ASSOCIATIVE RINGS AND ALGEBRAS

On Morphisms between Indecomposable Projective Modules over Special Biserial Algebras

by

Alicja JAWORSKA

Presented by Andrzej SKOWROŃSKI

Summary. We investigate the categorical behaviour of morphisms between indecomposable projective modules over a special biserial algebra A over an algebraically closed field, which are associated to arrows of the Gabriel quiver of A.

1. Introduction and the main result. Let K be an algebraically closed field. Throughout the paper by an algebra we mean an associative basic finite-dimensional K-algebra. We denote by $\operatorname{mod} A$ the category of all finite-dimensional right A-modules. Further, we denote by rad_A the Jacobson radical of mod A, generated by all non-isomorphisms between indecomposable modules in mod A, and by $\operatorname{rad}_A^\infty$ the infinite radical of mod A, which is the intersection of all powers $\operatorname{rad}_{A}^{i}$, $i \geq 1$, of rad_{A} . For an algebra A, we consider its Auslander–Reiten quiver denoted by Γ_A . The vertices of Γ_A correspond to isomorphism classes [X] of indecomposable A-modules X and there is an arrow $[X] \rightarrow [Y]$ between two vertices if and only if there is an irreducible morphism $f: X \to Y$, equivalently $f \in \operatorname{rad}_A \setminus \operatorname{rad}_A^2$. Throughout the paper we shall not distinguish between indecomposable modules in mod A and vertices of Γ_A . It is well known that Γ_A describes the quotient category mod $A/\operatorname{rad}_A^{\infty}$. Let τ and τ^{-1} denote the Auslander–Reiten translations DTr and TrD in mod A, respectively. By a component of Γ_A we shall mean a connected component of the translation quiver Γ_A . Following [23], we call a component \mathcal{C} generalized standard if $\operatorname{rad}_{A}^{\infty}(X, Y) = 0$ for all modules X and Y in C.

The class of special biserial algebras was introduced by Skowroński and Waschbüsch in [24]. An algebra A is said to be *special biserial* if there exists

²⁰¹⁰ Mathematics Subject Classification: Primary 16G20; Secondary 16G70.

Key words and phrases: irreducible morphisms, infinite radical, special biserial algebras.

a finite bound quiver (Q_A, I_A) with $A \cong KQ_A/I_A$ such that:

- (R1) Each vertex of Q_A is a source of at most two arrows and a target of at most two arrows.
- (R2) For every arrow α in Q_A there exists at most one arrow β (respectively, γ) such that $\alpha\beta \notin I_A$ (respectively, $\gamma\alpha \notin I_A$).

A bound quiver (Q_A, I_A) satisfying (R1) and (R2) is called a *special biserial quiver*.

It was proved in [24] that all biserial representation-finite algebras are special biserial. Important examples of special biserial algebras are the Nakayama algebras and some blocks of group algebras with cyclic or dihedral defect groups (see [1], [8], [13]). Moreover, special biserial algebras occurred naturally in the Gelfand and Ponomarev description of the singular Harish-Chandra modules of the Lorentz group [14], the classification of restricted Lie algebras and infinitesimal groups with tame principal blocks ([11], [12]) and the classification of the finite-dimensional Hecke algebras of tame representation type [2].

In [25] Wald and Waschbüsch proved that special biserial algebras are of tame representation type and gave a classification of indecomposable finitedimensional modules (see [4], [7] for alternative proofs). Then the tameness of biserial algebras was proved in [5] by Crawley-Boevey using geometric deformations to the class of special biserial algebras. Therefore, special biserial algebras play a prominent role and are often used as a test class for some general problems in the representation theory of finite-dimensional algebras. Nevertheless, the category of finite-dimensional modules over a special biserial algebra is often complicated and far from being well understood. For example, it was proved by Schröer in [19] that for any positive integer $n \ge 2$ there exists a special biserial algebra A of Krull–Gabriel dimension n. Moreover, Schröer proved in [20] that there are special biserial algebras A with arbitrarily complicated infinite radical of the module category mod A. We also note that special biserial algebras have representation dimension at most 3 and finite finitistic dimension [9].

