On Morphisms between Indecomposable Projective Modules over Special Biserial Algebras

by
Alicja JAWORSKA
Presented by Andrzej SKOWROŃSKI

Summary. We investigate the categorical behaviour of morphisms between indecomposable projective modules over a special biserial algebra A over an algebraically closed field, which are associated to arrows of the Gabriel quiver of A.

1. Introduction and the main result. Let K be an algebraically closed field. Throughout the paper by an algebra we mean an associative basic finite-dimensional K-algebra. We denote by $\bmod A$ the category of all finite-dimensional right A-modules. Further, we denote by rad_{A} the Jacobson radical of $\bmod A$, generated by all non-isomorphisms between indecomposable modules in $\bmod A$, and by $\operatorname{rad}_{A}^{\infty}$ the infinite radical of $\bmod A$, which is the intersection of all powers $\operatorname{rad}_{A}^{i}, i \geq 1$, of rad_{A}. For an algebra A, we consider its Auslander-Reiten quiver denoted by Γ_{A}. The vertices of Γ_{A} correspond to isomorphism classes $[X]$ of indecomposable A-modules X and there is an arrow $[X] \rightarrow[Y]$ between two vertices if and only if there is an irreducible morphism $f: X \rightarrow Y$, equivalently $f \in \operatorname{rad}_{A} \backslash \operatorname{rad}_{A}^{2}$. Throughout the paper we shall not distinguish between indecomposable modules in $\bmod A$ and vertices of Γ_{A}. It is well known that Γ_{A} describes the quotient category $\bmod A / \operatorname{rad}_{A}^{\infty}$. Let τ and τ^{-1} denote the Auslander-Reiten translations DTr and TrD in $\bmod A$, respectively. By a component of Γ_{A} we shall mean a connected component of the translation quiver Γ_{A}. Following [23], we call a component \mathcal{C} generalized standard if $\operatorname{rad}_{A}^{\infty}(X, Y)=0$ for all modules X and Y in \mathcal{C}.

The class of special biserial algebras was introduced by Skowroński and Waschbüsch in [24]. An algebra A is said to be special biserial if there exists
a finite bound quiver (Q_{A}, I_{A}) with $A \cong K Q_{A} / I_{A}$ such that:
(R1) Each vertex of Q_{A} is a source of at most two arrows and a target of at most two arrows.
(R2) For every arrow α in Q_{A} there exists at most one arrow β (respectively, γ) such that $\alpha \beta \notin I_{A}$ (respectively, $\gamma \alpha \notin I_{A}$).

A bound quiver $\left(Q_{A}, I_{A}\right)$ satisfying (R1) and (R2) is called a special biserial quiver.

It was proved in [24] that all biserial representation-finite algebras are special biserial. Important examples of special biserial algebras are the Nakayama algebras and some blocks of group algebras with cyclic or dihedral defect groups (see [1], [8, [13]). Moreover, special biserial algebras occurred naturally in the Gelfand and Ponomarev description of the singular HarishChandra modules of the Lorentz group [14], the classification of restricted Lie algebras and infinitesimal groups with tame principal blocks ([11], [12]) and the classification of the finite-dimensional Hecke algebras of tame representation type [2].

In 25] Wald and Waschbüsch proved that special biserial algebras are of tame representation type and gave a classification of indecomposable finitedimensional modules (see [4, [7] for alternative proofs). Then the tameness of biserial algebras was proved in 55 by Crawley-Boevey using geometric deformations to the class of special biserial algebras. Therefore, special biserial algebras play a prominent role and are often used as a test class for some general problems in the representation theory of finite-dimensional algebras. Nevertheless, the category of finite-dimensional modules over a special biserial algebra is often complicated and far from being well understood. For example, it was proved by Schröer in [19] that for any positive integer $n \geq 2$ there exists a special biserial algebra A of Krull-Gabriel dimension n. Moreover, Schröer proved in [20] that there are special biserial algebras A with arbitrarily complicated infinite radical of the module category $\bmod A$. We also note that special biserial algebras have representation dimension at most 3 and finite finitistic dimension [9].

Let $A=K Q_{A} / I_{A}$ be an arbitrary algebra. Then $A \cong \operatorname{End}_{A}\left(A_{A}\right)$, where an isomorphism is given in the following way: to each element $a \in A$ we assign the morphism $f_{a}: A \rightarrow A$ which is left multiplication by a. Hence, we have a natural correspondence between an arrow $\alpha: x \rightarrow y$ in Q_{A} and the A-module homomorphism $f_{\alpha}: e_{y} A \rightarrow e_{x} A$ between indecomposable projective modules $e_{y} A$ and $e_{x} A$, given by $f_{\alpha}(-)=\bar{\alpha} \cdot-$. Here, we denote by e_{x} the coset $\overline{\mathcal{E}_{x}}=\mathcal{E}_{x}+I_{A}$ of the trivial path \mathcal{E}_{x} in $\left(Q_{A}, I_{A}\right)$ at vertex x and by $\bar{\alpha}$ the coset $\alpha+I_{A}$ of an arrow α in Q_{A}. To simplify notation we shall write $P(z)$ for an indecomposable projective module $e_{z} A$, where z is a vertex in Q_{A}.

We are concerned with the general problem of describing properties of homomorphisms of type f_{α} between indecomposable projective A-modules lying in a common component of the Auslander-Reiten quiver Γ_{A}. The question of their structure, that is, how deep they emerge in the radical sequence $\operatorname{rad}_{A} \supseteq \operatorname{rad}_{A}^{2} \supseteq \cdots \supseteq \operatorname{rad}_{A}^{n} \supseteq \cdots$ of the category $\bmod A$, is of our special interest. Throughout the article we shall assume that A is a special biserial algebra of the form $A=K Q_{A} / I_{A}$ for a special biserial quiver (Q_{A}, I_{A}). We give a criterion for $f_{\alpha} \notin \operatorname{rad}_{A}^{\infty}$ in terms of walks in the bound quiver $\left(Q_{A}, I_{A}\right)$. For this purpose we introduce some notation.

