Solution to a Problem of Lubelski and an Improvement of a Theorem of His

by

A. SCHINZEL

In memory of Salomon Lubelski

Summary. The paper consists of two parts, both related to problems of Lubelski, but unrelated otherwise. Theorem 1 enumerates for \(a = 1, 2 \) the finitely many positive integers \(D \) such that every odd positive integer \(L \) that divides \(x^2 + Dy^2 \) for \((x, y) = 1 \) has the property that either \(L \) or \(2^a L \) is properly represented by \(x^2 + Dy^2 \). Theorem 2 asserts the following property of finite extensions \(k \) of \(\mathbb{Q} \): if a polynomial \(f \in k[x] \) for almost all prime ideals \(p \) of \(k \) has modulo \(p \) at least \(v \) linear factors, counting multiplicities, then either \(f \) is divisible by a product of \(v + 1 \) factors from \(k[x] \setminus k \), or \(f \) is a product of \(v \) linear factors from \(k[x] \setminus k \).

S. Lubelski [4], [5] considered the following problem: given a non-negative integer \(a \), what positive integers \(D \) have the following property:

\(P_a \): every odd positive integer \(L \) that divides \(x^2 + Dy^2 \) for \((x, y) = 1 \) has the property that either \(L \) or \(2^a L \) is properly represented by \(x^2 + Dy^2 \).

For \(a = 0 \) or \(a \geq 3 \) Lubelski gave a definite answer (Satz VI in [5]). For \(a = 1 \) or 2 he only gave criteria (Satz II and III in [5], see Lemma 3 below) which enable one to check for any given \(D \) whether it has property \(P_a \), but from which it is not clear whether the number of suitable \(D \)’s is finite or not. We shall prove

Theorem 1. For \(a = 1 \) or 2 an integer \(D > 0 \) has property \(P_a \) if and only if \(D \in S_a \), where

\[
S_1 = \{1, 2, 3, 4, 5, 6, 7, 10, 13, 22, 37, 58\},
\]

\[
S_2 = \{1, 2, 3, 4, 7, 8, 11, 12, 16, 19, 28, 43, 67, 163\}.
\]

2010 Mathematics Subject Classification: Primary 11E16, 11R09.

Key words and phrases: binary quadratic form, polynomial modulo a prime ideal.
In another paper Lubelski proved the following (Satz IV in [7]): if a polynomial \(f \in \mathbb{Z}[x] \) for almost all primes \(p \) has modulo \(p \) at least \(v \) linear factors, then \(f \) is divisible by a product of \(v \) factors from \(\mathbb{Z}[x] \setminus \mathbb{Z} \). We shall improve and extend this theorem as follows.

Theorem 2. Let \(k \) be a finite extension of \(\mathbb{Q} \). If a polynomial \(f \in k[x] \) for almost all prime ideals \(p \) of \(k \) has modulo \(p \) at least \(v \) linear factors, counting multiplicities, then either \(f \) is divisible by a product of \(v + 1 \) factors from \(k[x] \setminus k \), or \(f \) is a product of \(v \) linear factors from \(k[x] \).

For \(v = 1 \) we obtain a result of Hasse [3].

The proof of Theorem 1 is based on five lemmas.

Lemma 1 (Weber). In every ideal class of a quadratic field there exists a prime ideal of degree one.

Proof. See [10, §165 and §166].

Lemma 2 (Lubelski). An integer \(D > 0 \) has property \(P_0 \) if and only if \(D \in \{1, 2, 3, 4, 7\} = S_1 \cap S_2 \).

Proof. See [5, Satz I].

Lemma 3. For \(a = 1 \) or \(2 \) an integer \(D > 0 \), \(D \equiv \varepsilon \mod 2 \), \(\varepsilon = 0, 1 \), has property \(P_a \) if the least odd divisor \(Q > 1 \) of any number \(x^2 + Dy^2 \) for \((x, y) = 1 \) satisfies

\[
Q = \frac{D + \varepsilon^2}{2^a}.
\]

The condition is also necessary for \(a = 1, \ D \neq 1, 2, 3, 4, 7 \) and \(a = 2, \ D \neq 1, 2, 3, 4, 7, 8, 16 \).

