,% ds, t ∈ [0, T ].

By Gronwall’s lemma, u = 0, and in consequence, µ = 0.

Given δ > 0 write D+
δ = (0, T ) × (δ,+∞), D−δ = (0, T ) × (−∞, δ) and

D+ = D+
0 , D− = D−0 , D = D+∪D−. Note that from the well known explicit

formula for Xs,x it follows that Xs,x
t ∈ D+, t ∈ [s, T ], P -a.s. if x > 0, and

Xs,x
t ∈ D−, t ∈ [s, T ], P -a.s. if x < 0. Note also that if x 6= 0 and t > s then

the distribution density of the random variable Xs,x
t is given by the formula

(2.9) p(s, x, t, y)

=
1

y
√

2π(t− s)
exp
(
−(ln(y/x) + (σ2/2− r + d)(t− s))2

t− s

)
1{y/x>0}.

It follows in particular that for fixed s ∈ [0, T ), x 6= 0 and δ ∈ (0, T − s] the
function p(s, x, ·, ·) is bounded on Qs+δ,T .

Theorem 2.3.

(i) There exists a unique solution (u, µ) of the problem (1.8).
(ii) Let x 6= 0 and let (Y s,x, Zs,x,Ks,x) be a solution of RBSDE (1.3).

Then

(Y s,x
t , Zs,xt ) = (u(t,Xs,x

t ), σ∂xu(t,Xs,x
t )), t ∈ [s, T ], P -a.s.

and for any η ∈ C0(QsT ),

(2.10) E

T�

s

η(t,Xt) dK
s,x
t =

�

QsT

η(t, y)p(s, x, t, y) dµ(t, y).

Proof. By [12, Theorem 2.2] for each n ∈ N there exists a unique viscosity
solution un of the penalized problem

(2.11)
∂un
∂t

+ LBSun = run − n(un − g)−, un(T ) = g.
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Let (Y s,x,n, Zs,x,n) denote a solution of the BSDE

Y s,x,n
t = g(Xs,x

T )−
T�

t

rY s,x,n
θ dθ +

T�

t

n(Y s,x,n
θ − g(Xs,x

θ ))− dθ −
T�

t

Zs,x,nθ dWθ.

Using standard arguments one can show that x 7→ EY s,x,n
s is Lipschitz

continuous uniformly in s. Therefore un has the same regularity, because
by [12, Theorem 2.2], Y s,x,n

t = un(t,Xs,x
t ), t ∈ [s, T ], P -a.s., and hence

un(s, x) = EY s,x,n
s . Since the operator LBS is uniformly elliptic on each

domain D+
δ , for each δ > 0 there is a unique weak solution vδ of the terminal-

boundary value problem
∂vδ
∂t

+LBSvδ = rvδ−n(vδ−g)−, vδ(T ) = g, vδ(t, x) = un(t, x) on [0, T ]×{δ}

(see [10, Theorem V.6.1]). Since vδ is a viscosity solution of the above prob-
lem as well, vδ = un|D+

δ
by uniqueness. Using this, Lipschitz continuity of un

and [7, Theorem 1.5.9] we conclude that un ∈ C1,2(D). Hence, by Proposi-
tion 1.2.3 and Theorem 2.2.1 in [11], Y s,x,n

t ∈ D1,2 for every (s, x) ∈ QT such
that x 6= 0, where D1,2 is the domain of the derivative operator in L2(Ω)
(see [11, Section 1.2] for a precise definition). Consequently, applying once
again Proposition 1.2.3 and Theorem 2.2.1 in [11] and using the fact that g
and x 7→ x− are Lipschitz continuous functions we conclude that if x 6= 0
then g(Xs,x

T ),
	T
t rY

s,x,n
θ dθ,

	T
t n(Y s,x,n

θ − g(Xs,x
θ ))− dθ ∈ D1,2. Moreover, by

[11, Proposition 1.2.3] and [5, Lemma 5.1], there exists an adapted bounded
process A such that for every s < τ ≤ t,

DτY
s,x,n
t = Zs,x,nτ +

t�

τ

DτZ
s,x,n
θ dθ + r

t�

τ

DτY
s,x,n
θ dθ

− n
t�

τ

AθDτ (Y s,x,n
θ − g(Xθ)) dθ,

where Dτ denotes the derivative operator. From this it follows in particular
that

DtY
s,x,n
t = Zs,x,nt , P -a.s.

