The Dual of a Non-reflexive L-embedded Banach Space Contains l^∞ Isometrically

by

Hermann PFITZNER

Presented by Stanisław KWAPIEN

Summary. A Banach space is said to be L-embedded if it is complemented in its bidual in such a way that the norm between the two complementary subspaces is additive. We prove that the dual of a non-reflexive L-embedded Banach space contains l^∞ isometrically.

This note is an afterthought to a result of Dowling [2] according to which a dual Banach space contains an isometric copy of c_0 if it contains an asymptotic one. (For definitions see below.) It is known ([7] or [4, Th. IV.2.7]) that the dual of a non-reflexive L-embedded Banach space contains c_0 isomorphically. For a special class of L-embedded Banach spaces the construction of the c_0-copy has been improved so as to yield an asymptotic one ([8, Prop. 6]) and it turns out that this improvement is possible in the general case, which together with Dowling’s result yields isometric copies of c_0 in the dual of an L-embedded Banach space. As in [7], we will prove a bit more by constructing the c_0-copy within the context of Pełczyński’s property (V*), that is, the c_0-basis will be constructed so as to behave approximately like biorthogonal functionals on the basis of a given l^1-basis in X; see [3] and [4] below where in particular the value $\tilde{c}_{\sl{f}}(x_n)$ in (3) is optimal. (For the definition and some basic results on Pełczyński’s property (V*) see [4].)

Preliminaries. A projection P on a Banach space Z is called an L-projection if $\|Pz\| + \|z - Pz\| = \|z\|$ for all $z \in Z$. A Banach space X is called L-embedded (or an L-summand in its bidual) if it is the image of an

2010 Mathematics Subject Classification: Primary 46B20; Secondary 46B03, 46B04, 46B26.

Key words and phrases: L-embedded Banach spaces, L-summand, isometric copies of c_0.
L-projection on its bidual. In this case we write $X^{**} = X \oplus_1 X_s$. Among classical Banach spaces, the Hardy space H^1_0, L^1-spaces and, more generally, the preduals of von Neumann algebras or of JBW*-triples serve as examples of L-embedded spaces. A sequence (x_n) in a Banach space X is said to span c_0 asymptotically isometrically (or just to span c_0 asymptotically) if there is a null sequence (δ_n) in $[0, 1[$ such that

$$
\sup (1 - \delta_n) |\alpha_n| \leq \left\| \sum \alpha_n x_n \right\| \leq \sup (1 + \delta_n) |\alpha_n|
$$

for all $(\alpha_n) \in c_0$. X is said to contain c_0 asymptotically if it contains such a sequence (x_n). Recall the routine fact that if (x_n^*) in X^* is equivalent to the canonical basis of c_0 then $\sum \alpha_n x_n^*$ makes sense for all $(\alpha_n) \in l^\infty$ in the w^*-topology of X^*, and by lower w^*-semicontinuity of the norm an estimate $\| \sum \alpha_n x_n^* \| \leq M \sup |\alpha_n|$ that holds for all $(\alpha_n) \in c_0$ extends to all $(\alpha_n) \in l^\infty$. The Banach spaces we consider in this note are real or complex; the set \mathbb{N} starts at 1.

To a bounded sequence (x_n) in a Banach space X we associate its James constant

$$
c_J(x_n) = \sup c_m \quad \text{where} \quad c_m = \inf \frac{\left\| \sum_{n \geq m} \alpha_n x_n \right\|}{\sum_{n \geq m} |\alpha_n|}
$$