Let $A = KQ_A/I_A$ be an arbitrary algebra. Then $A \cong \operatorname{End}_A(A_A)$, where an isomorphism is given in the following way: to each element $a \in A$ we assign the morphism $f_a : A \to A$ which is left multiplication by a. Hence, we have a natural correspondence between an arrow $\alpha : x \to y$ in Q_A and the A-module homomorphism $f_\alpha : e_y A \to e_x A$ between indecomposable projective modules $e_y A$ and $e_x A$, given by $f_\alpha(-) = \overline{\alpha} \cdot -$. Here, we denote by e_x the coset $\overline{\mathcal{E}}_x = \mathcal{E}_x + I_A$ of the trivial path \mathcal{E}_x in (Q_A, I_A) at vertex xand by $\overline{\alpha}$ the coset $\alpha + I_A$ of an arrow α in Q_A . To simplify notation we shall write P(z) for an indecomposable projective module $e_z A$, where z is a vertex in Q_A . We are concerned with the general problem of describing properties of homomorphisms of type f_{α} between indecomposable projective A-modules lying in a common component of the Auslander–Reiten quiver Γ_A . The question of their structure, that is, how deep they emerge in the radical sequence $\operatorname{rad}_A \supseteq \operatorname{rad}_A^2 \supseteq \cdots \supseteq \operatorname{rad}_A^n \supseteq \cdots$ of the category mod A, is of our special interest. Throughout the article we shall assume that A is a special biserial algebra of the form $A = KQ_A/I_A$ for a special biserial quiver (Q_A, I_A) . We give a criterion for $f_{\alpha} \notin \operatorname{rad}_A^{\infty}$ in terms of walks in the bound quiver (Q_A, I_A) . For this purpose we introduce some notation.

For a quiver $Q = (Q_1, Q_0, s, t)$ we denote by Q_0 the set of vertices in Q, by Q_1 the set of arrows in Q, and by $s,t: Q_1 \to Q_0$ two maps which associate to each arrow $\alpha \in Q_1$ its source $s(\alpha) \in Q_0$ and its target $t(\alpha) \in Q_0$, respectively. Let L be a quiver whose underlying graph is of the form $1 - 2 - \cdots - r + 1$, with r a non-negative integer. Fix an orientation of arrows of L. Then for an arbitrary quiver Q, a quiver homomorphism $\omega: L \to Q$ is called a *walk of length* r in Q from $\omega(1)$ to $\omega(r+1)$. These are the starting point $s(\omega)$ and the ending point $t(\omega)$ of ω , respectively. If L is of the form $1 \to 2 \to \cdots \to r+1$ then a quiver homomorphism $\omega: L \to Q$ is called a *path* (equivalently, an *oriented walk*). Recall that each associative basic algebra has a presentation as a path algebra KQ/I of a bound quiver (Q, I) where I is an ideal in KQ generated by relations, that is, elements of KQ of the form $\rho = \sum_{i=1}^{m} \lambda_i \omega_i$ where λ_i are scalars, ω_i are paths in Q of length at least 2 with a common starting point and a common ending point. If m = 1, a relation ρ is called a *zero-relation* or a *monomial* relation. If $m \geq 2$, a relation ρ will be called *multinomial*. Further, we shall denote by Gen(I) a set of relations generating the ideal I which satisfies the following conditions:

(a) if ∑_{i=1}^m λ_iρ_i ∈ Gen(I), where each λ_i is a non-zero element of K, then ∑_{j∈S} λ_jρ_j ∉ Gen(I) for any proper subset S ⊂ {1,...,m};
(b) if ρ ∈ Gen(I), then βρ, ρβ ∉ Gen(I) for any arrow β.

Suppose ω is a non-zero walk in (Q, I). We shall denote by \mathcal{X}_{ω} the set of all non-zero walks in (Q, I) which start with ω , that is, all walks of the form $\omega\omega'$ where ω' is a walk such that $s(\omega') = t(\omega)$. Hence, for each walk ω we obtain the cardinality of \mathcal{X}_{ω} as an invariant.