Proof. If (1) holds, then \(2^aQ \) is properly represented by \(x^2 + Dy^2 \) and \(D \) has property \(P_a \) by Satz III of [5]. Conversely, if \(D \) has property \(P_a \) for \(a = 1, 2 \) then either \(Q \) or \(2^aQ \) is properly represented by \(x^2 + Dy^2 \). By Satz II of [5] in the former case \(Q \leq 7 \), hence \(D \leq 2^a \cdot 7 \); in the latter case \(Q = \lfloor \frac{1+D}{2^a} \rfloor \).

The last equality is equivalent to (1), unless \(a = 2, \ D \equiv 2 - \varepsilon^2 \mod 4 \). However, then \(2^aQ = x^2 + Dy^2 \) implies \(x \equiv y \mod 2 \). The remaining assertion for \(D \leq 28 \) can be checked case by case.

Lemma 4 (Stark). If \(-d \) is a fundamental discriminant and the number of ideal classes of \(\mathbb{Q}(\sqrt{-d}) \) is at most two, then \(d \in S \), where

\[
\]

Proof. See [9].
Lemma 5 (Oesterlé). If $-d$ is a fundamental discriminant and the number of ideal classes of $\mathbb{Q}(\sqrt{-d})$ is three, then $d \in T$, where

$$T = \{23, 31, 59, 83, 107, 139, 211, 293, 307, 331, 499, 547, 643, 883, 907\}.$$

Proof. See [7] for a proof that $d \leq 907$. The list is taken from [1, Tables 4 and 5].

Proof of Theorem 1. Sufficiency of the condition follows from Lemma 3. It also follows from that lemma that no $D \in S_{3-a} \setminus S_a$ ($a = 1$ or 2) has property P_a. It remains to show that if $D \notin S_1 \cup S_2$, then D has neither property P_1 nor P_2. If $D = 2^a \notin S_1 \cup S_2$, then $D \geq 32$. On the other hand, $Q = 3$ for α odd and $Q = 5$ for α even. Since $5 < \left\lfloor \frac{1+32}{4} \right\rfloor$ it follows from Lemma 3 that D has neither property P_1 nor P_2.

If $D \equiv 0 \mod 4$, $D \neq 2^a$, then $Q = D/4$ and, by Lemma 3, D does not have property P_1. On the other hand, if D has property P_2, then $D/4$ has property P_0 and, by Lemma 2, $D \in S_1 \cap S_2$.

If $D \not\equiv 0 \mod 4$, then taking in the definition of P_a for L the least odd prime factor of D we infer that

$$(2) \quad D = L \text{ or } 2L,$$

hence the discriminant of the field $\mathbb{Q}(\sqrt{-D})$ equals D for $D \equiv 3 \mod 4$ and $4D$ otherwise. Put $\omega = (1+\sqrt{-D})/2$ for $D \equiv 3 \mod 4$, $\omega = \sqrt{-D}$ otherwise. If $D \equiv 3 \mod 8$, then (2) remains prime in $\mathbb{Q}(\sqrt{-D})$. If $D \equiv 1, 2 \mod 4$, then by Dedekind’s theorem, $(2) = \mathfrak{p}^2$, where \mathfrak{p} is a prime ideal of $\mathbb{Q}(\sqrt{-D})$. Finally, if $D \equiv 7 \mod 8$, then (2) = $\mathfrak{p} \mathfrak{p}'$, where \mathfrak{p}' is conjugate to \mathfrak{p}.