(the sequence (c_m) is increasing). If (x_n) is equivalent to the canonical basis of l^1 then $c_J(x_n) > 0$; more specifically, $c_J(x_n) > 0$ if and only if there is an integer m such that $(x_n)_{n \geq m}$ is equivalent to the canonical basis of l^1. (Roughly speaking, the number $c_J(x_n)$ may be thought of as the “approximately best l^1-basis constant” of (x_n); more precisely, there is a null sequence (τ_n) in $[0, 1[$ (determined by $c_m = (1 - \tau_m) c_J(x_n)$) such that $\| \sum_{n=m}^{\infty} \alpha_n x_n \| \geq (1 - \tau_m) c_J(x_n) \sum_{n=m}^{\infty} |\alpha_n|$ for all $(\alpha_n) \in l^1$ and $m \in \mathbb{N}$, and $c_J(x_n)$ cannot be replaced by a strictly greater constant.) It is immediate from the definition of the James constant of an l^1-sequence (x_n) that there are pairwise disjoint finite sets $A_l \subset \mathbb{N}$ and a sequence (λ_k) of scalars such that $\sum_{k \in A_l} |\lambda_k| = 1$ and $\tilde{z}_l \to c_J(x_n)$ where $\tilde{z}_l = \sum_{k \in A_l} \lambda_k x_k$. James’ l^1-distortion theorem states that an appropriate subsequence of the sequence (z_l) defined by $z_l = \tilde{z}_l/\|\tilde{z}_l\|$ spans l^1 almost isometrically in the sense that

$$
(1 - 2^{-m}) \sum_{l=m}^{\infty} |\alpha_l| \leq \left\| \sum_{l=m}^{\infty} \alpha_l z_l \right\| \leq (1 + 2^{-m}) \sum_{l=m}^{\infty} |\alpha_l|
$$

for all $m \in \mathbb{N}$ and all $(\alpha_n) \in l^1$. We will need the fact that if (z_l) spans l^1 almost isometrically in an L-embedded space X and if $x^{**} \in X^{**}$ is a w^*-accumulation point of the z_l then $x^{**} \in X_s$ and $\|x^{**}\| = 1$. This follows from the proof of [8 Lem. 1] (or from a more elementary argument proving that $\text{dist}(x^{**}, X) = \|x_s\| = 1$ where $x^{**} = x + x_s$).
If one passes to a subsequence \((x_{n_k})\) of \((x_n)\) then \(c_J(x_{n_k}) \geq c_J(x_n)\); hence it makes sense to define
\[
\tilde{c}_J(x_n) = \sup_{n_k} c_J(x_{n_k}).
\]
The standard reference for L-embedded Banach spaces is the monograph [4, Chap. IV]. For general Banach space theory and undefined notation we refer to [1], [5], or [6].

The main result of this note is

Theorem 1. Let \(X\) be an L-embedded Banach space and let \((x_n)\) be equivalent to the canonical basis of \(l^1\). Then there is a sequence \((x^*_n)\) in \(X^*\) that generates \(l^\infty\) isometrically, more precisely
\[
(2) \quad \left\| \sum \alpha_n x^*_n \right\| = \sup |\alpha_n| \quad \text{for all } (\alpha_n) \in l^\infty,
\]
and there is a strictly increasing sequence \((p_n)\) in \(\mathbb{N}\) such that
\[
(3) \quad \lim \left| x^*_n(x_{p_n}) \right| = \tilde{c}_J(x_m),
\]
\[
(4) \quad x^*_n(x_{p_l}) = 0 \quad \text{if } l < n.
\]
In particular, the dual of a non-reflexive L-embedded Banach space contains an isometric copy of \(l^\infty\).

In order to prove the theorem we first state and prove Dowling’s result in a way which fits our purpose.

Proposition 2. Let \((\varepsilon_n)\) be a null sequence in \([0,1]\), let \((N_n)\) be a sequence of pairwise disjoint infinite subsets of \(\mathbb{N}\) and let \((y^*_n)\) in the dual of a Banach space \(Y\) span \(c_0\) such that
\[
(5) \quad \left\| \sum \alpha_n y^*_n \right\| \leq \sup (1 + \varepsilon_n)|\alpha_n| \quad \text{and } \left\| y^*_n \right\| \to 1
\]
for all \((\alpha_n) \in c_0\). Then the elements
\[
(6) \quad x^*_n = \sum_{k \in N_n} \frac{y^*_k}{1 + \varepsilon_k}
\]
generate \(l^\infty\) isometrically (as in [2]).

