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Summary. We show that any uniformly continuous and convex compact valued Nemy-
tskĭı composition operator acting in the spaces of functions of bounded ϕ-variation in the
sense of Riesz is generated by an affine function.

Introduction. Let (X, | · |) and (Y, | · |) be two real normed spaces, C
be a convex cone in X and I ⊂ R an interval. Let cc(Y ) be the family of all
non-empty convex compact subsets of Y . For a given function h : I × C →
cc(Y ), the Nemytskĭı operator H is defined by (HF )(t) = h(t, F (t)) where
F : I → cc(X) is a given set-valued function. It is shown that if the operator
H maps the space RVϕ(I;C) of function of bounded ϕ-variation in the sense
of Riesz into the space BVψ(I; cc(Y )) of convex compact valued functions of
bounded ψ-variation in the sense of Riesz, and is uniformly continuous, then
h is affine with respect to the second variable. In particular,

h(t, x) = A(t)x+B(t) for t ∈ I, x ∈ C,

for some function A : I → L(C, cc(Y )) and B ∈ BVψ(I; cc(Y )), where
L(C, cc(Y )) stands for the space of all linear mappings of C into cc(Y ).
Some references are given in Remark 2.3.

1. Preliminaries. In this section we present some definitions and recall
some known results concerning the Riesz ϕ-variation.
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Let F be the set of all convex functions ϕ : [0,∞) → [0,∞) such that
ϕ(0) = ϕ(0+) = 0 and limt→∞ ϕ(t) =∞. Then we have

Remark 1.1. If ϕ ∈ F , then ϕ is continuous and strictly increasing.
Indeed, the continuity of ϕ at each point t > 0 follows from its convexity,
and the continuity at 0 from the assumption ϕ(0) = ϕ(0+) = 0. Suppose
that ϕ(t1) ≥ ϕ(t2) for some 0 < t1 < t2. Then

ϕ(t1)− ϕ(0)
t1 − 0

=
ϕ(t1)
t1

>
ϕ(t2)
t2

=
ϕ(t2)− ϕ(0)

t2 − 0
,

contradicting the convexity of ϕ.

Let I ⊂ R be an interval. For a set X we denote by XI the set of all
functions f : I → X.

Definition 1.2. Let ϕ ∈ F and (X, | · |) be a real normed space. A
function f ∈ XI is said to be of bounded ϕ-variation in the sense of Riesz
in I if

RVϕ(f) := sup
ξ

m∑
i=1

ϕ

(
|f(ti)− f(ti−1)|

ti − ti−1

)
(ti − ti−1) <∞,

where the supremum is taken over all finite increasing sequences ξ = (ti)mi=0,
ti ∈ I, m ∈ N.

Definition 1.3. Let ϕ ∈ F . We say that ϕ satisfies the ∞1 condition if

lim
t→∞

ϕ(t)
t

=∞.

It is easy that if ϕ ∈ F satisfies the ∞1 condition then

lim
r→0

rϕ−1(1/r) = lim
ρ→∞

ρ/ϕ(ρ) = 0.

Denote by RVϕ(I,X) the set of all functions f ∈ XI such that RVϕ(λf)
<∞ for some λ > 0. It is a normed space endowed with the norm

‖f‖ϕ := |f(a)|+ pϕ(f), f ∈ RVϕ(I,X),

where I = [a, b] and pϕ(f) = inf{ε > 0 : RVϕ(f/ε) ≤ 1}.
Let cc(X) be the family of all non-empty convex compact subsets of X,

and let D be the Pompeiu–Hausdorff metric in cc(X), i.e.

D(A,B) := max{e(A,B), e(B,A)}, A,B ∈ cc(X),

where

e(A,B) = sup{d(x,B) : x ∈ A}, d(x,B) = inf{d(x, y) : y ∈ B}.
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Definition 1.4. Let ϕ ∈ F and F : I → cc(X). We say that F has
bounded ϕ-variation in the Riesz sense if

Wϕ(F ) := sup
ξ

m∑
i=1

ϕ

(
D(F (ti), F (ti−1))

ti − ti−1

)
(ti − ti−1) <∞,

where the supremum is taken over all finite increasing sequences ξ = (ti)mi=0,
ti ∈ I, m ∈ N.