For a quiver $Q=\left(Q_{1}, Q_{0}, s, t\right)$ we denote by Q_{0} the set of vertices in Q, by Q_{1} the set of arrows in Q, and by $s, t: Q_{1} \rightarrow Q_{0}$ two maps which associate to each arrow $\alpha \in Q_{1}$ its source $s(\alpha) \in Q_{0}$ and its target $t(\alpha) \in Q_{0}$, respectively. Let L be a quiver whose underlying graph is of the form $1-2-\cdots-r+1$, with r a non-negative integer. Fix an orientation of arrows of L. Then for an arbitrary quiver Q, a quiver homomorphism $\omega: L \rightarrow Q$ is called a walk of length r in Q from $\omega(1)$ to $\omega(r+1)$. These are the starting point $s(\omega)$ and the ending point $t(\omega)$ of ω, respectively. If L is of the form $1 \rightarrow 2 \rightarrow \cdots \rightarrow r+1$ then a quiver homomorphism $\omega: L \rightarrow Q$ is called a path (equivalently, an oriented walk). Recall that each associative basic algebra has a presentation as a path algebra $K Q / I$ of a bound quiver (Q, I) where I is an ideal in $K Q$ generated by relations, that is, elements of $K Q$ of the form $\varrho=\sum_{i=1}^{m} \lambda_{i} \omega_{i}$ where λ_{i} are scalars, ω_{i} are paths in Q of length at least 2 with a common starting point and a common ending point. If $m=1$, a relation ϱ is called a zero-relation or a monomial relation. If $m \geq 2$, a relation ϱ will be called multinomial. Further, we shall denote by $\operatorname{Gen}(I)$ a set of relations generating the ideal I which satisfies the following conditions:
(a) if $\sum_{i=1}^{m} \lambda_{i} \varrho_{i} \in \operatorname{Gen}(I)$, where each λ_{i} is a non-zero element of K, then $\sum_{j \in S} \lambda_{j} \varrho_{j} \notin \operatorname{Gen}(I)$ for any proper subset $S \subset\{1, \ldots, m\}$;
(b) if $\varrho \in \operatorname{Gen}(I)$, then $\beta \varrho, \varrho \beta \notin \operatorname{Gen}(I)$ for any arrow β.

Suppose ω is a non-zero walk in (Q, I). We shall denote by \mathcal{X}_{ω} the set of all non-zero walks in (Q, I) which start with ω, that is, all walks of the form $\omega \omega^{\prime}$ where ω^{\prime} is a walk such that $s\left(\omega^{\prime}\right)=t(\omega)$. Hence, for each walk ω we obtain the cardinality of \mathcal{X}_{ω} as an invariant.

We shall say that an arrow α is an initiating arrow in (Q, I) (or α initiates a relation) if there exists a relation $\varrho \in \operatorname{Gen}(I)$ such that $\varrho=\lambda_{1} \alpha \varrho_{1}+\lambda_{2} \varrho_{2}+$ $\cdots+\lambda_{m} \varrho_{m}$ for some $m \geq 1$. Note that if an arrow $\alpha: x \rightarrow y$ in a special biserial quiver (Q, I) is not initiating then $\bar{\alpha} P(y) \cong P(y)$ and $P(y)$ is a direct summand the Jacobson radical rad $P(x)$ of $P(x)$. Consequently, $f_{\alpha}: P(y) \rightarrow$ $P(x)$ is an irreducible homomorphism. Conversely, if $f_{\alpha}: P(y) \rightarrow P(x)$ is irreducible then $\bar{\alpha} P(y)$ is a direct summand of $\operatorname{rad} P(x)$ and α is not an
initiating arrow in (Q, I). Therefore, it is natural to ask when f_{α} does not belong to $\operatorname{rad}_{A}^{\infty}$ for an initiating arrow α of (Q, I).

The following theorem is the main result of the paper.
Theorem. Let $A=K Q_{A} / I_{A}$ be a special biserial algebra and $\alpha: x \rightarrow y$ an initiating arrow in $\left(Q_{A}, I_{A}\right)$. The following statements are equivalent:
(i) $f_{\alpha}: P(y) \rightarrow P(x) \notin \operatorname{rad}_{A}^{\infty}(P(y), P(x))$,
(ii) \mathcal{X}_{ϱ} is a finite set for any path ϱ in Q_{A} such that $\alpha \varrho \in \operatorname{Gen}\left(I_{A}\right)$ or $\lambda \alpha \varrho+\lambda^{\prime} \varrho^{\prime} \in \operatorname{Gen}\left(I_{A}\right)$ for some non-zero $\lambda, \lambda^{\prime} \in K$ and a path ϱ^{\prime} in Q_{A}.
For background on the representation theory applied here we refer to [3], [21], 22].
2. Preliminary results. The aim of this section is to present all facts and notation applied in the proof of the main theorem.

A special biserial algebra $A=K Q_{A} / I_{A}$ is called a string algebra if there is a generating set of I_{A} formed by paths. There is a full classification of finite-dimensional indecomposable right modules over a string algebra A (see [7], [25]). For every indecomposable module $X \in \bmod A$ we have two possibilities. The first is when X is induced by a walk ω that cannot be written as $\omega_{1} \alpha \alpha^{-1} \omega_{2}$ or $\omega_{1} \beta^{-1} \beta \omega_{2}$ for walks ω_{1}, ω_{2}, and ω does not contain a subwalk of the form v or v^{-1} with $v \in I_{A}$. In this case we say that X is a string module and denote it by $X(\omega)$. The second possibility is that X is induced by a primitive closed walk ν, an integer $n \geq 1$ and a non-zero element $\lambda \in K$. Recall that a closed walk ν in a bound quiver $\left(Q_{A}, I_{A}\right)$ is called primitive if it is not of the form μ^{i} for any integer $i \geq 2$ and ν^{j} for any $j \geq 1$ is a non-zero walk in $\left(Q_{A}, I_{A}\right)$. In this case we say that X is a band module and denote it by $X(\nu, n, \lambda)$.

For the first type of module, the following algorithm for computing Auslander-Reiten sequences was given by Skowroński and Waschbüsch [24]. If $\omega=\delta_{1, s_{1}} \ldots \delta_{1,1} \delta_{2,1}^{-1} \ldots \delta_{2, s_{2}}^{-1} \ldots \delta_{r-1, s_{r-1}} \ldots \delta_{r-1,1} \delta_{r, 1}^{-1} \ldots \delta_{r, s_{r}}^{-1}$ is a walk in the bound quiver $\left(Q_{A}, I_{A}\right)$, where $\delta_{j, t}$ is an arrow in Q_{A} and $\delta_{1, s_{1}} \ldots \delta_{1,1}$ or $\delta_{r, 1}^{-1} \ldots \delta_{r, s_{r}}^{-1}$ may be trivial, then we set

$$
\omega_{R}=\omega \delta_{r, s_{r}+1}^{-1} \delta_{r+1, s_{r+1}} \ldots \delta_{r+1,1}
$$

where $\delta_{r+1, s_{r+1}} \ldots \delta_{r+1,1}$ is a maximal non-zero path in $\left(Q_{A}, I_{A}\right)$, provided such a walk exists. If the walk $\delta_{r, s_{r}+1}^{-1} \delta_{r+1, s_{r+1}} \ldots \delta_{r+1,1}$ does not exist then

$$
\omega_{R}=\delta_{1, s_{1}} \ldots \delta_{1,1} \delta_{2,1}^{-1} \ldots \delta_{2, s_{2}}^{-1} \ldots \delta_{r-1, s_{r-1}} \ldots \delta_{r-1,2}
$$

