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Summary. We investigate the categorical behaviour of morphisms between indecompos-
able projective modules over a special biserial algebra A over an algebraically closed field,
which are associated to arrows of the Gabriel quiver of A.

1. Introduction and the main result. Let K be an algebraically
closed field. Throughout the paper by an algebra we mean an associative
basic finite-dimensional K-algebra. We denote by modA the category of all
finite-dimensional right A-modules. Further, we denote by radA the Jacobson
radical ofmodA, generated by all non-isomorphisms between indecomposable
modules in modA, and by rad∞A the infinite radical of modA, which is the
intersection of all powers radiA, i ≥ 1, of radA. For an algebra A, we consider
its Auslander–Reiten quiver denoted by ΓA. The vertices of ΓA correspond to
isomorphism classes [X] of indecomposableA-modulesX and there is an arrow
[X]→ [Y ] between two vertices if and only if there is an irreducible morphism
f : X → Y , equivalently f ∈ radA \ rad2

A. Throughout the paper we shall not
distinguish between indecomposable modules in modA and vertices of ΓA. It
is well known that ΓA describes the quotient category modA/ rad∞A . Let τ
and τ−1 denote the Auslander–Reiten translations DTr and TrD in modA,
respectively. By a component of ΓA we shall mean a connected component of
the translation quiver ΓA. Following [23], we call a component C generalized
standard if rad∞A (X,Y ) = 0 for all modules X and Y in C.

The class of special biserial algebras was introduced by Skowroński and
Waschbüsch in [24]. An algebra A is said to be special biserial if there exists
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a finite bound quiver (QA, IA) with A ∼= KQA/IA such that:

(R1) Each vertex of QA is a source of at most two arrows and a target
of at most two arrows.

(R2) For every arrow α in QA there exists at most one arrow β (respec-
tively, γ) such that αβ 6∈ IA (respectively, γα 6∈ IA).

A bound quiver (QA, IA) satisfying (R1) and (R2) is called a special biserial
quiver.

It was proved in [24] that all biserial representation-finite algebras are
special biserial. Important examples of special biserial algebras are the Naka-
yama algebras and some blocks of group algebras with cyclic or dihedral
defect groups (see [1], [8], [13]). Moreover, special biserial algebras occurred
naturally in the Gelfand and Ponomarev description of the singular Harish-
Chandra modules of the Lorentz group [14], the classification of restricted
Lie algebras and infinitesimal groups with tame principal blocks ([11], [12])
and the classification of the finite-dimensional Hecke algebras of tame rep-
resentation type [2].

In [25] Wald and Waschbüsch proved that special biserial algebras are of
tame representation type and gave a classification of indecomposable finite-
dimensional modules (see [4], [7] for alternative proofs). Then the tameness
of biserial algebras was proved in [5] by Crawley-Boevey using geometric de-
formations to the class of special biserial algebras. Therefore, special biserial
algebras play a prominent role and are often used as a test class for some
general problems in the representation theory of finite-dimensional algebras.
Nevertheless, the category of finite-dimensional modules over a special bis-
erial algebra is often complicated and far from being well understood. For
example, it was proved by Schröer in [19] that for any positive integer n ≥ 2
there exists a special biserial algebra A of Krull–Gabriel dimension n. More-
over, Schröer proved in [20] that there are special biserial algebras A with
arbitrarily complicated infinite radical of the module category modA. We
also note that special biserial algebras have representation dimension at most
3 and finite finitistic dimension [9].