We shall say that an arrow α is an *initiating arrow* in (Q, I) (or α *initiates* a relation) if there exists a relation $\rho \in \text{Gen}(I)$ such that $\rho = \lambda_1 \alpha \rho_1 + \lambda_2 \rho_2 + \cdots + \lambda_m \rho_m$ for some $m \geq 1$. Note that if an arrow $\alpha : x \to y$ in a special biserial quiver (Q, I) is not initiating then $\overline{\alpha}P(y) \cong P(y)$ and P(y) is a direct summand the Jacobson radical rad P(x) of P(x). Consequently, $f_{\alpha} : P(y) \to P(x)$ is an irreducible homomorphism. Conversely, if $f_{\alpha} : P(y) \to P(x)$ is irreducible then $\overline{\alpha}P(y)$ is a direct summand of rad P(x) and α is not an initiating arrow in (Q, I). Therefore, it is natural to ask when f_{α} does not belong to $\operatorname{rad}_{A}^{\infty}$ for an initiating arrow α of (Q, I).

The following theorem is the main result of the paper.

THEOREM. Let $A = KQ_A/I_A$ be a special biserial algebra and $\alpha : x \to y$ an initiating arrow in (Q_A, I_A) . The following statements are equivalent:

- (i) $f_{\alpha}: P(y) \to P(x) \notin \operatorname{rad}_{A}^{\infty}(P(y), P(x)),$
- (ii) \mathcal{X}_{ϱ} is a finite set for any path ϱ in Q_A such that $\alpha \varrho \in \text{Gen}(I_A)$ or $\lambda \alpha \varrho + \lambda' \varrho' \in \text{Gen}(I_A)$ for some non-zero $\lambda, \lambda' \in K$ and a path ϱ' in Q_A .

For background on the representation theory applied here we refer to [3], [21], [22].

2. Preliminary results. The aim of this section is to present all facts and notation applied in the proof of the main theorem.

A special biserial algebra $A = KQ_A/I_A$ is called a *string algebra* if there is a generating set of I_A formed by paths. There is a full classification of finite-dimensional indecomposable right modules over a string algebra A (see [7], [25]). For every indecomposable module $X \in \text{mod } A$ we have two possibilities. The first is when X is induced by a walk ω that cannot be written as $\omega_1 \alpha \alpha^{-1} \omega_2$ or $\omega_1 \beta^{-1} \beta \omega_2$ for walks ω_1, ω_2 , and ω does not contain a subwalk of the form v or v^{-1} with $v \in I_A$. In this case we say that X is a *string module* and denote it by $X(\omega)$. The second possibility is that X is induced by a primitive closed walk ν , an integer $n \geq 1$ and a non-zero element $\lambda \in K$. Recall that a closed walk ν in a bound quiver (Q_A, I_A) is called *primitive* if it is not of the form μ^i for any integer $i \geq 2$ and ν^j for any $j \geq 1$ is a non-zero walk in (Q_A, I_A) . In this case we say that X is a *band module* and denote it by $X(\nu, n, \lambda)$.

For the first type of module, the following algorithm for computing Auslander–Reiten sequences was given by Skowroński and Waschbüsch [24]. If $\omega = \delta_{1,s_1} \dots \delta_{1,1} \delta_{2,1}^{-1} \dots \delta_{2,s_2}^{-1} \dots \delta_{r-1,s_{r-1}} \dots \delta_{r-1,1} \delta_{r,1}^{-1} \dots \delta_{r,s_r}^{-1}$ is a walk in the bound quiver (Q_A, I_A) , where $\delta_{j,t}$ is an arrow in Q_A and $\delta_{1,s_1} \dots \delta_{1,1}$ or $\delta_{r,1}^{-1} \dots \delta_{r,s_r}^{-1}$ may be trivial, then we set

$$\omega_R = \omega \delta_{r,s_r+1}^{-1} \delta_{r+1,s_{r+1}} \dots \delta_{r+1,1},$$

where $\delta_{r+1,s_{r+1}} \dots \delta_{r+1,1}$ is a maximal non-zero path in (Q_A, I_A) , provided such a walk exists. If the walk $\delta_{r,s_r+1}^{-1} \delta_{r+1,s_{r+1}} \dots \delta_{r+1,1}$ does not exist then

$$\omega_R = \delta_{1,s_1} \dots \delta_{1,1} \delta_{2,1}^{-1} \dots \delta_{2,s_2}^{-1} \dots \delta_{r-1,s_{r-1}} \dots \delta_{r-1,2}$$