for every t ∈ [s, T ]. On the other hand, by the remarks following the proof
of Proposition 2.2 and the remark following the proof of [11, Proposition
1.2.3],

DτY
s,x,n
t = ∂xun(t,Xs,x

t )DτX
s,x
t , P -a.s.

for every r, t ∈ [s, T ]. Moreover, by [11, Theorem 2.2.1], DtX
s,x
t = σXs,x

t .
Thus, if x 6= 0, then

Zs,x,nt = σXs,x
t ∂xun(t,Xt), P -a.s.
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By the results of Section 6 in [4] and standard estimates for diffusions we
have

(2.12) E sup
s≤t≤T

|un(t,Xs,x
t )|2 + E

T�

s

|σXs,x
t ∂xun(t,Xs,x

t )|2 dt

≤ CE sup
s≤t≤T

|g(Xs,x
t )|2 ≤ C|x|2.

By the above and [1, Proposition 5.1] it follows that un ∈ L2(0, T ;H%).
Accordingly, un is a weak solution of (2.11). Furthermore, from the results
proved in [4, Section 6] it follows that for every (s, x) ∈ QT ,

(2.13) E sup
s≤t≤T

|(un − um)(t,Xs,x
t )|2 + E

T�

s

|σXs,x
t ∂x(un − um)(t,Xs,x

t )|2 dt

+ E sup
s≤t≤T

|Ks,x,n
t −Ks,x,m

t |2 → 0

as m,n→∞. From (2.12), (2.13) and [1, Proposition 5.1] we conclude that
there exists u ∈ C(QT ) ∩ L2(0, T ;H%) such that un → u uniformly on com-
pact subsets of QT , un → u in L2(0, T ;H%) and un → u in C([0, T ],L2,%(R)).
Moreover, using (2.12) and once again [1, Proposition 5.1] we see that
‖un‖L2(0,T ;H%) ≤ C. Therefore from (2.11) it follows that the sequence {µn}
of measures defined by dµn = n(un − g)− dλ, n ∈ N, where λ is the 2-
dimensional Lebesgue measure, is tight. If µn → µ weakly, which we may
assume, then letting n → ∞ in (2.11) we conclude that the pair (u, µ)
satisfies equation (2.2) in the weak sense and that

u(t,Xs,x
t ) = Y s,x

t , t ∈ [s, T ], P -a.s., Zs,xt = σXs,x
t ∂xu(t,Xs,x

t ), dt⊗ P -a.s.

because in [4, Section 6] it is proved that Y s,x,n
t → Y s,x

t , t ∈ [s, T ], P -a.s.
and E

	T
s |Z

s,x,n
t −Zs,xt |2 dt→ 0. In particular, it follows from the above that

u ≥ g. Let η ∈ C0(QT ). Since un → u uniformly,
�

QT

(un − g)η dµn →
�

QT

(u− g)η dµ ≥ 0.

On the other hand,�

QT

(un − g)η dµn = −
�

QT

n((un − g)−)2 dλ ≤ 0.

From this we get (2.1). Furthermore, if x 6= 0 then for any δ ∈ (0, T − s)
and η ∈ C0(Qs+δ,T ) we have

(2.14) E

T�

s

η(t,Xs,x
t ) dKs,x,n

t =
�

QsT

η(t, y)p(s, x, t, y) dµn(t, y).
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Since it is known that Ks,x,n
t → Ks,x

t uniformly in t ∈ [s, T ] in probability
(see [4, Section 6]), letting n → ∞ in (2.14) and using (2.9), (2.13) we
get (2.10) for η ∈ C0(Qs+δ,T ), and hence for any η ∈ C0(QsT ). In order to
complete the proof we have to show that u ∈W%. Since p(s, x, ·, ·) is positive
for every (s, x) ∈ QT such that x 6= 0, it follows from (2.10) and Proposition
2.1 that dµ ≤ 1{u=g}(t, x)(dx− rK)+ dλ, i.e. for every η ∈ C+

0 (QT ),
�

QT

η(t, x) dµ(t, x) ≤
�

QT

η(t, x)1{u=g}(t, x)(dx− rK)+ dx dt.

Hence there exists a measurable function α on QT such that 0 ≤ α ≤ 1 and

dµ

dλ
(t, x) = α(t, x)1{u=g}(t, x)(dx− rK)+.(2.15)

This implies that u ∈W% and u satisfies (2.2) in the strong sense, i.e. (u, µ)
is a solution of (1.8).