Using the same rules on the other end of the walk ω we obtain ω_{L}. The composition of these constructions gives us the walks $\omega_{R L}$ and $\omega_{L R}$, respectively. Moreover, if ω_{R} and ω_{L} are non-zero we have $\omega_{R L}=\omega_{L R}$. Then, by [24], for
a non-injective string module $X(\omega)$, there is an Auslander-Reiten sequence in $\bmod A$ of the form

$$
0 \rightarrow X(\omega) \rightarrow X\left(\omega_{R}\right) \oplus X\left(\omega_{L}\right) \rightarrow X\left(\omega_{R L}\right) \rightarrow 0
$$

We shall write briefly $\omega_{R^{2}}\left(\omega_{L^{2}}\right)$ instead of $\left(\omega_{R}\right)_{R}\left(\left(\omega_{L}\right)_{L}\right.$, respectively), and analogously $\omega_{R^{i}}\left(\omega_{L^{i}}\right.$, respectively) will mean the above operations applied i times. We shall also write $\omega_{R^{-i}}=\eta$ provided $\eta_{R^{i}}=\omega$, for any positive integer i.

Note that for a special biserial algebra A the algebra $A / \operatorname{soc}(R)$, where $\operatorname{soc}(R)$ is the socle of the direct sum R of all indecomposable projectiveinjective modules which are not serial, is a string algebra. Moreover, each indecomposable projective-injective A-module X occurs in an AuslanderReiten sequence of the form

$$
0 \rightarrow \operatorname{rad}(X) \rightarrow X \oplus \operatorname{rad}(X) / \operatorname{soc}(X) \rightarrow X / \operatorname{soc}(X) \rightarrow 0
$$

where rad denotes the Jacobson radical of a module. This allows us to use the Skowroński-Waschbüsch algorithm for any special biserial algebra.

Let ω be a non-zero walk in a special biserial quiver $\left(Q_{A}, I_{A}\right)$. Then the set \mathcal{X}_{ω} can be equipped with a partial order \preceq in the following way. For η_{1}, η_{2} $\in \mathcal{X}_{\omega}$ we write $\eta_{1} \preceq \eta_{2}$ if and only if there exists a non-negative integer i such that $\eta_{2}=\left(\eta_{1}\right)_{R^{i}}$. Note that if $\delta \in \mathcal{X}_{\omega}$ and $\delta_{R^{l}} \in \mathcal{X}_{\omega}$, where $l \geq 2$, then $\delta_{R^{i}} \in \mathcal{X}_{\omega}$ for all $1 \leq i \leq l-1$.

The following lemma will play an important role in the proof of the Theorem.

Lemma 2.1. Let $A=K Q_{A} / I_{A}$ be a path algebra of a special biserial quiver $\left(Q_{A}, I_{A}\right)$ and ω be a non-zero walk in $\left(Q_{A}, I_{A}\right)$. Then:
(a) \mathcal{X}_{ω} contains a unique minimal and a unique maximal element.
(b) If \mathcal{X}_{ω} is a finite set then it is well ordered.
(c) If \mathcal{X}_{ω} contains a finite chain \mathcal{L} then $\mathcal{X}_{\omega}=\mathcal{L}$.

Proof. Assume that $\omega=\omega^{\prime} \beta^{-1} \alpha_{1} \ldots \alpha_{n}$, where, for $1 \leq i \leq n, \alpha_{i}$ is an arrow in Q_{A}, and if $\omega^{\prime} \beta^{-1}$ is a non-trivial walk then β is an arrow such that $s(\beta)=s\left(\alpha_{1}\right)$. Without loss of generality we may assume that $\omega^{\prime} \beta^{-1}$ is a non-trivial walk.
(a) Let η^{\prime} be a maximal non-zero path in $\left(Q_{A}, I_{A}\right)$ which belongs to $\mathcal{X}_{\alpha_{1} \ldots \alpha_{n}}$. Consider $\eta=\omega^{\prime} \beta^{-1} \eta^{\prime} \in \mathcal{X}_{\omega}$. From the Skowroński-Waschbüsch algorithm we find that $\eta=\omega_{R}^{\prime}$ and $\omega_{R^{i}}^{\prime} \notin \mathcal{X}_{\omega}$ for any integer $i \leq 0$. Moreover, if a path v satisfies $v_{R^{-1}} \notin \mathcal{X}_{\omega}$ and $v \in \mathcal{X}_{\omega}$, then $v=\eta$. Hence η is a minimal element in \mathcal{X}_{ω}. Similarly, we show the existence of a maximal element in \mathcal{X}_{ω}. If $u \in \mathcal{X}_{\omega}$ is such that $u_{R} \notin \mathcal{X}_{\omega}$ then $u=\omega^{\prime} \beta^{-1} \alpha_{1} \ldots \alpha_{n}\left(u^{\prime}\right)^{-1}$, where u^{\prime} is a maximal non-zero (maybe trivial) path which does not contain $\alpha_{1} \ldots \alpha_{n}$ as a subpath and $t\left(u^{\prime}\right)=t\left(\alpha_{n}\right)$.
(b) Let $v \in \mathcal{X}_{\omega}$ and η be a minimal element of \mathcal{X}_{ω}. Recall that for two representations $M=\left(M_{x}, M_{\alpha}\right), M^{\prime}=\left(M_{x}^{\prime}, M_{\alpha}^{\prime}\right)$ of $\left(Q_{A}, I_{A}\right)$ a homomorphism $h: M \rightarrow M^{\prime}$ is a family $h=\left(h_{x}\right)_{x \in Q_{0}}$ of K-linear maps $\left(h_{x}: M_{x} \rightarrow M_{x}^{\prime}\right)_{x \in Q_{0}}$ such that for each arrow $\alpha: a \rightarrow b$ we have $M_{\alpha}^{\prime} h_{a}=h_{b} M_{\alpha}$. Note that for a walk μ of length r such that $\mu\left(i_{1}\right)=\cdots=\mu\left(i_{l}\right)=z$ for some vertex $z \in Q_{A}$ and $1 \leq l \leq r+1$, we have $X(\mu)_{\mu\left(i_{j}\right)}=K$ for any $1 \leq j \leq l$, and $\bigoplus_{j=1}^{l} X(\mu)_{\mu\left(i_{j}\right)}=X(\mu)_{z}$. Take $f: X(\eta) \rightarrow X(v)$ with $f_{\eta(1)} \neq 0$. Such an f exists since $v=\omega v^{\prime}=\omega^{\prime} \beta^{-1} \alpha_{1} \ldots \alpha_{n} v^{\prime}$ and $\eta=\omega^{\prime} \beta^{-1} \alpha_{1} \ldots \alpha_{r}$ where $\alpha_{1}, \ldots, \alpha_{r}$ are arrows in Q_{A} and $\alpha_{1} \ldots \alpha_{r}$ is a maximal non-zero oriented walk in $\mathcal{X}_{\alpha_{1} \ldots \alpha_{n}}$. Suppose that $f=f^{\prime \prime} f^{\prime}$ for some A-module M and homomorphisms $f^{\prime \prime}: M \rightarrow X(v), f^{\prime}: X(\eta) \rightarrow M$. Without loss of generality we may assume that $M=X(\mu)$ is an indecomposable string module (the image of a morphism between string modules is a string module). Assume $\omega \in \mathcal{X}_{\delta}$ for some arrow $\delta \in Q_{A}$ and $\mu \notin \mathcal{X}_{\delta}$. Then μ or μ^{-1} contains an arrow γ such that $t(\gamma)=s(\delta)$ or $s(\gamma)=s(\delta)$. Since $f_{\eta(1)} \neq 0$ we have $f_{\eta(1)}^{\prime}=f_{v(1)}^{\prime} \neq 0$ and $f_{\eta(1)}^{\prime \prime}=f_{v(1)}^{\prime \prime} \neq 0$.