Define
RVϕ(I, cc(X)) = {F ∈ cc(X)I : Wϕ(λF ) <∞ for some λ > 0},

and equip this set with the metric
Dϕ(F1, F2) := D(F1(a), F2(a)) + pϕ(F1, F2)

where
pϕ(F1, F2) := inf{r > 0 : Wr(F1, F2) ≤ 1}

and

Wr(F1, F2) := sup
ζ

m∑
i=1

ϕ

(
D(F1(ti) + F2(ti−1);F2(ti) + F1(ti−1))

(ti − ti−1)r

)
(ti−ti−1),

where the supremum is taken over all finite increasing sequences ζ = (ti)mi=0,
ti ∈ I, m ∈ N.

Lemma 1.5 (cf. Chistyakov [2, Lemma 5.2]). Let F1, F2 ∈ RWϕ(I, cc(X))
and ϕ ∈ F . Then, for λ > 0,

Wλ(F1, F2) ≤ 1 if and only if pϕ(F1, F2) ≤ λ.
Now, let (X, | · |), (Y, | · |) be two real normed spaces and C be a convex

cone in X. Given a set-valued function h : I × C → cc(Y ) we consider the
composition operator H : CI → Y I generated by h, i.e.

(Hf)(t) := h(t, f(t)), f ∈ CI , t ∈ I.
LetA(C, cc(Y )) denote the space of all additive functions and L(C, cc(Y ))

the space of all set-valued linear functions, i.e., all A ∈ A(C, cc(Y )) which
are positively homogeneous.

Lemma 1.6 (cf. H. Radström [11, Lemma 3]). Let (X, | · |) be a normed
space and let A, B, C be subsets of X. If A, B are convex and C is non-empty
and bounded, then

D(A+ C,B + C) = D(A,B).

Lemma 1.7 (cf. K. Nikodem [10, Th. 5.6]). Let (X, |·|), (Y, |·|) be normed
spaces and C a convex cone in X. A set-valued function F : C → cc(Y )
satisfies the Jensen equation

F

(
x1 + x2

2

)
=

1
2

(F (x1) + F (x2)), x1, x2 ∈ C,
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if and only if there exist an additive set-valued function A : C → cc(Y ) and
a set B ∈ cc(Y ) such that F (x) = A(x) +B for all x ∈ C.

2. The composition operator. Our main result reads as follows:

Theorem 2.1. Let (X, | · |) be a real normed space, (Y, | · |) a real Ba-
nach space, C a convex cone in X, and I = [a, b] an interval. Suppose that
ϕ,ψ ∈ F and that ψ satisfies the ∞1 condition. If the composition operator
H generated by a set-valued function h : I×C → cc(Y ) maps RVϕ(I, C) into
RWψ(I, cc(Y )), and is uniformly continuous, then the set-valued function h
satisfies the following condition:

h(t, x) = A(t)x+B(t), t ∈ I, x ∈ C,

for some A : I → A(X, cc(Y )) and B : I → cc(Y ). Moreover, if 0 ∈ C and
intC 6= ∅, then B ∈ RWψ(I, cc(Y )) and the linear set-valued function A(t)
is continuous.

Proof. For every x ∈ C, the constant function I 3 t 7→ x belongs to
RVϕ(I, C). Since H maps BVϕ(I, C) into RWψ(I, cc(Y )), for every x ∈ C
the function I 3 t 7→ h(t, x) belongs to RWψ(I, cc(Y )).

The uniform continuity of H on RVϕ(I, C) implies that

(1) Dψ

(
H(f1), H(f2)

)
≤ ω(‖f1 − f2‖ϕ) for f1, f2 ∈ RVϕ(I, C),

where ω : R+ → R+ is the modulus of continuity of H, that is,

ω(ρ) := sup{Dψ(H(f1), H(f2)) : ‖f1−f2‖ϕ ≤ ρ; f1, f2 ∈ RVϕ(I, C)}, ρ > 0.

From the definition of the metric Dψ and (1), we obtain

pψ(H(f1), H(f2)) ≤ ω(‖f1 − f2‖ϕ) for f1, f2 ∈ RVϕ(I, C).

