OPERATOR THEORY

Uniformly Continuous Set-Valued Composition Operators in the Spaces of Functions of Bounded Variation in the Sense of Riesz

by

W. AZIZ, J. GUERRERO and N. MERENTES

Presented by Stanisław KWAPIEŃ

Summary. We show that any uniformly continuous and convex compact valued Nemytskiĭ composition operator acting in the spaces of functions of bounded φ -variation in the sense of Riesz is generated by an affine function.

Introduction. Let $(X, |\cdot|)$ and $(Y, |\cdot|)$ be two real normed spaces, C be a convex cone in X and $I \subset \mathbb{R}$ an interval. Let cc(Y) be the family of all non-empty convex compact subsets of Y. For a given function $h: I \times C \to cc(Y)$, the Nemytskiĭ operator H is defined by (HF)(t) = h(t, F(t)) where $F: I \to cc(X)$ is a given set-valued function. It is shown that if the operator H maps the space $RV_{\varphi}(I; C)$ of function of bounded φ -variation in the sense of Riesz into the space $BV_{\psi}(I; cc(Y))$ of convex compact valued functions of bounded ψ -variation in the sense of Riesz, and is uniformly continuous, then h is affine with respect to the second variable. In particular,

$$h(t, x) = A(t)x + B(t) \quad \text{for } t \in I, x \in C,$$

for some function $A : I \to \mathcal{L}(C, cc(Y))$ and $B \in BV_{\psi}(I; cc(Y))$, where $\mathcal{L}(C, cc(Y))$ stands for the space of all linear mappings of C into cc(Y). Some references are given in Remark 2.3.

1. Preliminaries. In this section we present some definitions and recall some known results concerning the Riesz φ -variation.

²⁰¹⁰ Mathematics Subject Classification: 47B33, 26B30, 26E25, 26B40.

Key words and phrases: φ -variation in the sense of Riesz, set-valued functions, uniformly continuous composition (Nemytskiĭ) operator, Jensen equation.

Let \mathcal{F} be the set of all convex functions $\varphi : [0, \infty) \to [0, \infty)$ such that $\varphi(0) = \varphi(0+) = 0$ and $\lim_{t\to\infty} \varphi(t) = \infty$. Then we have

REMARK 1.1. If $\varphi \in \mathcal{F}$, then φ is continuous and strictly increasing. Indeed, the continuity of φ at each point t > 0 follows from its convexity, and the continuity at 0 from the assumption $\varphi(0) = \varphi(0+) = 0$. Suppose that $\varphi(t_1) \ge \varphi(t_2)$ for some $0 < t_1 < t_2$. Then

$$\frac{\varphi(t_1) - \varphi(0)}{t_1 - 0} = \frac{\varphi(t_1)}{t_1} > \frac{\varphi(t_2)}{t_2} = \frac{\varphi(t_2) - \varphi(0)}{t_2 - 0},$$

contradicting the convexity of φ .

Let $I \subset \mathbb{R}$ be an interval. For a set X we denote by X^I the set of all functions $f: I \to X$.

DEFINITION 1.2. Let $\varphi \in \mathcal{F}$ and $(X, |\cdot|)$ be a real normed space. A function $f \in X^I$ is said to be of bounded φ -variation in the sense of Riesz in I if

$$RV_{\varphi}(f) := \sup_{\xi} \sum_{i=1}^{m} \varphi\left(\frac{|f(t_i) - f(t_{i-1})|}{t_i - t_{i-1}}\right) (t_i - t_{i-1}) < \infty,$$

where the supremum is taken over all finite increasing sequences $\xi = (t_i)_{i=0}^m$, $t_i \in I, m \in \mathbb{N}$.

DEFINITION 1.3. Let $\varphi \in \mathcal{F}$. We say that φ satisfies the ∞_1 condition if

$$\lim_{t \to \infty} \frac{\varphi(t)}{t} = \infty$$

It is easy that if $\varphi \in \mathcal{F}$ satisfies the ∞_1 condition then

$$\lim_{r \to 0} r\varphi^{-1}(1/r) = \lim_{\rho \to \infty} \rho/\varphi(\rho) = 0.$$

Denote by $RV_{\varphi}(I, X)$ the set of all functions $f \in X^{I}$ such that $RV_{\varphi}(\lambda f)$ < ∞ for some $\lambda > 0$. It is a normed space endowed with the norm

$$||f||_{\varphi} := |f(a)| + p_{\varphi}(f), \quad f \in RV_{\varphi}(I, X),$$

where I = [a, b] and $p_{\varphi}(f) = \inf\{\epsilon > 0 : RV_{\varphi}(f/\epsilon) \le 1\}.$