Let A = KQA/IA be an arbitrary algebra. Then A ∼= EndA(AA), where
an isomorphism is given in the following way: to each element a ∈ A we
assign the morphism fa : A → A which is left multiplication by a. Hence,
we have a natural correspondence between an arrow α : x → y in QA and
the A-module homomorphism fα : eyA → exA between indecomposable
projective modules eyA and exA, given by fα(−) = α · −. Here, we denote
by ex the coset Ex = Ex + IA of the trivial path Ex in (QA, IA) at vertex x
and by α the coset α + IA of an arrow α in QA. To simplify notation we
shall write P (z) for an indecomposable projective module ezA, where z is a
vertex in QA.
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We are concerned with the general problem of describing properties of
homomorphisms of type fα between indecomposable projective A-modules
lying in a common component of the Auslander–Reiten quiver ΓA. The ques-
tion of their structure, that is, how deep they emerge in the radical sequence
radA ⊇ rad2

A ⊇ · · · ⊇ radnA ⊇ · · · of the category modA, is of our special
interest. Throughout the article we shall assume that A is a special biserial
algebra of the form A = KQA/IA for a special biserial quiver (QA, IA). We
give a criterion for fα /∈ rad∞A in terms of walks in the bound quiver (QA, IA).
For this purpose we introduce some notation.

For a quiver Q = (Q1, Q0, s, t) we denote by Q0 the set of vertices
in Q, by Q1 the set of arrows in Q, and by s, t : Q1 → Q0 two maps
which associate to each arrow α ∈ Q1 its source s(α) ∈ Q0 and its target
t(α) ∈ Q0, respectively. Let L be a quiver whose underlying graph is of the
form 1 2 · · · r + 1 , with r a non-negative integer. Fix an orienta-
tion of arrows of L. Then for an arbitrary quiver Q, a quiver homomorphism
ω : L→ Q is called a walk of length r in Q from ω(1) to ω(r+ 1). These are
the starting point s(ω) and the ending point t(ω) of ω, respectively. If L is
of the form 1 → 2 → · · · → r + 1 then a quiver homomorphism ω : L → Q
is called a path (equivalently, an oriented walk). Recall that each associative
basic algebra has a presentation as a path algebra KQ/I of a bound quiver
(Q, I) where I is an ideal in KQ generated by relations, that is, elements of
KQ of the form % =

∑m
i=1 λiωi where λi are scalars, ωi are paths in Q of

length at least 2 with a common starting point and a common ending point.
If m = 1, a relation % is called a zero-relation or a monomial relation. If
m ≥ 2, a relation % will be called multinomial. Further, we shall denote by
Gen(I) a set of relations generating the ideal I which satisfies the following
conditions:

(a) if
∑m

i=1 λi%i ∈ Gen(I), where each λi is a non-zero element of K,
then

∑
j∈S λj%j /∈ Gen(I) for any proper subset S ⊂ {1, . . . ,m};

(b) if % ∈ Gen(I), then β%, %β /∈ Gen(I) for any arrow β.

Suppose ω is a non-zero walk in (Q, I). We shall denote by Xω the set of
all non-zero walks in (Q, I) which start with ω, that is, all walks of the form
ωω′ where ω′ is a walk such that s(ω′) = t(ω). Hence, for each walk ω we
obtain the cardinality of Xω as an invariant.

We shall say that an arrow α is an initiating arrow in (Q, I) (or α initiates
a relation) if there exists a relation % ∈ Gen(I) such that % = λ1α%1 +λ2%2 +
· · · + λm%m for some m ≥ 1. Note that if an arrow α : x → y in a special
biserial quiver (Q, I) is not initiating then αP (y) ∼= P (y) and P (y) is a direct
summand the Jacobson radical radP (x) of P (x). Consequently, fα : P (y)→
P (x) is an irreducible homomorphism. Conversely, if fα : P (y) → P (x) is
irreducible then αP (y) is a direct summand of radP (x) and α is not an
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initiating arrow in (Q, I). Therefore, it is natural to ask when fα does not
belong to rad∞A for an initiating arrow α of (Q, I).

The following theorem is the main result of the paper.

Theorem. Let A = KQA/IA be a special biserial algebra and α : x→ y
an initiating arrow in (QA, IA). The following statements are equivalent:

(i) fα : P (y)→ P (x) /∈ rad∞A (P (y), P (x)),
(ii) X% is a finite set for any path % in QA such that α% ∈ Gen(IA) or

λα% + λ′%′ ∈ Gen(IA) for some non-zero λ, λ′ ∈ K and a path %′

in QA.