Assume that $M_{\gamma}: M_{s(\gamma)} \rightarrow M_{\eta(1)}$, where $M_{\eta(1)}$ is a one-dimensional subspace of $M_{t(\gamma)}$, is non-zero. Then for $f_{\eta(1)}^{\prime \prime}: M_{\eta(1)} \rightarrow X(v)_{v(1)}$ we have $0 \neq f_{\eta(1)}^{\prime \prime} M_{\gamma}=X(v)_{\gamma} f_{s(\gamma)}^{\prime \prime}=0$, because $X(v)_{\gamma}: X(v)_{s(\gamma)} \rightarrow X(v)_{v(1)}$ is zero, a contradiction. Suppose $M_{\gamma}: M_{\eta(1)} \rightarrow M_{t(\gamma)}$ is non-zero for a onedimensional subspace $M_{\eta(1)}$ of $M_{s(\gamma)}$. Then for $f_{\eta(1)}^{\prime}: X(\eta)_{\eta(1)} \rightarrow M_{\eta(1)}$ we have $0 \neq M_{\gamma} f_{\eta(1)}^{\prime}=f_{t(\gamma)}^{\prime} X(\eta)_{\gamma}=0$, because $X(\eta)_{\gamma}: X(\eta)_{\eta(1)} \rightarrow X(\eta)_{t(\gamma)}$ is zero, a contradiction. Hence $\mu \in \mathcal{X}_{\delta}$ and $\mu=\delta \mu^{\prime}$ for some walk μ^{\prime}. Since by assumption $\omega \in \mathcal{X}_{\delta}$, there exists a walk $\omega^{\prime \prime}$ such that $\omega=\delta \omega^{\prime \prime}$ and we repeat the above considerations for $\omega^{\prime \prime}$ instead for ω and μ^{\prime} instead for μ. By induction we find that $\mu \in \mathcal{X}_{\omega}$. We use dual arguments for $\omega \in \mathcal{X}_{\delta^{-1}}$, where δ is an arrow in Q_{A}.

Let now \mathcal{X}_{ω} be a finite set. Then there exists $i \geq 0$ such that $\eta_{R^{i}} \in \mathcal{X}_{\omega}$ and $\eta_{R^{i+1}} \notin \mathcal{X}_{\omega}$. Suppose that $v \in \mathcal{X}_{\omega}$ is not \preceq-related with η. Note that any morphism $f: X(\eta) \rightarrow X(v)$ with $f_{\eta(1)}=f_{v(1)} \neq 0$ factorizes through the middle term E of an Auslander-Reiten sequence which starts in $X\left(\eta_{R^{i}}\right)$. This leads to a contradiction since no direct summand M of E belongs to \mathcal{X}_{ω}. Observe that for any morphism $f \in \operatorname{Hom}_{A}(M, X(v))$ we have $f_{v(1)}=0$. Hence the relation \preceq is connected and \mathcal{X}_{ω} has the form

$$
\eta \preceq \eta_{R} \preceq \eta_{R^{2}} \preceq \cdots \preceq \eta_{R^{j}}
$$

for some integer $j \geq 0$.
(c) If \mathcal{X}_{ω} contains a finite chain \mathcal{L}, then by repeating the arguments from (b) we get the claim.

Analogously we provide the proof for $\omega=\omega^{\prime} \alpha \beta_{1}^{-1} \ldots \beta_{m}^{-1}$, where for any $1 \leq i \leq m, \beta_{i}$ is an arrow and if $\omega^{\prime} \alpha$ is a non-trivial walk then α denotes an arrow such that $t(\alpha)=t\left(\beta_{1}\right)$.
3. Proof of the Theorem. We have two cases to consider: α does not initiate any multinomial relations and α initiates a multinomial relation.

CASE 1: α does not initiate any multinomial relation. This is the case when $P(x)$ is a string module, say $P(x)=X\left(\eta^{-1} \alpha \varepsilon_{1} \ldots \varepsilon_{n}\right)$, where η is a path (maybe trivial) which starts at x and $\eta \notin \mathcal{X}_{\alpha}$ and $\varepsilon_{1} \ldots \varepsilon_{n}$ is the composition of arrows $\varepsilon_{1}, \ldots, \varepsilon_{n} \in Q_{A}\left(\varepsilon_{1} \ldots \varepsilon_{n}\right.$ may be trivial). Note that $X\left(\varepsilon_{1} \ldots \varepsilon_{n}\right)$ is then a direct summand of $\operatorname{rad} P(x)$ and $X\left(\varepsilon_{1} \ldots \varepsilon_{n}\right)$ is equal to the image $\operatorname{Im} f_{\alpha}$ of $f_{\alpha}: P(y) \rightarrow P(x)$.

We start by showing the implication (ii) $\Rightarrow(\mathrm{i})$.
(a) Assume that y is a source of exactly one arrow ε_{1}. Clearly, then $P(y)=X\left(\varepsilon_{1} \ldots \varepsilon_{r}\right)$ for some $r \geq n$. Since α is an initiating arrow in a special biserial quiver, there is a unique path $\varrho \in \mathcal{X}_{\varepsilon_{1}}$ for which $\alpha \varrho \in \operatorname{Gen}\left(I_{A}\right)$. But $P(x)=X\left(\eta^{-1} \alpha \varepsilon_{1} \ldots \varepsilon_{n}\right)$ implies that there exists in Q_{A} an arrow ε_{n+1} with $s\left(\varepsilon_{n+1}\right)=t\left(\varepsilon_{n}\right)$ such that $\varrho=\varepsilon_{1} \ldots \varepsilon_{n} \varepsilon_{n+1}$. Obviously, $\varrho \notin I_{A}$ and $n+1 \leq r$.