Proof. Clearly, \(\|x^*_n\| \leq 1\) for all \(n \in \mathbb{N}\) by the first half of (5). For the inverse inequality we have
\[
\|x^*_n\| \geq \left\| \frac{2}{1 + \varepsilon_m} \right\| - \left\| \sum_{k \in N_n, k \neq m} \frac{y^*_k}{1 + \varepsilon_k} \right\| \geq \frac{2}{1 + \varepsilon_m} - 1
\]
for all \(m \in N_n\), hence \(\|x^*_n\| \geq 1\) by the second half of (5), which proves \(\|x^*_n\| = 1\).
Similarly we show (2): First, “≤” of (2) follows from the first half of (5); second, by the inequality just shown we have
\[\left\| \sum \alpha_n x_n^* \right\| \geq 2|\alpha_m| - \left\| \alpha_m x_m^* - \sum_{n \neq m} \alpha_n x_n^* \right\| \geq 2|\alpha_m| - \sup |\alpha_n| \]
for all \(m \in \mathbb{N} \), giving “≥” of (2). \(\blacksquare \)

Proof of the Theorem. Let \((\delta_n)\) be a sequence in \([0,1]\) converging to 0. Suppose \((x_n)\) is an \(l^1\)-basis and write \(\tilde{c} = \tilde{c}_J(x_n) \) for short.

Observation. Given \(\tau > 0 \) there is a subsequence \((x_{n_k})\) of \((x_n)\) such that \(|\tilde{c} - c_J(x_{n_k})| < \tau \). By James’ \(l^1\)-distortion theorem, as described above, there are pairwise disjoint finite sets \(A_l \subset \{ n_k : k \in \mathbb{N} \} \) and a sequence \((\lambda_n)\) of scalars such that (1) holds with \(\tilde{z}_l, z_l \) as above; furthermore \(\|\tilde{z}_l\| \to c_J(x_{n_k}) \), whence the existence of \(l' \) such that \(|\tilde{c} - \|\tilde{z}_{l'}\|| < \tau \).

By induction over \(n \in \mathbb{N} \) we will construct finite sequences \((y_i^{(n)*})_{i=1}^n\) in \(X^*\), a sequence \((\tilde{y}_n)\) in \(X\), pairwise disjoint finite sets \(C_n \subset \mathbb{N}\) and a scalar sequence \((\mu_n)\) such that, with the notation \(y_n = \tilde{y}_n/\|\tilde{y}_n\|\),
\[
\sum_{k \in C_n} |\mu_k| = 1, \quad \tilde{y}_n = \sum_{k \in C_n} \mu_k x_k, \quad |\tilde{c} - \|\tilde{y}_n\|| < \delta_n,
\]
\[
|y_i^{(n)*}(y_i)| > 1 - \delta_i \quad \forall i \leq n, \tag{8}
\]
\[
y_i^{(n)*}(y_l) = 0 \quad \forall l < i \leq n, \tag{9}
\]
\[
y_i^{(n)*}(x_p) = 0 \quad \forall p \in C_l, \forall l < i \leq n, \tag{10}
\]
\[
\left\| \sum_{i=1}^m \alpha_i y_i^{(n)*} \right\| \leq \max_{i \leq m} (1 + (1 - 2^{-n})\delta_i) |\alpha_i| \quad \forall m \leq n, \alpha_i \text{ scalars}. \tag{11}
\]

For \(n = 1 \) we use the observation above with \(\tau = \delta_1 \) and choose \(l_1 \) such that \(\|\tilde{z}_{l_1}\| - \| \tilde{c} \| < \delta_1 \). Then we choose \(y_i^{(1)*} \) such that \(\|y_i^{(1)*}\| = 1 \) and \(y_i^{(1)*}(z_{l_1}) = \|z_{l_1}\| \). It remains to set \(C_1 = A_{l_1}, \mu_k = \lambda_k \) for \(k \in C_1 \) and \(\tilde{y}_1 = \tilde{z}_{l_1} \).