For background on the representation theory applied here we refer to [3],
[21], [22].

2. Preliminary results. The aim of this section is to present all facts
and notation applied in the proof of the main theorem.

A special biserial algebra A = KQA/IA is called a string algebra if there
is a generating set of IA formed by paths. There is a full classification of
finite-dimensional indecomposable right modules over a string algebra A (see
[7], [25]). For every indecomposable module X ∈ modA we have two possi-
bilities. The first is when X is induced by a walk ω that cannot be written as
ω1αα

−1ω2 or ω1β
−1βω2 for walks ω1, ω2, and ω does not contain a subwalk

of the form υ or υ−1 with υ ∈ IA. In this case we say that X is a string
module and denote it by X(ω). The second possibility is that X is induced
by a primitive closed walk ν, an integer n ≥ 1 and a non-zero element λ ∈ K.
Recall that a closed walk ν in a bound quiver (QA, IA) is called primitive
if it is not of the form µi for any integer i ≥ 2 and νj for any j ≥ 1 is a
non-zero walk in (QA, IA). In this case we say that X is a band module and
denote it by X(ν, n, λ).

For the first type of module, the following algorithm for computing
Auslander–Reiten sequences was given by Skowroński and Waschbüsch [24].
If ω = δ1,s1 . . . δ1,1δ

−1
2,1 . . . δ

−1
2,s2

. . . δr−1,sr−1 . . . δr−1,1δ
−1
r,1 . . . δ

−1
r,sr

is a walk in
the bound quiver (QA, IA), where δj,t is an arrow in QA and δ1,s1 . . . δ1,1 or
δ−1
r,1 . . . δ

−1
r,sr

may be trivial, then we set

ωR = ωδ−1
r,sr+1δr+1,sr+1 . . . δr+1,1,

where δr+1,sr+1 . . . δr+1,1 is a maximal non-zero path in (QA, IA), provided
such a walk exists. If the walk δ−1

r,sr+1δr+1,sr+1 . . . δr+1,1 does not exist then

ωR = δ1,s1 . . . δ1,1δ
−1
2,1 . . . δ

−1
2,s2

. . . δr−1,sr−1 . . . δr−1,2.

Using the same rules on the other end of the walk ω we obtain ωL. The com-
position of these constructions gives us the walks ωRL and ωLR, respectively.
Moreover, if ωR and ωL are non-zero we have ωRL = ωLR. Then, by [24], for
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a non-injective string module X(ω), there is an Auslander–Reiten sequence
in modA of the form

0→ X(ω)→ X(ωR)⊕X(ωL)→ X(ωRL)→ 0.

We shall write briefly ωR2 (ωL2) instead of (ωR)R ((ωL)L, respectively), and
analogously ωRi (ωLi , respectively) will mean the above operations applied
i times. We shall also write ωR−i = η provided ηRi = ω, for any positive
integer i.

Note that for a special biserial algebra A the algebra A/soc(R), where
soc(R) is the socle of the direct sum R of all indecomposable projective-
injective modules which are not serial, is a string algebra. Moreover, each
indecomposable projective-injective A-module X occurs in an Auslander–
Reiten sequence of the form

0→ rad(X)→ X ⊕ rad(X)/soc(X)→ X/soc(X)→ 0,

where rad denotes the Jacobson radical of a module. This allows us to use
the Skowroński–Waschbüsch algorithm for any special biserial algebra.

Let ω be a non-zero walk in a special biserial quiver (QA, IA). Then the
set Xω can be equipped with a partial order � in the following way. For η1, η2

∈ Xω we write η1 � η2 if and only if there exists a non-negative integer i
such that η2 = (η1)Ri . Note that if δ ∈ Xω and δRl ∈ Xω, where l ≥ 2, then
δRi ∈ Xω for all 1 ≤ i ≤ l − 1.

The following lemma will play an important role in the proof of the
Theorem.