Consider now the set \mathcal{X}_{ϱ}. Since by assumption \mathcal{X}_{ϱ} is finite, and by Lemma 2.1. $\varepsilon_{1} \ldots \varepsilon_{r}$ is a maximal non-zero path in \mathcal{X}_{ϱ}, there exists a positive integer a such that

$$
X\left(\left(\varepsilon_{1} \ldots \varepsilon_{r}\right)_{R^{a}}\right)=X\left(\varepsilon_{1} \ldots \varepsilon_{n}\right)
$$

Thus we have the following sectional path in Γ_{A} :

$$
P(y)=X\left(\varepsilon_{1} \ldots \varepsilon_{r}\right) \xrightarrow{f_{1}} X\left(\left(\varepsilon_{1} \ldots \varepsilon_{r}\right)_{R}\right) \xrightarrow{f_{2}} \ldots \xrightarrow{f_{a}} X\left(\varepsilon_{1} \ldots \varepsilon_{n}\right) \xrightarrow{f_{a+1}} P(x) .
$$

Then by [15, Theorem 13.3] we see that $f_{a+1} \ldots f_{1} \in \operatorname{rad}_{A}^{a+1} \backslash \operatorname{rad}_{A}^{a+2}$. We claim that $f_{\alpha}=f_{a+1} \ldots f_{1}$ up to scalar multiplication. We will show that $f_{\alpha}: P(y)=X\left(\varepsilon_{1} \ldots \varepsilon_{r}\right) \rightarrow P(x)$ does not factorize through any module M different from $X\left(\left(\varepsilon_{1} \ldots \varepsilon_{r}\right)_{R^{i}}\right)$ for $1 \leq i \leq a$. Indeed, assume that $f_{\alpha}=g f$, where $f: P(y) \rightarrow M$ and $g: M \rightarrow P(x)$ for some such A-module M. Without loss of generality we may assume that M is a string module $X(\omega)$ for a walk ω in $\left(Q_{A}, I_{A}\right)$. Since $\operatorname{Im} f=X\left(\varepsilon_{1} \ldots \varepsilon_{j}\right)$ for some $j \leq r, M$ contains $X\left(\varepsilon_{1} \ldots \varepsilon_{j}\right)$ as a submodule. Further, M has $X\left(\varepsilon_{1} \ldots \varepsilon_{n}\right)$ as a factor module, because $\operatorname{Im} f_{\alpha}=\operatorname{Im} g f=X\left(\varepsilon_{1} \ldots \varepsilon_{n}\right)$. Observe that by definition $\left(f_{\alpha}\right)_{y} \neq 0$. But $(g f)_{y} \neq 0$ if and only if $\omega=\varepsilon_{1} \ldots \varepsilon_{n} \zeta$ for some non-zero walk ζ in $\left(Q_{A}, I_{A}\right)$. Now the fact that $X\left(\varepsilon_{1} \ldots \varepsilon_{n}\right)$ is a factor module of M implies $\omega=\varepsilon_{1} \ldots \varepsilon_{n} \varepsilon_{n+1} \zeta^{\prime}$ for some arrow ε_{n+1} and walk ζ^{\prime} in $\left(Q_{A}, I_{A}\right)$. Hence $\omega \in \mathcal{X}_{\varrho}$. Since \mathcal{X}_{ϱ} is finite and $\varepsilon_{1} \ldots \varepsilon_{r}$ is a minimal element in \mathcal{X}_{ϱ} we deduce that $X(\omega)=X\left(\left(\varepsilon_{1} \ldots \varepsilon_{r}\right)_{R^{i}}\right)$, for some $1 \leq i \leq a$, a contradiction. Thus $f_{\alpha}=f_{a+1} \ldots f_{1} h$ for some $h \in \operatorname{End}_{A}(P(x))$. But $\operatorname{End}_{A}(P(x)) \cong K$ and we conclude that f_{α} is equal to $f_{a+1} \ldots f_{1}$ up to scalar multiplication.
(b) Assume now that y is a source of exactly two arrows which we denote by $\varepsilon_{1}, \delta_{1}$, and suppose $\alpha \delta_{1} \in I_{A}$.
(1) Suppose that $P(y)$ is a string module of the form

$$
X(\nu)=X\left(\delta_{p}^{-1} \ldots \delta_{1}^{-1} \varepsilon_{1} \ldots \varepsilon_{r}\right)
$$

for some $p, r \geq 1$. Then either $r=n$, which is equivalent to the fact that $\alpha \delta_{1}$ is the unique relation initiated by α, or $r \geq n+1$, equivalently $\alpha \varepsilon_{1} \ldots \varepsilon_{n+1} \in$ $\operatorname{Gen}\left(I_{A}\right)$ (because $P(x)=X\left(\eta^{-1} \alpha \varepsilon_{1} \ldots \varepsilon_{n}\right)$).

Assume $r=n$. Then $\operatorname{Im} f_{\alpha}=X\left(\varepsilon_{1} \ldots \varepsilon_{n}\right)$ and there is the following sectional path in Γ_{A} :

$$
P(y)=X(\nu) \xrightarrow{f_{1}} X\left(\nu_{L}\right) \xrightarrow{f_{2}} \ldots \xrightarrow{f_{b}} X\left(\nu_{L^{b}}\right)=X\left(\varepsilon_{1} \ldots \varepsilon_{n}\right) \xrightarrow{f_{b+1}} P(x),
$$