Using the same rules on the other end of the walk ω we obtain ω_L . The composition of these constructions gives us the walks ω_{RL} and ω_{LR} , respectively. Moreover, if ω_R and ω_L are non-zero we have $\omega_{RL} = \omega_{LR}$. Then, by [24], for a non-injective string module $X(\omega)$, there is an Auslander–Reiten sequence in mod A of the form

$$0 \to X(\omega) \to X(\omega_R) \oplus X(\omega_L) \to X(\omega_{RL}) \to 0.$$

We shall write briefly ω_{R^2} (ω_{L^2}) instead of (ω_R)_R ((ω_L)_L, respectively), and analogously ω_{R^i} (ω_{L^i} , respectively) will mean the above operations applied *i* times. We shall also write $\omega_{R^{-i}} = \eta$ provided $\eta_{R^i} = \omega$, for any positive integer *i*.

Note that for a special biserial algebra A the algebra $A/\operatorname{soc}(R)$, where $\operatorname{soc}(R)$ is the socle of the direct sum R of all indecomposable projective-injective modules which are not serial, is a string algebra. Moreover, each indecomposable projective-injective A-module X occurs in an Auslander–Reiten sequence of the form

$$0 \to \operatorname{rad}(X) \to X \oplus \operatorname{rad}(X)/\operatorname{soc}(X) \to X/\operatorname{soc}(X) \to 0,$$

where rad denotes the Jacobson radical of a module. This allows us to use the Skowroński–Waschbüsch algorithm for any special biserial algebra.

Let ω be a non-zero walk in a special biserial quiver (Q_A, I_A) . Then the set \mathcal{X}_{ω} can be equipped with a partial order \leq in the following way. For $\eta_1, \eta_2 \in \mathcal{X}_{\omega}$ we write $\eta_1 \leq \eta_2$ if and only if there exists a non-negative integer *i* such that $\eta_2 = (\eta_1)_{R^i}$. Note that if $\delta \in \mathcal{X}_{\omega}$ and $\delta_{R^l} \in \mathcal{X}_{\omega}$, where $l \geq 2$, then $\delta_{R^i} \in \mathcal{X}_{\omega}$ for all $1 \leq i \leq l-1$.

The following lemma will play an important role in the proof of the Theorem.

LEMMA 2.1. Let $A = KQ_A/I_A$ be a path algebra of a special biserial quiver (Q_A, I_A) and ω be a non-zero walk in (Q_A, I_A) . Then:

- (a) \mathcal{X}_{ω} contains a unique minimal and a unique maximal element.
- (b) If \mathcal{X}_{ω} is a finite set then it is well ordered.
- (c) If \mathcal{X}_{ω} contains a finite chain \mathcal{L} then $\mathcal{X}_{\omega} = \mathcal{L}$.

Proof. Assume that $\omega = \omega' \beta^{-1} \alpha_1 \dots \alpha_n$, where, for $1 \leq i \leq n$, α_i is an arrow in Q_A , and if $\omega' \beta^{-1}$ is a non-trivial walk then β is an arrow such that $s(\beta) = s(\alpha_1)$. Without loss of generality we may assume that $\omega' \beta^{-1}$ is a non-trivial walk.

(a) Let η' be a maximal non-zero path in (Q_A, I_A) which belongs to $\mathcal{X}_{\alpha_1...\alpha_n}$. Consider $\eta = \omega'\beta^{-1}\eta' \in \mathcal{X}_{\omega}$. From the Skowroński–Waschbüsch algorithm we find that $\eta = \omega'_R$ and $\omega'_{R^i} \notin \mathcal{X}_{\omega}$ for any integer $i \leq 0$. Moreover, if a path v satisfies $v_{R^{-1}} \notin \mathcal{X}_{\omega}$ and $v \in \mathcal{X}_{\omega}$, then $v = \eta$. Hence η is a minimal element in \mathcal{X}_{ω} . Similarly, we show the existence of a maximal element in \mathcal{X}_{ω} . If $u \in \mathcal{X}_{\omega}$ is such that $u_R \notin \mathcal{X}_{\omega}$ then $u = \omega'\beta^{-1}\alpha_1 \dots \alpha_n (u')^{-1}$, where u' is a maximal non-zero (maybe trivial) path which does not contain $\alpha_1 \dots \alpha_n$ as a subpath and $t(u') = t(\alpha_n)$.