Lemma 2.1. Let A = KQA/IA be a path algebra of a special biserial
quiver (QA, IA) and ω be a non-zero walk in (QA, IA). Then:

(a) Xω contains a unique minimal and a unique maximal element.
(b) If Xω is a finite set then it is well ordered.
(c) If Xω contains a finite chain L then Xω = L.

Proof. Assume that ω = ω′β−1α1 . . . αn, where, for 1 ≤ i ≤ n, αi is an
arrow in QA, and if ω′β−1 is a non-trivial walk then β is an arrow such that
s(β) = s(α1). Without loss of generality we may assume that ω′β−1 is a
non-trivial walk.

(a) Let η′ be a maximal non-zero path in (QA, IA) which belongs to
Xα1...αn . Consider η = ω′β−1η′ ∈ Xω. From the Skowroński–Waschbüsch
algorithm we find that η = ω′R and ω′

Ri /∈ Xω for any integer i ≤ 0. Moreover,
if a path v satisfies vR−1 /∈ Xω and v ∈ Xω, then v = η. Hence η is a minimal
element in Xω. Similarly, we show the existence of a maximal element in Xω.
If u ∈ Xω is such that uR /∈ Xω then u = ω′β−1α1 . . . αn(u′)−1, where u′ is a
maximal non-zero (maybe trivial) path which does not contain α1 . . . αn as
a subpath and t(u′) = t(αn).
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(b) Let v ∈ Xω and η be a minimal element of Xω. Recall that for two rep-
resentations M = (Mx,Mα), M ′ = (M ′x,M

′
α) of (QA, IA) a homomorphism

h : M →M ′ is a family h = (hx)x∈Q0 ofK-linear maps (hx : Mx →M ′x)x∈Q0

such that for each arrow α : a → b we have M ′αha = hbMα. Note that for
a walk µ of length r such that µ(i1) = · · · = µ(il) = z for some vertex
z ∈ QA and 1 ≤ l ≤ r + 1, we have X(µ)µ(ij) = K for any 1 ≤ j ≤ l,
and

⊕l
j=1X(µ)µ(ij) = X(µ)z. Take f : X(η) → X(v) with fη(1) 6= 0. Such

an f exists since v = ωv′ = ω′β−1α1 . . . αnv
′ and η = ω′β−1α1 . . . αr where

α1,. . . ,αr are arrows in QA and α1 . . . αr is a maximal non-zero oriented walk
inXα1...αn . Suppose that f = f ′′f ′ for someA-moduleM and homomorphisms
f ′′ : M → X(v), f ′ : X(η)→M . Without loss of generality we may assume
thatM = X(µ) is an indecomposable string module (the image of a morphism
between string modules is a string module). Assume ω ∈ Xδ for some arrow
δ ∈ QA and µ /∈ Xδ. Then µ or µ−1 contains an arrow γ such that t(γ) = s(δ)
or s(γ) = s(δ). Since fη(1) 6= 0 we have f ′η(1) = f ′v(1) 6= 0 and f ′′η(1) = f ′′v(1) 6= 0.

Assume that Mγ : Ms(γ) → Mη(1), where Mη(1) is a one-dimensional
subspace of Mt(γ), is non-zero. Then for f ′′η(1) : Mη(1) → X(v)v(1) we have
0 6= f ′′η(1)Mγ = X(v)γf ′′s(γ) = 0, because X(v)γ : X(v)s(γ) → X(v)v(1) is
zero, a contradiction. Suppose Mγ : Mη(1) → Mt(γ) is non-zero for a one-
dimensional subspace Mη(1) of Ms(γ). Then for f ′η(1) : X(η)η(1) → Mη(1) we
have 0 6= Mγf

′
η(1) = f ′t(γ)X(η)γ = 0, because X(η)γ : X(η)η(1) → X(η)t(γ)

is zero, a contradiction. Hence µ ∈ Xδ and µ = δµ′ for some walk µ′. Since
by assumption ω ∈ Xδ, there exists a walk ω′′ such that ω = δω′′ and we
repeat the above considerations for ω′′ instead for ω and µ′ instead for µ. By
induction we find that µ ∈ Xω. We use dual arguments for ω ∈ Xδ−1 , where
δ is an arrow in QA.