for $b \geq 1$. Again by [15, Theorem 13.3] we have $f_{b+1} \ldots f_{1} \in \operatorname{rad}_{A}^{b+1} \backslash \operatorname{rad}_{A}^{b+2}$. We claim that $f_{\alpha}=f_{b+1} \ldots f_{1}$ up to scalar multiplication. Note that f_{α} does not factorize through any module different from $X\left(\nu_{L^{i}}\right)$ where $1 \leq$ $i \leq b$. Suppose $f_{\alpha}=g f$ for some string module $M=X(\omega), f: P(y) \rightarrow$ M and $g: M \rightarrow P(x)$. Then M has a submodule of the form $\operatorname{Im} f=$ $X\left(\delta_{l}^{-1} \ldots \delta_{1}^{-1} \varepsilon_{1} \ldots \varepsilon_{k}\right)$ with $l \leq p, k \leq n$. If $k<n$ then for a vertex $z=t\left(\varepsilon_{k+1}\right)$ we have $f_{z}=0$ and hence $(g f)_{z}=0$, which implies $f_{\alpha} \neq g f$. Therefore, we conclude that $k=n$. Moreover, since $\mathcal{X}_{\delta_{1}}$ is finite there exists an integer $j \geq 1$ such that $X\left(\left(\delta_{1} \ldots \delta_{p}\right)_{R^{j}}\right)=X\left(\left(\delta_{p}^{-1} \ldots \delta_{1}^{-1}\right)_{L^{j}}\right)=$ $X\left(\delta_{l}^{-1} \ldots \delta_{1}^{-1}\right)$ and hence $X\left(\delta_{l}^{-1} \ldots \delta_{1}^{-1} \varepsilon_{1} \ldots \varepsilon_{k}\right)=X\left(\nu_{L^{j}}\right)$ for some j. The fact that $X\left(\varepsilon_{1} \ldots \varepsilon_{n}\right)$ is a factor module of M and $\varepsilon_{1} \ldots \varepsilon_{n}=\varepsilon_{1} \ldots \varepsilon_{r}$ is a maximal non-zero path in $\mathcal{X}_{\varepsilon_{1}}$, implies that $\omega=\omega^{\prime} \delta_{1}^{-1} \varepsilon_{1} \ldots \varepsilon_{n}$ for some walk ω^{\prime} in $\left(Q_{A}, I_{A}\right)$. But then $\delta_{1} \omega^{\prime-1} \in \mathcal{X}_{\delta_{1}}$ and we conclude that $X(\omega)=X\left(\nu_{L^{m}}\right)$ for some $m \geq 1$. Thus there is no proper factorization of f_{α} through an A module different from $X\left(\nu_{L^{i}}\right), i \in\{1, \ldots, b\}$. Hence $f_{\alpha}=f_{b+1} \ldots f_{1}$ up to scalar multiplication since $\operatorname{End}_{A}(P(x)) \cong K$.

Consider now $r \geq n+1$. Then we have $\alpha \delta_{1}, \alpha \varepsilon_{1} \ldots \varepsilon_{n+1} \in \operatorname{Gen}\left(I_{A}\right)$. Since by assumption $\mathcal{X}_{\delta_{1}}$ and $\mathcal{X}_{\varepsilon_{1} \ldots \varepsilon_{n+1}}$ are finite sets, there are positive integers a and b such that

$$
X\left(\nu_{R^{a} L^{b}}\right)=X\left(\varepsilon_{1} \ldots \varepsilon_{n}\right) .
$$

Thus $f_{\alpha} \in \operatorname{rad}_{A}^{a+b+1}(P(y), P(x))$. We claim that $f_{\alpha} \notin \operatorname{rad}_{A}^{a+b+2}(P(y), P(x))$. Suppose that f_{α} has a non-trivial factorization $f_{\alpha}=g f$ for $f: P(y) \rightarrow M$, $g: M \rightarrow P(x)$ and a string module $M=X(\omega)$ different from $X\left(\nu_{R^{i} L^{j}}\right)$ for $1 \leq i \leq a, 1 \leq j \leq b$. As above, M contains a submodule $\operatorname{Im} f=$ $X\left(\delta_{l}^{-1} \ldots \delta_{1}^{-1} \varepsilon_{1} \ldots \varepsilon_{k}\right)$ for $l \leq p$ and $k \leq r$, and has a factor module $X\left(\varepsilon_{1} \ldots \varepsilon_{n}\right)$. If $k<n$, then for the vertex $z=t\left(\varepsilon_{k+1}\right)$ we have $f_{z}=0$ and hence $(g f)_{z}=0$, which implies $f_{\alpha} \neq g f$, a contradiction. Therefore, $k \geq n$. Since $X\left(\varepsilon_{1} \ldots \varepsilon_{n}\right)$ is a factor module of M, we have $\omega=\omega^{\prime} \delta_{1}^{-1} \varepsilon_{1} \ldots \varepsilon_{n}$ or $\omega=\omega_{1} \delta_{1}^{-1} \varepsilon_{1} \ldots \varepsilon_{n} \varepsilon_{n+1} \omega_{2}$ for some walks $\omega^{\prime}, \omega_{1}, \omega_{2}$ and an arrow ε_{n+1} in $\left(Q_{A}, I_{A}\right)$. Using the same arguments as above we infer that in both cases $\omega=\nu_{R^{i} L^{j}}$ with $1 \leq i \leq a, 1 \leq j \leq b$. Clearly, there is no cycle in Γ_{A}
having only $X\left(\nu_{R^{i} L^{j}}\right)$ with $i \in\{1, \ldots, a\}, j \in\{1, \ldots, b\}$ as vertices. Thus $f_{\alpha} \in \operatorname{rad}_{A}^{a+b+1} \backslash \operatorname{rad}_{A}^{a+b+2}$.
(2) If $P(y)$ is not a string module then $f_{\alpha}: P(y) \rightarrow P(x)$ factorizes through $P(y) / \operatorname{soc} P(y)=X(\nu)$ where ν is a non-zero walk in $\left(Q_{A}, I_{A}\right)$. We repeat the above arguments to show that $X\left(\varepsilon_{1} \ldots \varepsilon_{n}\right)=X\left(\nu_{R^{a} L^{b}}\right)$ for some $a, b \geq 1$ and that f_{α} factorizes only through modules of the form $X\left(\nu_{R^{i} L^{j}}\right)$, $1 \leq i \leq a, 1 \leq j \leq b$.

Now we show the implication (i) \Rightarrow (ii).
Assume $f_{\alpha} \notin \operatorname{rad}_{A}^{\infty}(P(y), P(x))$ and $P(y)$ is a string module $X\left(\delta_{p}^{-1} \ldots\right.$ $\delta_{1}^{-1} \varepsilon_{1} \ldots \varepsilon_{r}$) with the above notation and $\delta_{p}^{-1} \ldots \delta_{1}^{-1}$ may be a trivial walk in $\left(Q_{A}, I_{A}\right)$. We denote by $f_{\alpha \mid}$ left multiplication by $\bar{\alpha}$ defined on a factor module $X\left(\varepsilon_{1} \ldots \varepsilon_{r}\right)$ of $P(y)$. The composition $f_{\alpha \mid} g$ for a canonical epimorphism $g: P(y) \rightarrow X\left(\varepsilon_{1} \ldots \varepsilon_{r}\right)$ is equal to f_{α}. Hence, $f_{\alpha \mid} \notin \operatorname{rad}_{A}^{\infty}\left(X\left(\varepsilon_{1} \ldots \varepsilon_{r}\right), P(x)\right)$. Then, for $f_{\alpha \mid}=\sum_{i=1}^{j} \lambda_{i} f_{i}$ with non-zero $\lambda_{i} \in K, j \geq 1$, there exists $i \in\{1, \ldots, j\}$ and a positive integer m such that

$$
f_{i} \in \operatorname{rad}_{A}^{m} \backslash \operatorname{rad}_{A}^{m+1} .
$$