Let cc(X) be the family of all non-empty convex compact subsets of X, and let D be the *Pompeiu-Hausdorff metric* in cc(X), i.e.

$$D(A,B) := \max\{e(A,B), e(B,A)\}, \quad A,B \in cc(X),$$

where

$$e(A, B) = \sup\{d(x, B) : x \in A\}, \quad d(x, B) = \inf\{d(x, y) : y \in B\}.$$

DEFINITION 1.4. Let $\varphi \in \mathcal{F}$ and $F : I \to cc(X)$. We say that F has bounded φ -variation in the Riesz sense if

$$W_{\varphi}(F) := \sup_{\xi} \sum_{i=1}^{m} \varphi\left(\frac{D(F(t_i), F(t_{i-1}))}{t_i - t_{i-1}}\right) (t_i - t_{i-1}) < \infty,$$

where the supremum is taken over all finite increasing sequences $\xi = (t_i)_{i=0}^m$, $t_i \in I, m \in \mathbb{N}$.

Define

$$RV_{\varphi}(I, cc(X)) = \{F \in cc(X)^{I} : W_{\varphi}(\lambda F) < \infty \text{ for some } \lambda > 0\},\$$

and equip this set with the metric

$$D_{\varphi}(F_1, F_2) := D(F_1(a), F_2(a)) + p_{\varphi}(F_1, F_2)$$

where

$$p_{\varphi}(F_1, F_2) := \inf\{r > 0 : W_r(F_1, F_2) \le 1\}$$

and

$$W_r(F_1, F_2) := \sup_{\zeta} \sum_{i=1}^m \varphi\left(\frac{D(F_1(t_i) + F_2(t_{i-1}); F_2(t_i) + F_1(t_{i-1}))}{(t_i - t_{i-1})r}\right) (t_i - t_{i-1}),$$

where the supremum is taken over all finite increasing sequences $\zeta = (t_i)_{i=0}^m$, $t_i \in I, m \in \mathbb{N}$.

LEMMA 1.5 (cf. Chistyakov [2, Lemma 5.2]). Let $F_1, F_2 \in RW_{\varphi}(I, cc(X))$ and $\varphi \in \mathcal{F}$. Then, for $\lambda > 0$,

 $W_{\lambda}(F_1, F_2) \leq 1$ if and only if $p_{\varphi}(F_1, F_2) \leq \lambda$.

Now, let $(X, |\cdot|), (Y, |\cdot|)$ be two real normed spaces and C be a convex cone in X. Given a set-valued function $h: I \times C \to cc(Y)$ we consider the composition operator $H: C^I \to Y^I$ generated by h, i.e.

 $(Hf)(t) := h(t, f(t)), \quad f \in C^I, t \in I.$

Let $\mathcal{A}(C, cc(Y))$ denote the space of all additive functions and $\mathcal{L}(C, cc(Y))$ the space of all set-valued linear functions, i.e., all $A \in \mathcal{A}(C, cc(Y))$ which are positively homogeneous.

LEMMA 1.6 (cf. H. Radström [11, Lemma 3]). Let $(X, |\cdot|)$ be a normed space and let A, B, C be subsets of X. If A, B are convex and C is non-empty and bounded, then

$$D(A+C, B+C) = D(A, B).$$

LEMMA 1.7 (cf. K. Nikodem [10, Th. 5.6]). Let $(X, |\cdot|)$, $(Y, |\cdot|)$ be normed spaces and C a convex cone in X. A set-valued function $F : C \to cc(Y)$ satisfies the Jensen equation

$$F\left(\frac{x_1+x_2}{2}\right) = \frac{1}{2}\left(F(x_1)+F(x_2)\right), \quad x_1, x_2 \in C,$$

if and only if there exist an additive set-valued function $A: C \to cc(Y)$ and a set $B \in cc(Y)$ such that F(x) = A(x) + B for all $x \in C$.

2. The composition operator. Our main result reads as follows:

THEOREM 2.1. Let $(X, |\cdot|)$ be a real normed space, $(Y, |\cdot|)$ a real Banach space, C a convex cone in X, and I = [a, b] an interval. Suppose that $\varphi, \psi \in \mathcal{F}$ and that ψ satisfies the ∞_1 condition. If the composition operator H generated by a set-valued function $h: I \times C \to cc(Y)$ maps $RV_{\varphi}(I, C)$ into $RW_{\psi}(I, cc(Y))$, and is uniformly continuous, then the set-valued function hsatisfies the following condition:

$$h(t,x) = A(t)x + B(t), \quad t \in I, x \in C,$$

for some $A: I \to \mathcal{A}(X, cc(Y))$ and $B: I \to cc(Y)$. Moreover, if $0 \in C$ and int $C \neq \emptyset$, then $B \in RW_{\psi}(I, cc(Y))$ and the linear set-valued function A(t)is continuous.