Let now Xω be a finite set. Then there exists i ≥ 0 such that ηRi ∈ Xω
and ηRi+1 /∈ Xω. Suppose that v ∈ Xω is not �-related with η. Note that any
morphism f : X(η) → X(v) with fη(1) = fv(1) 6= 0 factorizes through the
middle term E of an Auslander–Reiten sequence which starts inX(ηRi). This
leads to a contradiction since no direct summand M of E belongs to Xω.
Observe that for any morphism f ∈ HomA(M,X(v)) we have fv(1) = 0.
Hence the relation � is connected and Xω has the form

η � ηR � ηR2 � · · · � ηRj

for some integer j ≥ 0.
(c) If Xω contains a finite chain L, then by repeating the arguments from

(b) we get the claim.
Analogously we provide the proof for ω = ω′αβ−1

1 . . . β−1
m , where for any

1 ≤ i ≤ m, βi is an arrow and if ω′α is a non-trivial walk then α denotes an
arrow such that t(α) = t(β1).
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3. Proof of the Theorem. We have two cases to consider: α does not
initiate any multinomial relations and α initiates a multinomial relation.

Case 1: α does not initiate any multinomial relation. This is the case
when P (x) is a string module, say P (x) = X(η−1αε1 . . . εn), where η is
a path (maybe trivial) which starts at x and η /∈ Xα and ε1 . . . εn is the
composition of arrows ε1, . . . , εn ∈ QA (ε1 . . . εn may be trivial). Note that
X(ε1 . . . εn) is then a direct summand of radP (x) and X(ε1 . . . εn) is equal
to the image Im fα of fα : P (y)→ P (x).

We start by showing the implication (ii)⇒(i).

(a) Assume that y is a source of exactly one arrow ε1. Clearly, then
P (y) = X(ε1 . . . εr) for some r ≥ n. Since α is an initiating arrow in a special
biserial quiver, there is a unique path % ∈ Xε1 for which α% ∈ Gen(IA). But
P (x) = X(η−1αε1 . . . εn) implies that there exists in QA an arrow εn+1 with
s(εn+1) = t(εn) such that % = ε1 . . . εnεn+1. Obviously, % /∈ IA and n+1 ≤ r.

Consider now the set X%. Since by assumption X% is finite, and by Lemma
2.1, ε1 . . . εr is a maximal non-zero path in X%, there exists a positive integer
a such that

X((ε1 . . . εr)Ra) = X(ε1 . . . εn).

Thus we have the following sectional path in ΓA:

P (y) = X(ε1 . . . εr)
f1−→ X((ε1 . . . εr)R)

f2−→ . . .
fa−→ X(ε1 . . . εn)

fa+1−−−→ P (x).

Then by [15, Theorem 13.3] we see that fa+1 . . . f1 ∈ rada+1
A \ rada+2

A . We
claim that fα = fa+1 . . . f1 up to scalar multiplication. We will show that
fα : P (y) = X(ε1 . . . εr) → P (x) does not factorize through any module M
different from X((ε1 . . . εr)Ri) for 1 ≤ i ≤ a. Indeed, assume that fα = gf ,
where f : P (y) → M and g : M → P (x) for some such A-module M .
Without loss of generality we may assume that M is a string module X(ω)
for a walk ω in (QA, IA). Since Im f = X(ε1 . . . εj) for some j ≤ r, M
contains X(ε1 . . . εj) as a submodule. Further,M has X(ε1 . . . εn) as a factor
module, because Im fα = Im gf = X(ε1 . . . εn). Observe that by definition
(fα)y 6= 0. But (gf)y 6= 0 if and only if ω = ε1 . . . εnζ for some non-zero
walk ζ in (QA, IA). Now the fact that X(ε1 . . . εn) is a factor module of M
implies ω = ε1 . . . εnεn+1ζ

′ for some arrow εn+1 and walk ζ ′ in (QA, IA).
Hence ω ∈ X%. Since X% is finite and ε1 . . . εr is a minimal element in X% we
deduce that X(ω) = X((ε1 . . . εr)Ri), for some 1 ≤ i ≤ a, a contradiction.
Thus fα = fa+1 . . . f1h for some h ∈ EndA(P (x)). But EndA(P (x)) ∼= K
and we conclude that fα is equal to fa+1 . . . f1 up to scalar multiplication.