From Lemma 1.5, if ω(‖f1 − f2‖ϕ) > 0, the inequality (2) is equivalent to

Wω(‖f1−f2‖ϕ)(H(f1), H(f2)) ≤ 1, f1, f2 ∈ RVϕ(I, C).

Therefore, for any α, β ∈ I, α < β, the definitions of the operator H and the
functional Wr imply

(2) ψ

(
D(h(β, f1(β)) + h(α, f2(α)), h(β, f2(β)) + h(α, f1(α))

ω(‖f1 − f2‖ϕ)(β − α)

)
(β − α) ≤ 1.

For α′, β′ ∈ R, a ≤ α′ < β′ ≤ b, we define the function ηα′,β′ : R→ [0, 1]
by

ηα′,β′(t) :=


0 if t ≤ α′,
t− α′

β′ − α′
if α′ ≤ t ≤ β′,

1 if β′ ≤ t.
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Fix t ∈ I. For an arbitrary finite sequence a < α1 < β1 < α2 < β2 < · · · <
αm < βm < t and x1, x2 ∈ C, x1 6= x2, the function fj : I → X defined by

fj(τ) :=
1
2

[ηα,β(τ)(x1 − x2) + xj + x2], τ ∈ I, j = 1, 2,

belongs to the space RVϕ(I, C). It is easy to verify that

f1(τ)− f2(τ) =
x1 − x2

2
, τ ∈ I,

whence
‖f1 − f2‖ϕ = |x1 − x2|/2,

and moreover

f1(βi) = x1, f1(αi) =
x1 + x2

2
,

f2(αi) = x2, f2(βi) =
x1 + x2

2
.

Applying (2) for the functions f1 and f2 we get

ψ

(
D
(
h(βi, x1) + h(αi, x2), h

(
βi,

x1+x2
2

)
+ h
(
αi,

x1+x2
2

))
ω(‖f1 − f2‖ϕ)(βi − αi)

)
(βi − αi) ≤ 1,

or

D

(
h(βi, x1) + h(αi, x2), h

(
αi,

x1 + x2

2

)
+ h

(
βi,

x1 + x2

2

))
≤ ω(|x1 − x2|/2)(βi − αi)ψ−1(1/(βi − αi)).

Letting here βi − αi → 0 in such a way that [αi, βi] 3 t, where t ∈ I, we get

D

(
h(t, x1) + h(t, x2), 2h

(
t,
x1 + x2

2

))
= 0,

and, as D is a metric and h takes convex values,

h

(
t,
x1 + x2

2

)
=
h(t, x1) + h(t, x2)

2

for all t ∈ I and all x1, x2 ∈ C.
Thus, for each t ∈ I, the set-valued function h(t, ·) : C → cc(Y ) satisfies

the Jensen functional equation.
Consequently, by Lemma 1.7, for every t ∈ I there exist an additive

set-valued function A(t) : C → cc(Y ) and a set B(t) ∈ cc(Y ) such that

(3) h(t, x) = A(t)x+B(t) for x ∈ C, t ∈ I,

which proves the first part of our result.
The uniform continuity of the operator H : BVϕ(I, C)→ RWψ(I, cc(Y ))

implies the continuity of the function A(t), so that A(t) ∈ L(C, cc(Y )) (see
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[10, Th. 5.3]). Putting x = 0 in (3), and taking into account that A(t)0 = {0}
for t ∈ I, we get

h(t, 0) = B(t), t ∈ I,

which implies that B ∈ RWψ(I, cc(Y )).

Remark 2.2. The condition intC 6= ∅ is assumed to guarantee the con-
tinuity of the linear functions A(t).

Remark 2.3. The uniformly continuous composition operators in the
single-valued case for some function spaces were considered in [3], [5], [6]
and [7]. The globally Lipschitzian composition operators in some special
function spaces were considered in [4], [8], [9], [10] (cf. also [1] for other ref-
erences). The first paper in which the set-valued Lipschitzian composition
operators were considered is due to A. Smajdor and W. Smajdor [12]. Note
also that G. Zawadzka [13] considered the set-valued Lipschitzian composi-
tion operators in the space of set-valued functions of bounded variation.
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