Remark 2.4. It is known that {u = g} = {(t, x) ∈ QT : x ≥ s(t)} for
some nonincreasing function s in the case of call option and {u = g} =
{(t, x) ∈ QT : 0 ≤ x ≤ s(t)} for some nondecreasing s in the case of put
option (see, e.g., [8, Proposition 2.7.6]). It follows that in both cases the
2-dimensional Lebesgue measure of the boundary of {u = g} equals zero.

3. Linear RBSDEs and nonlinear BSDEs. We begin by proving
the key formulas (1.6), (1.9). As a first application we will show the semi-
martingale representation for the Snell envelope of the discounted payoff
process and the early exercise premium representation for V .

Theorem 3.1.

(i) If (u, µ) is a solution of the obstacle problem (1.8), then µ is given
by (1.9).

(ii) If (Y s,x, Zs,x,Ks,x) is a solution of (1.3), then Ks,x is given by (1.6).

Proof. We prove the theorem in the case of call option. The proof for
put option requires only some obvious changes and is left to the reader.

Suppose that (Y s,x, Zs,x,Ks,x) is a solution of (1.3) and (u, µ) is a solu-
tion of (1.8). By (2.15), u solves the equation

(3.1) ∂tu+ (r− d)x∂xu+
1
2
σ2x2∂2

xxu = ru−α(t, x)1{u=g}(t, x)(dx− rK)+

in the strong sense. Let I = {u = g} and I0 = Int I. If I0 6= ∅ then by (3.1),
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for any η ∈ C∞0 (I0) we have
�

QT

u(t, x)∂tη(t, x) dt dx− 1
2

�

QT

σ2x2∂2
xxu(t, x)η(t, x) dt dx

−
�

QT

(r − d)x∂xu(t, x)η(t, x) dt dx

=
�

QT

(−ru(t, x) + α(t, x)1{u=g}(t, x)(dx− rK)+)η(t, x) dt dx

+
�

R
g(x)η(T, x) dx−

�

R
u(0, x)η(0, x) dx.

Since supp η ⊂ I0 and g is regular on I0, we deduce from the above that
�

I0

(r − d)x1[K,∞)(x)η(t, x) dt dx =
�

I0

rg(x)η(t, x) dt dx

−
�

I0

α(t, x)1{u=g}(t, x)(dx− rK)+η(t, x) dt dx.

Equivalently, we have
�

I0

f(t, x)η(t, x) dt dx

=
�

I0

α(t, x)1{u=g}(t, x)1[K,∞)(x)(dx− rK)+η(t, x) dt dx,

where f(t, x) = (r − d)x1[K,∞)(x) − r(x − K)+ = (−dx + rK)1[K,∞)(x).
Since

α(t, x)(dx− rK)+ = −α(t, x)((r − d)x1[K,∞)(x)− r(x−K)+)−

= −α(t, x)f−(x)

on I0, it follows that�

I0

f(t, x)η(t, x) dt dx = −
�

I0

α(t, x)f−(t, x)η(t, x) dt dx

for any η ∈ C∞0 (I0). Hence f(t, x) = −α(t, x)f−(t, x) a.e. on I0. Since
f = f+ − f−, we have f+(t, x) = (1 − α(t, x))f−(t, x), and consequently
(1 − α(t, x))f−(t, x) = 0 a.e. on I0, i.e. α(t, x)(dx − rK)+ = (dx − rK)+

a.e. on I0. Since by Remark 2.4 the Lebesgue measure of ∂I equals zero, the
above equality holds a.e. on I, which in view of (2.15) completes the proof
of (i).

In case x = 0 part (ii) is trivial since in that case Xs,x
t = Ks,x

t = 0,
t ∈ [s, T ]. In case x 6= 0 part (ii) follows from part (i) and results proved
in [9]. To see this, let us denote by X the canonical process on the space
C([0, T ]; R) of continuous functions on [0, T ], and by Ps,x the law of Xs,x,
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i.e. Ps,x = P ◦ (Xs,x)−1. We may and will assume that Xs,x
s = x, t ∈ [0, s],

and hence that Ps,x is a measure on C([0, T ]; R). Write

Ms,t = Xt −Xs −
t�

s

(r − d)Xθ dθ, Bs,t =
t�

s

1
σXθ

dMs,θ, 0 ≤ s ≤ t ≤ T,

and observe that if x 6= 0 then under Ps,x the process Bs,· is a standard
Wiener process on [s, T ] with respect to the natural filtration generated
by X. Furthermore, for 0 ≤ s < t ≤ T set

Ks,t = u(s,Xs)− u(t,Xt) +
t�

s

ru(θ,Xθ) dθ +
t�

s

σ∂xu(θ,Xθ) dBs,θ

and

K̃s,t =
t�

s

(dXθ − rK)+1{u(θ,Xθ)=g(Xθ)} dθ.