(b) Let $v \in \mathcal{X}_{\omega}$ and η be a minimal element of \mathcal{X}_{ω} . Recall that for two representations $M = (M_x, M_\alpha)$, $M' = (M'_x, M'_\alpha)$ of (Q_A, I_A) a homomorphism $h: M \to M'$ is a family $h = (h_x)_{x \in Q_0}$ of K-linear maps $(h_x: M_x \to M'_x)_{x \in Q_0}$ such that for each arrow $\alpha: a \to b$ we have $M'_\alpha h_a = h_b M_\alpha$. Note that for a walk μ of length r such that $\mu(i_1) = \cdots = \mu(i_l) = z$ for some vertex $z \in Q_A$ and $1 \leq l \leq r+1$, we have $X(\mu)_{\mu(i_j)} = K$ for any $1 \leq j \leq l$, and $\bigoplus_{j=1}^l X(\mu)_{\mu(i_j)} = X(\mu)_z$. Take $f: X(\eta) \to X(v)$ with $f_{\eta(1)} \neq 0$. Such an f exists since $v = \omega v' = \omega' \beta^{-1} \alpha_1 \dots \alpha_n v'$ and $\eta = \omega' \beta^{-1} \alpha_1 \dots \alpha_r$ where $\alpha_1, \dots, \alpha_r$ are arrows in Q_A and $\alpha_1 \dots \alpha_r$ is a maximal non-zero oriented walk in $\mathcal{X}_{\alpha_1\dots\alpha_n}$. Suppose that f = f'' f' for some A-module M and homomorphisms $f'': M \to X(v), f': X(\eta) \to M$. Without loss of generality we may assume that $M = X(\mu)$ is an indecomposable string module (the image of a morphism $\delta \in Q_A$ and $\mu \notin \mathcal{X}_\delta$. Then μ or μ^{-1} contains an arrow γ such that $t(\gamma) = s(\delta)$ or $s(\gamma) = s(\delta)$. Since $f_{\eta(1)} \neq 0$ we have $f'_{\eta(1)} = f''_{v(1)} \neq 0$ and $f''_{\eta(1)} = f''_{v(1)} \neq 0$.

Assume that $M_{\gamma} : M_{s(\gamma)} \to M_{\eta(1)}$, where $M_{\eta(1)}$ is a one-dimensional subspace of $M_{t(\gamma)}$, is non-zero. Then for $f''_{\eta(1)} : M_{\eta(1)} \to X(v)_{v(1)}$ we have $0 \neq f''_{\eta(1)}M_{\gamma} = X(v)_{\gamma}f''_{s(\gamma)} = 0$, because $X(v)_{\gamma} : X(v)_{s(\gamma)} \to X(v)_{v(1)}$ is zero, a contradiction. Suppose $M_{\gamma} : M_{\eta(1)} \to M_{t(\gamma)}$ is non-zero for a onedimensional subspace $M_{\eta(1)}$ of $M_{s(\gamma)}$. Then for $f'_{\eta(1)} : X(\eta)_{\eta(1)} \to M_{\eta(1)}$ we have $0 \neq M_{\gamma}f'_{\eta(1)} = f'_{t(\gamma)}X(\eta)_{\gamma} = 0$, because $X(\eta)_{\gamma} : X(\eta)_{\eta(1)} \to X(\eta)_{t(\gamma)}$ is zero, a contradiction. Hence $\mu \in \mathcal{X}_{\delta}$ and $\mu = \delta\mu'$ for some walk μ' . Since by assumption $\omega \in \mathcal{X}_{\delta}$, there exists a walk ω'' such that $\omega = \delta\omega''$ and we repeat the above considerations for ω'' instead for ω and μ' instead for μ . By induction we find that $\mu \in \mathcal{X}_{\omega}$. We use dual arguments for $\omega \in \mathcal{X}_{\delta^{-1}}$, where δ is an arrow in Q_A .