Proof. For every $x \in C$, the constant function $I \ni t \mapsto x$ belongs to $RV_{\varphi}(I, C)$. Since H maps $BV_{\varphi}(I, C)$ into $RW_{\psi}(I, cc(Y))$, for every $x \in C$ the function $I \ni t \mapsto h(t, x)$ belongs to $RW_{\psi}(I, cc(Y))$.

The uniform continuity of H on $RV_{\varphi}(I, C)$ implies that

(1)
$$D_{\psi}(H(f_1), H(f_2)) \leq \omega(||f_1 - f_2||_{\varphi}) \text{ for } f_1, f_2 \in RV_{\varphi}(I, C),$$

where $\omega : \mathbb{R}^+ \to \mathbb{R}^+$ is the modulus of continuity of H, that is,

 $\omega(\rho) := \sup\{D_{\psi}(H(f_1), H(f_2)) : \|f_1 - f_2\|_{\varphi} \le \rho; f_1, f_2 \in RV_{\varphi}(I, C)\}, \ \rho > 0.$ From the definition of the metric D_{ψ} and (1), we obtain

$$p_{\psi}(H(f_1), H(f_2)) \le \omega(\|f_1 - f_2\|_{\varphi}) \quad \text{ for } f_1, f_2 \in RV_{\varphi}(I, C).$$

From Lemma 1.5, if $\omega(||f_1 - f_2||_{\varphi}) > 0$, the inequality (2) is equivalent to

$$W_{\omega(\|f_1-f_2\|_{\varphi})}(H(f_1), H(f_2)) \le 1, \quad f_1, f_2 \in RV_{\varphi}(I, C).$$

Therefore, for any $\alpha, \beta \in I$, $\alpha < \beta$, the definitions of the operator H and the functional W_r imply

(2)
$$\psi\left(\frac{D(h(\beta, f_1(\beta)) + h(\alpha, f_2(\alpha)), h(\beta, f_2(\beta)) + h(\alpha, f_1(\alpha))}{\omega(\|f_1 - f_2\|_{\varphi})(\beta - \alpha)}\right)(\beta - \alpha) \le 1.$$

For $\alpha', \beta' \in \mathbb{R}$, $a \le \alpha' < \beta' \le b$, we define the function $\eta_{\alpha',\beta'} : \mathbb{R} \to [0,1]$ by

$$\eta_{\alpha',\beta'}(t) := \begin{cases} 0 & \text{if } t \leq \alpha', \\ \frac{t - \alpha'}{\beta' - \alpha'} & \text{if } \alpha' \leq t \leq \beta' \\ 1 & \text{if } \beta' \leq t. \end{cases}$$

Fix $t \in I$. For an arbitrary finite sequence $a < \alpha_1 < \beta_1 < \alpha_2 < \beta_2 < \cdots < \alpha_m < \beta_m < t$ and $x_1, x_2 \in C, x_1 \neq x_2$, the function $f_j : I \to X$ defined by

$$f_j(\tau) := \frac{1}{2} \left[\eta_{\alpha,\beta}(\tau)(x_1 - x_2) + x_j + x_2 \right], \quad \tau \in I, \ j = 1, 2,$$

belongs to the space $RV_{\varphi}(I, C)$. It is easy to verify that

$$f_1(\tau) - f_2(\tau) = \frac{x_1 - x_2}{2}, \quad \tau \in I,$$

whence

$$||f_1 - f_2||_{\varphi} = |x_1 - x_2|/2$$

and moreover

$$f_1(\beta_i) = x_1, \quad f_1(\alpha_i) = \frac{x_1 + x_2}{2},$$

 $f_2(\alpha_i) = x_2, \quad f_2(\beta_i) = \frac{x_1 + x_2}{2}.$

Applying (2) for the functions f_1 and f_2 we get

$$\psi\bigg(\frac{D\big(h(\beta_i, x_1) + h(\alpha_i, x_2), h\big(\beta_i, \frac{x_1 + x_2}{2}\big) + h\big(\alpha_i, \frac{x_1 + x_2}{2}\big)\big)}{\omega(\|f_1 - f_2\|_{\varphi})(\beta_i - \alpha_i)}\bigg)(\beta_i - \alpha_i) \le 1,$$

or

$$D\left(h(\beta_{i}, x_{1}) + h(\alpha_{i}, x_{2}), h\left(\alpha_{i}, \frac{x_{1} + x_{2}}{2}\right) + h\left(\beta_{i}, \frac{x_{1} + x_{2}}{2}\right)\right)$$

$$\leq \omega(|x_{1} - x_{2}|/2)(\beta_{i} - \alpha_{i})\psi^{-1}(1/(\beta_{i} - \alpha_{i})).$$

Letting here $\beta_i - \alpha_i \to 0$ in such a way that $[\alpha_i, \beta_i] \ni t$, where $t \in I$, we get

$$D\left(h(t,x_1) + h(t,x_2), 2h\left(t,\frac{x_1 + x_2}{2}\right)\right) = 0$$

and, as D is a metric and h takes convex values,

$$h\left(t, \frac{x_1 + x_2}{2}\right) = \frac{h(t, x_1) + h(t, x_2)}{2}$$

for all $t \in I$ and all $x_1, x_2 \in C$.