(b) Assume now that y is a source of exactly two arrows which we denote
by ε1, δ1, and suppose αδ1 ∈ IA.
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(1) Suppose that P (y) is a string module of the form

X(ν) = X(δ−1
p . . . δ−1

1 ε1 . . . εr)

for some p, r ≥ 1. Then either r = n, which is equivalent to the fact that αδ1
is the unique relation initiated by α, or r ≥ n+1, equivalently αε1 . . . εn+1 ∈
Gen(IA) (because P (x) = X(η−1αε1 . . . εn)).

Assume r = n. Then Im fα = X(ε1 . . . εn) and there is the following
sectional path in ΓA:

P (y) = X(ν)
f1−→ X(νL)

f2−→ . . .
fb−→ X(νLb) = X(ε1 . . . εn)

fb+1−−−→ P (x),

for b ≥ 1. Again by [15, Theorem 13.3] we have fb+1 . . . f1 ∈ radb+1
A \ radb+2

A .
We claim that fα = fb+1 . . . f1 up to scalar multiplication. Note that fα
does not factorize through any module different from X(νLi) where 1 ≤
i ≤ b. Suppose fα = gf for some string module M = X(ω), f : P (y) →
M and g : M → P (x). Then M has a submodule of the form Im f =
X(δ−1

l . . . δ−1
1 ε1 . . . εk) with l ≤ p, k ≤ n. If k < n then for a vertex

z = t(εk+1) we have fz = 0 and hence (gf)z = 0, which implies fα 6= gf .
Therefore, we conclude that k = n. Moreover, since Xδ1 is finite there ex-
ists an integer j ≥ 1 such that X((δ1 . . . δp)Rj ) = X((δ−1

p . . . δ−1
1 )Lj ) =

X(δ−1
l . . . δ−1

1 ) and hence X(δ−1
l . . . δ−1

1 ε1 . . . εk) = X(νLj ) for some j. The
fact that X(ε1 . . . εn) is a factor module of M and ε1 . . . εn = ε1 . . . εr is a
maximal non-zero path in Xε1 , implies that ω = ω′δ−1

1 ε1 . . . εn for some walk
ω′ in (QA, IA). But then δ1ω′−1 ∈ Xδ1 and we conclude that X(ω) = X(νLm)
for some m ≥ 1. Thus there is no proper factorization of fα through an A-
module different from X(νLi), i ∈ {1, . . . , b}. Hence fα = fb+1 . . . f1 up to
scalar multiplication since EndA(P (x)) ∼= K.

Consider now r ≥ n+1. Then we have αδ1, αε1 . . . εn+1 ∈ Gen(IA). Since
by assumption Xδ1 and Xε1...εn+1 are finite sets, there are positive integers a
and b such that

X(νRaLb) = X(ε1 . . . εn).

Thus fα ∈ rada+b+1
A (P (y), P (x)). We claim that fα /∈ rada+b+2

A (P (y), P (x)).
Suppose that fα has a non-trivial factorization fα = gf for f : P (y) → M ,
g : M → P (x) and a string module M = X(ω) different from X(νRiLj )
for 1 ≤ i ≤ a, 1 ≤ j ≤ b. As above, M contains a submodule Im f =
X(δ−1

l . . . δ−1
1 ε1 . . . εk) for l ≤ p and k ≤ r, and has a factor module

X(ε1 . . . εn). If k < n, then for the vertex z = t(εk+1) we have fz = 0 and
hence (gf)z = 0, which implies fα 6= gf , a contradiction. Therefore, k ≥ n.
Since X(ε1 . . . εn) is a factor module of M , we have ω = ω′δ−1