Let now \mathcal{X}_{ω} be a finite set. Then there exists $i \geq 0$ such that $\eta_{R^i} \in \mathcal{X}_{\omega}$ and $\eta_{R^{i+1}} \notin \mathcal{X}_{\omega}$. Suppose that $v \in \mathcal{X}_{\omega}$ is not \preceq -related with η . Note that any morphism $f : X(\eta) \to X(v)$ with $f_{\eta(1)} = f_{v(1)} \neq 0$ factorizes through the middle term E of an Auslander–Reiten sequence which starts in $X(\eta_{R^i})$. This leads to a contradiction since no direct summand M of E belongs to \mathcal{X}_{ω} . Observe that for any morphism $f \in \operatorname{Hom}_A(M, X(v))$ we have $f_{v(1)} = 0$. Hence the relation \preceq is connected and \mathcal{X}_{ω} has the form

$$\eta \preceq \eta_R \preceq \eta_{R^2} \preceq \cdots \preceq \eta_{R^j}$$

for some integer $j \ge 0$.

(c) If \mathcal{X}_{ω} contains a finite chain \mathcal{L} , then by repeating the arguments from (b) we get the claim.

Analogously we provide the proof for $\omega = \omega' \alpha \beta_1^{-1} \dots \beta_m^{-1}$, where for any $1 \leq i \leq m, \beta_i$ is an arrow and if $\omega' \alpha$ is a non-trivial walk then α denotes an arrow such that $t(\alpha) = t(\beta_1)$.

3. Proof of the Theorem. We have two cases to consider: α does not initiate any multinomial relations and α initiates a multinomial relation.

CASE 1: α does not initiate any multinomial relation. This is the case when P(x) is a string module, say $P(x) = X(\eta^{-1}\alpha\varepsilon_1...\varepsilon_n)$, where η is a path (maybe trivial) which starts at x and $\eta \notin \mathcal{X}_{\alpha}$ and $\varepsilon_1...\varepsilon_n$ is the composition of arrows $\varepsilon_1, \ldots, \varepsilon_n \in Q_A$ ($\varepsilon_1...\varepsilon_n$ may be trivial). Note that $X(\varepsilon_1...\varepsilon_n)$ is then a direct summand of rad P(x) and $X(\varepsilon_1...\varepsilon_n)$ is equal to the image Im f_{α} of $f_{\alpha}: P(y) \to P(x)$.

We start by showing the implication $(ii) \Rightarrow (i)$.

(a) Assume that y is a source of exactly one arrow ε_1 . Clearly, then $P(y) = X(\varepsilon_1 \dots \varepsilon_r)$ for some $r \ge n$. Since α is an initiating arrow in a special biserial quiver, there is a unique path $\varrho \in \mathcal{X}_{\varepsilon_1}$ for which $\alpha \varrho \in \text{Gen}(I_A)$. But $P(x) = X(\eta^{-1}\alpha\varepsilon_1 \dots \varepsilon_n)$ implies that there exists in Q_A an arrow ε_{n+1} with $s(\varepsilon_{n+1}) = t(\varepsilon_n)$ such that $\varrho = \varepsilon_1 \dots \varepsilon_n \varepsilon_{n+1}$. Obviously, $\varrho \notin I_A$ and $n+1 \le r$.

Consider now the set \mathcal{X}_{ϱ} . Since by assumption \mathcal{X}_{ϱ} is finite, and by Lemma 2.1, $\varepsilon_1 \dots \varepsilon_r$ is a maximal non-zero path in \mathcal{X}_{ϱ} , there exists a positive integer a such that

$$X((\varepsilon_1\ldots\varepsilon_r)_{R^a})=X(\varepsilon_1\ldots\varepsilon_n).$$

Thus we have the following sectional path in Γ_A :

$$P(y) = X(\varepsilon_1 \dots \varepsilon_r) \xrightarrow{f_1} X((\varepsilon_1 \dots \varepsilon_r)_R) \xrightarrow{f_2} \dots \xrightarrow{f_a} X(\varepsilon_1 \dots \varepsilon_n) \xrightarrow{f_{a+1}} P(x).$$