Consider $f_{i}: X\left(\varepsilon_{1} \ldots \varepsilon_{r}\right) \rightarrow P(x)$. If $X\left(\left(\varepsilon_{1} \ldots \varepsilon_{r}\right)_{L}\right) \neq 0$, then there is an arrow β in Q_{A} such that $t(\beta)=y$ and $\beta \varepsilon_{1} \ldots \varepsilon_{r} \notin I_{A}$. Hence $\alpha \varepsilon_{1} \in I_{A}$ and f_{i} factorizes through a simple module $S(y)$ at a vertex y. Moreover, $X\left(\left(\varepsilon_{1} \ldots \varepsilon_{r}\right)_{L}\right)=X\left(\mu^{-1} \beta \varepsilon_{1} \ldots \varepsilon_{r}\right)$, where μ is a maximal non-zero path (may be trivial) which starts at $s(\beta)$ and $\mu \notin \mathcal{X}_{\beta}$. Observe that a nonzero morphism $h: X\left(\mu^{-1} \beta \varepsilon_{1} \ldots \varepsilon_{r}\right) \rightarrow P(x)$ factorizes through $S(y)$ provided $\mu^{-1} \beta \varepsilon_{1} \ldots \varepsilon_{r}=\delta_{1} \ldots \beta \varepsilon_{1} \ldots \varepsilon_{r}$ or $\mu^{-1} \beta \varepsilon_{1} \ldots \varepsilon_{r}=\varepsilon_{1} \ldots \beta \varepsilon_{1} \ldots \varepsilon_{r}$, a contradiction. Hence f_{i} does not factorize through $X\left(\left(\varepsilon_{1} \ldots \varepsilon_{r}\right)_{L}\right)$. Similarly, f_{i} does not factorize through $X\left(\left(\varepsilon_{1} \ldots \varepsilon_{r}\right)_{R^{k} L}\right)$ for any $1 \leq k \leq$ $m-1$. Therefore, f_{i} is a composition $f_{i}^{m} \ldots f_{i}^{2} f_{i}^{1}$ of irreducible morphisms $f_{i}^{k}: X\left(\left(\varepsilon_{1} \ldots \varepsilon_{r}\right)_{R^{k-1}}\right) \rightarrow X\left(\left(\varepsilon_{1} \ldots \varepsilon_{r}\right)_{R^{k}}\right)$ for $1 \leq k \leq m-1$ and $f_{i}^{m}:$ $X\left(\varepsilon_{1} \ldots \varepsilon_{n}\right) \rightarrow P(x)$, because $X\left(\varepsilon_{1} \ldots \varepsilon_{n}\right)$ is a direct summand of $\operatorname{rad} P(x)$. Thus $X\left(\left(\varepsilon_{1} \ldots \varepsilon_{n}\right)_{R^{-1}}\right)=X\left(\left(\varepsilon_{1} \ldots \varepsilon_{r}\right)_{R^{m-1}}\right)$ is a maximal element of $\mathcal{X}_{\varepsilon_{1} \ldots \varepsilon_{n+1}}$. Applying now Lemma 2.1(a) we conclude that $X\left(\varepsilon_{1} \ldots \varepsilon_{r}\right)$ is a minimal element of $\mathcal{X}_{\varepsilon_{1} \ldots \varepsilon_{n+1}}$ and by Lemma 2.1(c), $\mathcal{X}_{\varepsilon_{1} \ldots \varepsilon_{n+1}}$ is finite. Analogously, we show that $\mathcal{X}_{\delta_{1}}$ is a finite set.

Assume now that $f_{\alpha} \notin \operatorname{rad}_{A}^{\infty}(P(y), P(x))$ and $P(y)$ is not a string A module. Let $\varepsilon_{1} \ldots \varepsilon_{r}$ be one of two maximal non-zero paths starting at vertex y where, for $1 \leq i \leq r, \varepsilon_{i}$ denotes an arrow. Then we repeat the above considerations with respect to the factor module $X\left(\varepsilon_{1} \ldots \varepsilon_{r-1}\right)$ of $P(y)$.

CASE 2: α initiates a multinomial relation $\lambda_{1} \omega_{1}+\lambda_{2} \alpha \varepsilon_{1} \ldots \varepsilon_{n}$ for some non-trivial path ω_{1} in $\left(Q_{A}, I_{A}\right), 1 \leq n \leq r$ and non-zero $\lambda_{1}, \lambda_{2} \in K$. Without loss of generality, we may assume $\left(Q_{A}, I_{A}\right)$ is a presentation of the algebra A such that $\lambda_{1}=1, \lambda_{2}=-1$. If α initiates a multinomial relation, say
$\alpha^{\prime} \varepsilon_{1}^{\prime} \ldots \varepsilon_{l}^{\prime}-\alpha \varepsilon_{1} \ldots \varepsilon_{n}$ with $1 \leq l, 1 \leq n \leq r$, then for a string module $P(y)=$ $X\left(\delta_{p}^{-1} \ldots \delta_{1}^{-1} \varepsilon_{1} \ldots \varepsilon_{r}\right)$ the morphism $f_{\alpha}: P(y) \rightarrow P(x)$ is the composition $f_{\alpha \mid} g$ of $g: P(y) \rightarrow X\left(\varepsilon_{1} \ldots \varepsilon_{r}\right)$ and $f_{\alpha \mid}: X\left(\varepsilon_{1} \ldots \varepsilon_{r}\right) \rightarrow P(x)$. If $P(y)$ is not a string A-module and $\delta_{1} \ldots \delta_{p}, \varepsilon_{1} \ldots \varepsilon_{r}$ are maximal non-zero paths which start at y, then we take $X\left(\varepsilon_{1} \ldots \varepsilon_{r-1}\right)$ instead of $X\left(\varepsilon_{1} \ldots \varepsilon_{r}\right)$. Since $\operatorname{rad} P(x)=$ $X\left(\varepsilon_{1} \ldots \varepsilon_{n} \varepsilon_{l}^{\prime-1} \ldots \varepsilon_{1}^{\prime-1}\right)$ it is sufficient to study $\mathcal{X}_{\delta_{1}}$ for g (if y is a source of an arrow δ_{1} different from ε_{1}) and $\mathcal{X}_{\varepsilon_{1} \ldots \varepsilon_{n}}$ for $f_{\alpha \mid}$. To show the equivalence (i) \Leftrightarrow (ii) in the second case, the arguments from Case 1 are now repeated.
4. Examples. We end the paper with examples illustrating the Theorem.

Example 4.1. Let $A=K Q / I$ where Q is of the form

and $I=\left\langle\alpha^{2}, \gamma^{2}, \alpha \beta-\beta \gamma\right\rangle$. Consider the initiating arrow β. Then for f_{β} : $P(2) \rightarrow P(1)$ we have $\mathcal{X}_{\gamma}=\left\{\gamma, \gamma \beta^{-1}, \gamma \beta^{-1} \alpha\right\}$ and $f_{\beta} \notin \operatorname{rad}^{\infty}(P(2), P(1))$. Note that A is of finite representation type.