1 ε1 . . . εn or
ω = ω1δ

−1
1 ε1 . . . εnεn+1ω2 for some walks ω′, ω1, ω2 and an arrow εn+1 in

(QA, IA) . Using the same arguments as above we infer that in both cases
ω = νRiLj with 1 ≤ i ≤ a, 1 ≤ j ≤ b. Clearly, there is no cycle in ΓA
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having only X(νRiLj ) with i ∈ {1, . . . , a}, j ∈ {1, . . . , b} as vertices. Thus
fα ∈ rada+b+1

A \ rada+b+2
A .

(2) If P (y) is not a string module then fα : P (y) → P (x) factorizes
through P (y)/socP (y) = X(ν) where ν is a non-zero walk in (QA, IA). We
repeat the above arguments to show that X(ε1 . . . εn) = X(νRaLb) for some
a, b ≥ 1 and that fα factorizes only through modules of the form X(νRiLj ),
1 ≤ i ≤ a, 1 ≤ j ≤ b.

Now we show the implication (i)⇒(ii).
Assume fα /∈ rad∞A (P (y), P (x)) and P (y) is a string module X(δ−1

p . . .

δ−1
1 ε1 . . . εr) with the above notation and δ−1

p . . . δ−1
1 may be a trivial walk in

(QA, IA). We denote by fα| left multiplication by α defined on a factor mod-
ule X(ε1 . . . εr) of P (y). The composition fα|g for a canonical epimorphism
g : P (y)→ X(ε1 . . . εr) is equal to fα. Hence, fα| /∈ rad∞A (X(ε1 . . . εr), P (x)).
Then, for fα| =

∑j
i=1 λifi with non-zero λi ∈ K, j ≥ 1, there exists

i ∈ {1, . . . , j} and a positive integer m such that

fi ∈ radmA \ radm+1
A .

Consider fi : X(ε1 . . . εr) → P (x). If X((ε1 . . . εr)L) 6= 0, then there is an
arrow β in QA such that t(β) = y and βε1 . . . εr /∈ IA. Hence αε1 ∈ IA
and fi factorizes through a simple module S(y) at a vertex y. Moreover,
X((ε1 . . . εr)L) = X(µ−1βε1 . . . εr), where µ is a maximal non-zero path
(may be trivial) which starts at s(β) and µ /∈ Xβ . Observe that a non-
zero morphism h : X(µ−1βε1 . . . εr) → P (x) factorizes through S(y) pro-
vided µ−1βε1 . . . εr = δ1 . . . βε1 . . . εr or µ−1βε1 . . . εr = ε1 . . . βε1 . . . εr,
a contradiction. Hence fi does not factorize through X((ε1 . . . εr)L). Sim-
ilarly, fi does not factorize through X((ε1 . . . εr)RkL) for any 1 ≤ k ≤
m − 1. Therefore, fi is a composition fmi . . . f2

i f
1
i of irreducible morphisms

fki : X((ε1 . . . εr)Rk−1) → X((ε1 . . . εr)Rk) for 1 ≤ k ≤ m − 1 and fmi :
X(ε1 . . . εn)→ P (x), because X(ε1 . . . εn) is a direct summand of radP (x).
ThusX((ε1 . . . εn)R−1)=X((ε1 . . . εr)Rm−1) is amaximal element ofXε1...εn+1 .
Applying now Lemma 2.1(a) we conclude that X(ε1 . . . εr) is a minimal ele-
ment of Xε1...εn+1 and by Lemma 2.1(c), Xε1...εn+1 is finite. Analogously, we
show that Xδ1 is a finite set.

Assume now that fα /∈ rad∞A (P (y), P (x)) and P (y) is not a string A-
module. Let ε1 . . . εr be one of two maximal non-zero paths starting at vertex
y where, for 1 ≤ i ≤ r, εi denotes an arrow. Then we repeat the above
considerations with respect to the factor module X(ε1 . . . εr−1) of P (y).