If $D \notin S_1 \cup S_2$ and $D \not\equiv 0 \mod 4$, then either d has an odd square factor > 1 or $D \in \{15, 35, 51, 91, 115, 123, 187, 267, 403, 427\}$ or $D \in T$ or disc $\mathbb{Q}(\sqrt{-D}) \notin S \cup T$. The first two cases are excluded by (2), in the third case we find either $D \leq 211$, $Q \leq 5 < (1+D)/4$, or $D \geq 293$, $Q \leq 13 < (1+D)/4$, so this case is excluded by Lemma 3. In the fourth case by Lemma 4 there are at least four ideal classes in $\mathbb{Q}(\sqrt{-D})$ and, by Lemma 1, there exists there a prime ideal q equivalent neither to (1) nor to p^a nor to $p^{a'}$. If q is the norm of q, then $q = (q, b + c\omega)$, where $b, c \in \mathbb{Z}$ and $(b, c) = 1$. If $\omega = \sqrt{-D}$, then $q \mid b^2 + Dc^2$, while if $\omega = (1+\sqrt{-D})/2$, then $q \mid (2b + c)^2 + Dc^2$ for c odd and $q \mid (b + c/2)^2 + D(c/2)^2$ for c even, thus by P_a for some integers x, y we have either $q = N(x+y\sqrt{-D})$ or $2^{a}q = N(x+y\sqrt{-D})$. Since q is prime, this gives either $(x+y\sqrt{-D}) = q$ or q' or p^aq or p^aq' or $p^{a'}q$ or $p^{a'}q'$ or $a = 2$, $(x+y\sqrt{-D}) = (2)q$ or $(x+y\sqrt{-D}) = (2)q'$. In each case q is equivalent to either (1) or p^a or $p^{a'}$, contrary to the choice of q.

The problem considered by Lubelski in [6], where 2 is replaced by an odd prime p, can be solved by similar methods.
The proof of Theorem 2 is based on

Lemma 6. For a finite permutation group G with the orbits O_1, \ldots, O_l, let $a_{i\sigma}$ be the number of letters of the orbit O_i left invariant by a permutation σ of G. Then for each $i \leq l$,

$$\sum_{\sigma \in G} a_{i\sigma} = |G|.$$

Proof. See [2, p. 190].

Proof of Theorem 2. Consider the polynomial

$$f(x) = c \prod_{i=1}^{l} f_i(x)^{e_i},$$

where $c \in k \setminus \{0\}$, f_i are coprime polynomials irreducible over k, and e_i are positive integers. Let G be the Galois group of the polynomial $\prod_{i=1}^{l} f_i(x)$ over k. Then G has l orbits O_1, \ldots, O_l consisting of the zeros of f_1, \ldots, f_l respectively. By the Frobenius density theorem for every permutation $\sigma \in G$ there exist infinitely many prime ideals p of k such that f_i has exactly $a_{i\sigma}$ linear factors modulo p, where $a_{i\sigma}$ is as in Lemma 6. The assumption gives

$$(3) \quad \sum_{i=1}^{l} e_i a_{i\sigma} \geq v \quad \text{for every } \sigma \in G$$

and unless

$$(4) \quad v \geq \sum_{i=1}^{l} e_i$$

we have the assertion. For σ being the identity (id) we have $a_{i\sigma} = |O_i|$ ($1 \leq i \leq l$), hence by Lemma 6,

$$\sum_{\sigma \in G \setminus \{\text{id}\}} a_{i\sigma} = |G| - |O_i| \quad (1 \leq i \leq l).$$

It follows that

$$\sum_{\sigma \in G \setminus \{\text{id}\}} \sum_{i=1}^{l} e_i a_{i\sigma} = \sum_{i=1}^{l} e_i \sum_{\sigma \in G \setminus \{\text{id}\}} a_{i\sigma} = \sum_{i=1}^{l} e_i (|G| - |O_i|) < \sum_{i=1}^{l} e_i (|G| - 1),$$

unless

$$(5) \quad |O_i| = 1 \quad (1 \leq i \leq l).$$

Therefore, unless (5) holds, there exists $\sigma \in G$ such that $\sum_{i=1}^{l} e_i a_{i\sigma} < \sum_{i=1}^{l} e_i$, contrary to (3) and (4).
References

A. Schinzel
Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8
00-956 Warszawa, Poland
E-mail: schinzel@impan.pl

Received March 28, 2011