Thus, for each $t \in I$, the set-valued function $h(t, \cdot) : C \to cc(Y)$ satisfies the Jensen functional equation.

Consequently, by Lemma 1.7, for every $t \in I$ there exist an additive set-valued function $A(t): C \to cc(Y)$ and a set $B(t) \in cc(Y)$ such that

(3)
$$h(t,x) = A(t)x + B(t) \quad \text{for } x \in C, t \in I,$$

which proves the first part of our result.

The uniform continuity of the operator $H : BV_{\varphi}(I, C) \to RW_{\psi}(I, cc(Y))$ implies the continuity of the function A(t), so that $A(t) \in \mathcal{L}(C, cc(Y))$ (see [10, Th. 5.3]). Putting x = 0 in (3), and taking into account that $A(t)0 = \{0\}$ for $t \in I$, we get

$$h(t,0) = B(t), \quad t \in I,$$

which implies that $B \in RW_{\psi}(I, cc(Y))$.

REMARK 2.2. The condition int $C \neq \emptyset$ is assumed to guarantee the continuity of the linear functions A(t).

REMARK 2.3. The uniformly continuous composition operators in the single-valued case for some function spaces were considered in [3], [5], [6] and [7]. The globally Lipschitzian composition operators in some special function spaces were considered in [4], [8], [9], [10] (cf. also [1] for other references). The first paper in which the set-valued Lipschitzian composition operators were considered is due to A. Smajdor and W. Smajdor [12]. Note also that G. Zawadzka [13] considered the set-valued Lipschitzian composition operators in the space of set-valued functions of bounded variation.

Acknowledgments. This research was supported by CDCHT of Universidad de Los Andes under the project NURR-C-504-09-05-B.

References

- J. Appell and P. P. Zabrejko, Nonlinear Superposition Operators, Cambridge Univ. Press, New York, 1990.
- [2] V. V. Chistyakov, Generalized variation of mappings with applications to composition operators and multifunctions, Positivity 5 (2001), 323–358.
- [3] A. Acosta, W. Aziz, J. Matkowski, and N. Merentes, Uniformly continuous composition operator in the space of φ-variation functions in the sense of Riesz, Fasc. Math. 43 (2010), 5–11.
- [4] J. Matkowski, Lipschitzian composition operators in some function spaces, Nonlinear Anal. 3 (1997), 719–726.
- [5] —, Uniformly continuous superposition operators in the space of differentiable functions and absolutely continuous functions, in: Int. Ser. Numer. Math. 157, Birkhäuser, 2008, 155–166.
- [6] —, Uniformly continuous superposition operators in the space of Hölder functions, J. Math. Anal. Appl. 359 (2009), 56–61.
- [7] —, Uniformly continuous superposition operators in the space of bounded variation functions, Math. Nachr., to appear.
- [8] J. Matkowski and J. Miś, On a characterization of Lipschitzian operators of substitution in the space BV(a, b), ibid. 117 (1984), 155–159.
- [9] N. Merentes, Composition of functions of bounded φ-variation, Pure Math. Appl. Ser. B 1 (1991), 39–45.
- [10] K. Nikodem, K-convex and K-concave set-valued functions, Politech. Łódz. Zeszyty Nauk. 559 (1989).
- H. Rådström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165–169.

- [12] A. Smajdor and W. Smajdor, Jensen equation and Nemytskii operator for set-valued functions, Rad. Mat. 5 (1989), 311–320.
- [13] G. Zawadzka, On Lipschitzian operators of substitution in the space of set-valued functions of bounded variation, ibid. 6 (1990), 279–293.

W. Aziz J. Guerrero Departamento de Física y Matemática Departamento de Matemáticas y Física Universidad de Los Andes Universidad Nacional Experimental del Táchira Trujillo, Venezuela San Cristóbal, Venezuela E-mail: wadie@ula.ve E-mail: jaguerrero4@gmail.com jguerre@unet.edu.ve N. Merentes Escuela de Matemáticas Universidad Central de Venezuela Caracas, Venezuela E-mail: nmerucv@gmail.com

Received October 24, 2009;	
received in final form March 6, 2010	(7729)