For the induction step \(n \to n + 1 \) we recall that \((P^*)|X^*\) is an isometric isomorphism from \(X^*\) onto \(X_s^\perp\), that \(X^{***} = \bigperp \bigoplus X_s^\perp\) and that \((P^* x^*)|X = (x^*)|X\) for all \(x^* \in X^*\). Let \((z_i)\) be as in the observation above with \(\tau = \delta_{n+1} \) and let \(z_s \in X^{**} \) be a \(w^*\)-accumulation point of the \(z_l \). Then \(z_s \in X_s \) and \(\|z_s\| = 1 \) (as explained in the preliminaries). Choose \(t \in \ker P^* \subset X^{***} \) such that \(\|t\| = 1 \) and \(t(z_s) = \|z_s\| \). Put
\[
E = \text{lin}(\{P^* y_i^{(m)*} \mid i \leq m \leq n\} \cup \{t\}) \subset X^{***},
\]
\[
F = \text{lin}(\{z_s\} \cup \{x_p \mid p \in \bigcup_{l \leq n} C_l\}) \subset X^{**}
\]
and choose \(\eta > 0 \) such that
\[
(1 + \eta)(1 + (1 - 2^{-n})\delta_i) < 1 + (1 - 2^{-(n+1)})\delta_i \quad \text{and} \quad \eta < (1 - 2^{-(n+1)})\delta_{n+1}
\]
for all \(i \leq n \). The principle of local reflexivity provides an operator \(R : E \to X^* \) such that

\[
(12) \quad (1 - \eta)\|e^{**}\| \leq \|Re^{**}\| \leq (1 + \eta)\|e^{**}\|,
\]

\[
(13) \quad f^{**}(Re^{**}) = e^{**}(f^{**}),
\]

for all \(e^{**} \in E \) and \(f^{**} \in F \).

We define \(y_i^{(n+1)*} = R(P^*y_i^{(n)*}) \) for \(i \leq n \) and \(y_{n+1}^{(n+1)*} = Rt \) and obtain (11) \(n+1 \) (with \(\alpha_i = 0 \) if \(m < i \leq n + 1 \)) by

\[
\left\| \sum_{i=1}^{n+1} \alpha_i y_i^{(n+1)*} \right\| \leq (1 + \eta) \left(\left\| \sum_{i=1}^{n} \alpha_i P^* y_i^{(n)*} \right\| + \alpha_{n+1} t \right) \]

\[
= (1 + \eta) \max \left(\left\| \sum_{i=1}^{n} \alpha_i P^* y_i^{(n)*} \right\|, \|\alpha_{n+1} t\| \right) \]

\[
= (1 + \eta) \max \left(\left\| \sum_{i=1}^{n} \alpha_i y_i^{(n)*} \right\|, \|\alpha_{n+1} t\| \right) \]

\[\leq \max_{i \leq n+1} (1 + (1 - 2^{-(n+1)}) |\delta_i|) |\alpha_i| \]

Since \(z_s \) is a \(w^* \)-cluster point of \((z_l) \) we have

\[
|y_{n+1}^{(n+1)*}(z_l)| > |z_s(y_{n+1}^{(n+1)*})| - \delta_{n+1} \leq |t(z_s)| - \delta_{n+1} = 1 - \delta_{n+1}
\]

for infinitely many \(l \); furthermore, an \(l_{n+1} \) can be chosen among those \(l \) so as to obtain \(|\tilde{z}_{l_{n+1}} - \tilde{c}| < \delta_{n+1} \). Set \(C_{n+1} = A_{l_{n+1}}, \tilde{y}_{n+1} = \tilde{z}_{l_{n+1}}, \mu_k = \lambda_k \) for \(k \in C_{n+1} \). Then (17) \(n+1 \) holds and (8) \(n+1 \) holds for \(i = n + 1 \). For \(i \leq n \), (8) \(n+1 \) follows from

\[
y_i^{(n+1)*}(y_i) = (P^*y_i^{(n)*})(y_i) = y_i^{(n)*}(y_i) \leq 1 - \delta_i.
\]