Let (Y s,x, Zs,x,Ks,x) be a solution of (1.3) and let K̃s,x denote the process
defined by the right hand side of (1.6). By Theorem 2.3, for every (s, x) ∈
[0, T )× R,

Ks,x
t −Ks,x

s = u(s,Xs,x
s )− u(t,Xs,x

t ) +
t�

s

ru(θ,Xs,x
θ ) dθ

+
t�

s

σ∂xu(θ,Xs,x
θ ) dWθ, 0 ≤ s < t ≤ T, P -a.s.

From this and the fact that the law of (X,Bs,·) under Ps,x is equal to the
law of (Xs,x,W· − Ws) under P we conclude that the law of Ks,· under
Ps,x is equal to the law of Ks,x under P . Consequently, by (2.10), for every
s ∈ [0, T ), x 6= 0,

(3.2) Es,x

T�

s

η(t,Xt) dKs,t =
�

QsT

η(t, y)p(s, x, t, y) dµ(t, y)

for all η ∈ C0(QsT ), where Es,x denotes the expectation with respect to Ps,x.
Thus, the additive functional K = {Ks,t : 0 ≤ s ≤ t ≤ T} of the Markov
family {(X,Ps,x) : (s, x) ∈ [0, T )× R} corresponds to the measure µ in the
sense defined in [9]. Similarly, for every s ∈ [0, T ), x 6= 0 the law of K̃s,·
under Ps,x is equal to the law of K̃s,x under P , and hence, by part (i), (3.2)
is satisfied with K replaced by K̃, i.e. the additive functional K̃ = {K̃s,t :
0 ≤ s ≤ t ≤ T} corresponds to µ, too. By [9, Corollary 6.6], Ps,x(Ks,t = K̃s,t,
t ∈ [s, T ]) = 1 for every s ∈ [0, T ), x 6= 0. Hence P (Ks,x

t = K̃s,x
t , t ∈ [s, T ])

= 1 for s ∈ [0, T ), x 6= 0, which completes the proof.
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Corollary 3.2. If (Y s,x, Zs,x,Ks,x) is a solution of (1.3) then
(Y s,x, Zs,x) is a solution of (1.7). Conversely, if (Y s,x, Zs,x) is a solution
of (1.7) then (Y s,x, Zs,x,Ks,x) with Ks,x defined by (1.6) is a solution of
(1.3).

Proof. The first part follows immediately from Theorem 3.1. The second
part is a consequence of the first one and the fact that the solution of (1.7)
is unique, because for every x ∈ R the function y 7→ q(x, y) is decreasing.

Let ξ denote the discounted payoff process for the American option, i.e.

ξt = e−r(t−s)g(Xs,x
t ), t ∈ [s, T ].

By (1.7),

er(t−s)Y s,x
t = e−r(T−s)g(Xs,x

T ) +
T�

t

e−r(θ−s)q(Xs,x
θ , Y s,x

θ ) dθ

−
T�

t

e−r(θ−s)Zs,xθ dWθ.

From this and the fact that V (t,Xs,x
t ) = u(t,Xs,x

t ) = Y s,x
t , t ∈ [s, T ], we

obtain

Corollary 3.3. The Snell envelope ηt = e−r(t−s)V (t,Xs,x
t ), t ∈ [s, T ],

of ξ admits the representation

(3.3) ηt = E
(
e−r(T−s)g(Xs,x

T ) +
T�

t

e−r(θ−s)q(Xs,x
θ , Y s,x

θ ) dθ
∣∣∣ Ft).

From (3.3) we immediately get the early exercise premium representation
for V . For instance, for American put option,

V (s, x) = Ee−r(T−s)g(Xs,x
T )(3.4)

+ E

T�

s

e−r(t−s)(rK − dXs,x
t )+ 1{V=g}(t,X

s,x
t ) dt.

Representations (3.3), (3.4) are known (see [8, Corollary 2.7.11]). To our
knowledge our proof is new. Let us stress, however, that we were influenced
by the results of [2].
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al. (eds.), Birkhäuser, Boston, 1998, 79–127.

Tomasz Klimsiak, Andrzej Rozkosz
Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
Chopina 12/18
87-100 Toruń, Poland
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