Example 4.2 . Let $A=K Q / I$ where Q is as follows:

and I is the two-sided ideal of $K Q$ generated by $\beta_{1} \varepsilon_{1}, \beta_{1}^{\prime} \varepsilon_{1}^{\prime}$. We know by [18] that the Auslander-Reiten quiver Γ_{A} of A has a component $\mathcal{P}(A)$ which contains all indecomposable projective A-modules. Furthermore, it is a starting component, that is, there are no non-zero morphisms $f: X \rightarrow Y$ for indecomposable modules $X \notin \mathcal{P}(A)$ and $Y \in \mathcal{P}(A)$ (see [18]). There is the following walk in $\mathcal{P}(A)$:

where $S(4)$ denotes a simple module at vertex $4, X\left(\alpha_{2}^{-1} \alpha_{1}^{-1} \beta_{1} \beta_{2}\right)=P(1)$ and $X\left(\varepsilon_{1}^{-1} \beta_{2}\right)=P(3)$. Consider $f_{\beta_{1}}: P(3) \rightarrow P(1)$. The set $\mathcal{X}_{\varepsilon_{1}}$ is infinite since it contains all walks of the form $\varepsilon_{1} \varepsilon_{1}^{\prime-1} \beta_{2}^{\prime}\left(\alpha_{2}^{\prime-1} \alpha_{1}^{\prime-1} \beta_{1}^{\prime} \beta_{2}^{\prime}\right)^{r}$ for any integer $r \geq 1$. Thus $f_{\beta_{1}} \in \operatorname{rad}_{A}^{\infty}$ and $\mathcal{P}(A)$ is not generalized standard. Analogously, $f_{\beta_{1}^{\prime}} \in \operatorname{rad}_{A}^{\infty}$, where $f_{\beta_{1}^{\prime}}: P(6) \rightarrow P(7)$. Moreover, for all remaining arrows $\delta: x \rightarrow y$ in Q, morphisms $f_{\delta}: P(y) \rightarrow P(x)$ between indecomposable projective A-modules $P(x)$ and $P(y)$, belong to $\operatorname{rad}_{A} \backslash \operatorname{rad}_{A}^{2}$.

Imagine now that Q is a finite quiver such that the number of arrows with a prescribed source or target is at most 2. The above theorem allows us to construct special biserial algebras A associated to a bound quiver (Q, I) such that the morphisms between indecomposable projective modules belong to an arbitrary given power of the radical rad_{A}. Obviously, if Q does not contain a subquiver of type $\widetilde{\mathbb{A}}_{m}$ then none of these morphisms belongs to $\operatorname{rad}_{A}^{\infty}$.

Acknowledgements. This research was supported by the grant No. N N201 269135 of the Polish Ministry of Science and Higher Education.

References

[1] J. L. Alperin, Local Representation Theory. Modular Representations as an Introduction to the Local Representation Theory of Finite Groups, Cambridge Stud. Adv. Math. 11, Cambridge Univ. Press, 1986.
[2] S. Ariki, Hecke algebras of classical type and their representation type, Proc. London Math. Soc. 91 (2005), 355-413; Corrigendum: ibid. 92 (2006), 342-344.
[3] I. Assem, D. Simson and A. Skowronski, Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, 2006.
[4] M. C. R. Butler and C. M. Ringel, Auslander-Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra 15 (1987), 145-179.
[5] W. Crawley-Boevey, Tameness of biserial algebras, Arch. Math. (Basel) 65 (1995), 399-407.
[6] W. Crawley-Boevey and R. Vila-Freyer, The structure of biserial algebras, J. London Math. Soc. 57 (1998), 41-54.
[7] P. Dowbor and A. Skowroński, Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62 (1987), 311-337.
[8] K. Erdmann, Blocks of Tame Representation Type and Related Algebras, Lecture Notes in Math. 1428, Springer, 1990.
[9] K. Erdmann, T. Holm, O. Iyama and J. Schröer, Radical embeddings and representation dimension, Adv. Math. 185 (2004), 159-177.
[10] K. Erdmann and A. Skowroński, On Auslander-Reiten components of blocks and selfinjective biserial algebras, Trans. Amer. Math. Soc. 330 (1992), 165-189.
[11] R. Farnsteiner and A. Skowroński, Classification of restricted Lie algebras with tame principal block, J. Reine Angew. Math. 546 (2002), 1-45.
[12] -, 一, The tame infinitesimal groups of odd characteristic, Adv. Math. 205 (2006), 229-274.
[13] P. Gabriel and Ch. Riedtmann, Group representations without groups, Comment. Math. Helv. 54 (1979), 240-287.
[14] I. M. Gelfand and V. A. Ponomarev, Indecomposable representations of the Lorentz group, Uspekhi Mat. Nauk 23 (1968), no. 2, 3-60 (in Russian).
[15] K. Igusa and G. Todorov, A characterization of finite Auslander-Reiten quivers, J. Algebra 89 (1984), 148-177.
[16] Z. Pogorzały, Regularly biserial algebras, in: Topics in Algebra, Part 1, Banach Center Publ. 26, PWN, Warszawa, 1990, 371-384.
[17] Z. Pogorzały and A. Skowroński, Selfinjective biserial standard algebras, J. Algebra 138 (1991), 491-504.
[18] Z. Pogorzały and M. Sufranek, Starting and ending components of the AuslanderReiten quivers of a class of special biserial algebras, Colloq. Math. 99 (2004), 111144.
[19] J. Schröer, On the Krull-Gabriel dimension of an algebra, Math. Z. 233 (2000), 287-303.
[20] -, On the infinite radical of a module category, Proc. London Math. Soc. 81 (2000), 651-674.
[21] D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras 2: Tubes and Concealed Algebras of Euclidean Type, London Math. Soc. Student Texts 71, Cambridge Univ. Press, 2007.
[22] —, —, Elements of the Representation Theory of Associative Algebras 3: Represen-tation-Infinite Tilted Algebras, London Math. Soc. Student Texts 72, Cambridge Univ. Press, 2007.
[23] A. Skowroński, Generalized standard Auslander-Reiten components, J. Math. Soc. Japan 46 (1994), 517-543.
[24] A. Skowroński and J. Waschbüsch, Representation-finite biserial algebras, J. Reine Angew. Math. 345 (1983), 172-181.
[25] B. Wald and J. Waschbüsch, Tame biserial algebras, J. Algebra 95 (1985), 480-500.

Alicja Jaworska
Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
87-100 Toruń, Poland
E-mail: alicja.jaworska@mat.umk.pl

Received May 18, 2011;
received in final form June 29, 2011