Condition (10) \(n+1 \) holds for \(i = n + 1 \) by

\[
y_{n+1}^{(n+1)*}(x_p) = (Rt)(x_p) = t(x_p) = 0 \quad \forall p \in C_l, \forall l < n + 1
\]

and it holds for \(i < n + 1 \) by

\[
y_i^{(n+1)*}(x_p) = (P^*y_i^{(n)*})(x_p) = y_i^{(n)*}(x_p) \leq 0 \quad \forall p \in C_l, \forall l < i.
\]

Condition (9) \(n+1 \) follows from (10) \(n+1 \). This ends the induction.

Now we define \(y_i^* = \frac{1}{1+\delta_i} \lim_{n \in U} y_i^{(n)*} \) for all \(i \in \mathbb{N} \) where \(U \) is a fixed nontrivial ultrafilter on \(\mathbb{N} \) and where the limit is understood in the \(w^* \)-topo-
logy of X^*. Then by w^*-lower semicontinuity of the norm and by (11),
\[\left\| \sum \alpha_i y_i^* \right\| \leq \sup (1 + \delta_i) \frac{|\alpha_i|}{1 + \delta_i} = \sup |\alpha_i| \]
for all $(\alpha_i) \in l^\infty$. In particular, $\|y_i^*\| \leq 1$, hence $\|y_i^*\| \to 1$ by (8) and (y_i^*) satisfies (5) for $\varepsilon_n = 0$.

Let (N_n) be a sequence of pairwise disjoint infinite subsets of \mathbb{N} such that (i_n) increases strictly where $i_n = \min N_n$. By the proposition the sequence defined by
\[x_n^* = \sum_{i \in N_n} y_i^* \]
generates l^∞ isometrically and we have
\[|x_n^*(y_{i_n})| \geq \frac{1 - \delta_{i_n}}{1 + \delta_{i_n}}. \]

By construction of the y_i there is, for each $n \in \mathbb{N}$, an index $p_n \in C_{i_n}$ such that
\[(1 + \delta_{i_n})|x_n^*(x_{p_n})| \geq (1 - \delta_{i_n}) \|y_{i_n}\| \geq (1 - \delta_{i_n})(\tilde{c} - \delta_{i_n}), \]
which will yield “\geq” of (3). In order to show “\leq” of (3) suppose to the contrary that $\sum_{j \neq m}|x_{n_j}^*(x_{p_{nm}})| < \kappa/2$ for all m. Then given (α_m) and θ_m such that $\theta_m \alpha_m = |\alpha_m|$ we obtain
\begin{align*}
(1 + \delta_{i_n}) |x_n^*(x_{p_n})| &\geq (1 - \delta_{i_n}) \|y_{i_n}\| \\
&\geq (1 - \delta_{i_n})(\tilde{c} - \delta_{i_n}),
\end{align*}
which yields the contradiction $c_J(x_{p_{nm}}) > \tilde{c}$ and thus shows “\leq” and all of (3), whereas (4) follows from (10) via $y_i^*(x_p) = 0$ for $p \in C_l$, $l < i$.

The last assertion of the theorem is immediate from the fact that non-reflexive L-embedded spaces contain l^1 isomorphically [4, IV.2.3] .