Case 2: α initiates a multinomial relation λ1ω1 + λ2αε1 . . . εn for some
non-trivial path ω1 in (QA, IA), 1 ≤ n ≤ r and non-zero λ1, λ2∈K. Without
loss of generality, we may assume (QA, IA) is a presentation of the algebra
A such that λ1 = 1, λ2 = −1. If α initiates a multinomial relation, say
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α′ε′1 . . . ε
′
l−αε1 . . . εn with 1 ≤ l, 1 ≤ n ≤ r, then for a string module P (y) =

X(δ−1
p . . . δ−1

1 ε1 . . . εr) the morphism fα : P (y) → P (x) is the composition
fα|g of g : P (y)→ X(ε1 . . . εr) and fα| : X(ε1 . . . εr)→ P (x). If P (y) is not a
stringA-module and δ1 . . . δp, ε1 . . . εr are maximal non-zero paths which start
at y, then we take X(ε1 . . . εr−1) instead of X(ε1 . . . εr). Since radP (x) =
X(ε1 . . . εnε′−1

l . . . ε′−1
1 ) it is sufficient to study Xδ1 for g (if y is a source of

an arrow δ1 different from ε1) and Xε1...εn for fα|. To show the equivalence
(i)⇔(ii) in the second case, the arguments from Case 1 are now repeated.

4. Examples. We end the paper with examples illustrating the Theo-
rem.

Example 4.1. Let A = KQ/I where Q is of the form

��
�-

·
21

· -
β

γα ��
��

and I = 〈α2, γ2, αβ − βγ〉. Consider the initiating arrow β. Then for fβ :
P (2) → P (1) we have Xγ = {γ, γβ−1, γβ−1α} and fβ /∈ rad∞(P (2), P (1)).
Note that A is of finite representation type.

Example 4.2. Let A = KQ/I where Q is as follows:

1
α1

���������
β1

��>>>>>>> 7
β′1

��������� α′1

��>>>>>>>

2

α2 ��>>>>>>> 3

β2���������

ε1 ��>>>>>>> 6

ε′1���������

β′2 ��>>>>>>> 8

α′2���������

4 5 9

and I is the two-sided ideal of KQ generated by β1ε1, β
′
1ε
′
1. We know by [18]

that the Auslander–Reiten quiver ΓA of A has a component P(A) which con-
tains all indecomposable projective A-modules. Furthermore, it is a starting
component, that is, there are no non-zero morphisms f : X → Y for in-
decomposable modules X /∈ P(A) and Y ∈ P(A) (see [18]). There is the
following walk in P(A):

X(ε−1
1 β2)

S(4)

88rrrrr

&&LLLLL

X(α−1
2 )

))RRRRRRR

X(α−1
2 α−1

1 β1β2)
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where S(4) denotes a simple module at vertex 4, X(α−1
2 α−1

1 β1β2) = P (1)
and X(ε−1

1 β2) = P (3). Consider fβ1 : P (3) → P (1). The set Xε1 is infinite
since it contains all walks of the form ε1ε

′−1
1 β′2(α

′−1
2 α′−1

1 β′1β
′
2)
r for any integer

r ≥ 1. Thus fβ1 ∈ rad∞A and P(A) is not generalized standard. Analogously,
fβ′1 ∈ rad∞A , where fβ′1 : P (6) → P (7). Moreover, for all remaining arrows
δ : x → y in Q, morphisms fδ : P (y) → P (x) between indecomposable
projective A-modules P (x) and P (y), belong to radA \ rad2

A.

Imagine now that Q is a finite quiver such that the number of arrows with
a prescribed source or target is at most 2. The above theorem allows us to
construct special biserial algebras A associated to a bound quiver (Q, I) such
that the morphisms between indecomposable projective modules belong to
an arbitrary given power of the radical radA. Obviously, if Q does not contain
a subquiver of type Ãm then none of these morphisms belongs to rad∞A .
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