Remarks. 1. It is not clear whether (4) can be obtained also for $l > n$. What can be said by Simons’ extraction lemma (used in the proof) is that, under the assumptions of the theorem and given $\varepsilon > 0$, it is possible (after passing to appropriate subsequences) to deduce in addition to (4) that
\[\sum_{n=1}^{l-1} |x_n^*(x_{p_l})| = \sum_{n \neq l} |x_n^*(x_{p_l})| < \varepsilon \]
for all l. In case $c_J(x_n) = 1 = \lim \|x_n\|$.

(which happens when the x_n span l^1 almost isometrically) this can be improved to

$$\sum_{n \neq l} |x_n^*(x_{p_l})| = \left(\sum_n |x_n^*(x_{p_l})| \right) - |x_l^*(x_{p_l})| \leq \|x_{p_l}\| - |x_l^*(x_{p_l})| \to 0. \quad (15)$$

One might also construct straightforward perturbations of the x_n^* in order to get L for $l \neq n$ but then it is not clear whether these perturbations can be arranged to span c_0 isometrically, not just almost isometrically.

Since in general L-embedded spaces do not contain l^1 isometrically (see below, last remark) it is not in general possible, in case all x_n have the same norm, to improve L and (4) so as to obtain $x_n^*(x_{p_l}) = \tilde{c}(x_m)$ if $l = n$ and $= 0$ if $l \neq n$.

2. As already alluded to in the introduction, the construction of c_0 in this paper bears much resemblance to the one of [7]. A different way to construct c_0 is contained in [9] but it seems unlikely that this construction can be improved to yield an isometric c_0-copy.

3. It follows from (3) (or rather from a reasoning similar to the one in (14)) that $c(x_{p_n}) \geq \tilde{c}(x_n)$, which means that in L-embedded spaces the sup in the definition of c_J is attained by the James constant of an appropriate subsequence. For general Banach spaces this is not known, although it can be shown by a routine diagonal argument that each bounded sequence (x_n) admits a c_J-stable subsequence (x_{n_k}) (meaning that $\tilde{c}_J(x_{n_k}) = c_J(x_{n_k})$) whose James constant is arbitrarily near to $\tilde{c}(x_n)$.

4. Each normalized sequence (x_n) in an L-embedded Banach space that spans l^1 almost isometrically contains a subsequence each of whose w^*-accumulation points in the bidual attains its norm on the dual unit ball. To see this, let (x_n^*) and (x_{p_n}) be the sequences given by the theorem and by Simons’ extraction lemma (see (15) above), let x_s be a w^*-accumulation point of the x_{p_n} and let $x^* = \sum x_n^*$; then $\|x^*\| = 1$ and on the one hand $\|x_s\| = 1$ by [8] and on the other hand $x_s(x^*) = \lim x^*(x_{p_n}) = \lim x_n^*(x_{p_n}) = c_J(x_n) = 1$.

It would be interesting to know whether this remark holds for the whole sequence (x_n) instead of only a subsequence (x_{p_n}). A kind of converse follows from [9, Rem. 2] for separable X: If $x_s \in X_s$ attains its norm on the dual unit ball then it does so on the sum of a wuC-series.

5. Let us finally note that the presence of isometric c_0-copies in X^* does not necessarily entail the presence of isometric copies of l^1 in X even if X is the dual of an M-embedded Banach space. This follows from [11, Cor. III.2.12], which states that there is an L-embedded Banach space which is the dual of an M-embedded space (to wit, the dual of c_0 with an equivalent norm) which is strictly convex and therefore does not contain l^1 isometrically although it contains, as do all non-reflexive L-embedded spaces, l^1 asymptotically ([8],...
see [3] for the definition of asymptotic copies (1) and the difference from almost isometric ones).

References

Hermann Pfitzner
Université d’Orléans
BP 6759
F-45067 Orléans Cedex 2, France
E-mail: hermann.pfitzner@univ-orleans.fr

Received January 8, 2010;
received in final form March 25, 2010 (7744)

(1) In the literature there is another notion of “asymptotic l^p” which is quite different from the one of this note.