Then by [15, Theorem 13.3] we see that $f_{a+1} \dots f_1 \in \operatorname{rad}_A^{a+1} \setminus \operatorname{rad}_A^{a+2}$. We claim that $f_{\alpha} = f_{a+1} \dots f_1$ up to scalar multiplication. We will show that $f_{\alpha}: P(y) = X(\varepsilon_1 \dots \varepsilon_r) \to P(x)$ does not factorize through any module M different from $X((\varepsilon_1 \dots \varepsilon_r)_{R^i})$ for $1 \leq i \leq a$. Indeed, assume that $f_\alpha = gf$, where $f: P(y) \to M$ and $g: M \to P(x)$ for some such A-module M. Without loss of generality we may assume that M is a string module $X(\omega)$ for a walk ω in (Q_A, I_A) . Since Im $f = X(\varepsilon_1 \dots \varepsilon_j)$ for some $j \leq r, M$ contains $X(\varepsilon_1 \dots \varepsilon_i)$ as a submodule. Further, M has $X(\varepsilon_1 \dots \varepsilon_n)$ as a factor module, because $\operatorname{Im} f_{\alpha} = \operatorname{Im} gf = X(\varepsilon_1 \dots \varepsilon_n)$. Observe that by definition $(f_{\alpha})_y \neq 0$. But $(gf)_y \neq 0$ if and only if $\omega = \varepsilon_1 \dots \varepsilon_n \zeta$ for some non-zero walk ζ in (Q_A, I_A) . Now the fact that $X(\varepsilon_1 \dots \varepsilon_n)$ is a factor module of M implies $\omega = \varepsilon_1 \dots \varepsilon_n \varepsilon_{n+1} \zeta'$ for some arrow ε_{n+1} and walk ζ' in (Q_A, I_A) . Hence $\omega \in \mathcal{X}_{\rho}$. Since \mathcal{X}_{ρ} is finite and $\varepsilon_1 \dots \varepsilon_r$ is a minimal element in \mathcal{X}_{ρ} we deduce that $X(\omega) = X((\varepsilon_1 \dots \varepsilon_r)_{R^i})$, for some $1 \leq i \leq a$, a contradiction. Thus $f_{\alpha} = f_{a+1} \dots f_1 h$ for some $h \in \operatorname{End}_A(P(x))$. But $\operatorname{End}_A(P(x)) \cong K$ and we conclude that f_{α} is equal to $f_{a+1} \dots f_1$ up to scalar multiplication.

(b) Assume now that y is a source of exactly two arrows which we denote by ε_1, δ_1 , and suppose $\alpha \delta_1 \in I_A$.

(1) Suppose that P(y) is a string module of the form

$$X(\nu) = X(\delta_p^{-1} \dots \delta_1^{-1} \varepsilon_1 \dots \varepsilon_r)$$

for some $p, r \geq 1$. Then either r = n, which is equivalent to the fact that $\alpha \delta_1$ is the unique relation initiated by α , or $r \geq n+1$, equivalently $\alpha \varepsilon_1 \dots \varepsilon_{n+1} \in \text{Gen}(I_A)$ (because $P(x) = X(\eta^{-1}\alpha \varepsilon_1 \dots \varepsilon_n)$).

Assume r = n. Then $\text{Im} f_{\alpha} = X(\varepsilon_1 \dots \varepsilon_n)$ and there is the following sectional path in Γ_A :

$$P(y) = X(\nu) \xrightarrow{f_1} X(\nu_L) \xrightarrow{f_2} \dots \xrightarrow{f_b} X(\nu_{L^b}) = X(\varepsilon_1 \dots \varepsilon_n) \xrightarrow{f_{b+1}} P(x),$$

for $b \geq 1$. Again by [15, Theorem 13.3] we have $f_{b+1} \dots f_1 \in \operatorname{rad}_A^{b+1} \setminus \operatorname{rad}_A^{b+2}$. We claim that $f_{\alpha} = f_{b+1} \dots f_1$ up to scalar multiplication. Note that f_{α} does not factorize through any module different from $X(\nu_{L^i})$ where $1 \leq i \leq b$. Suppose $f_{\alpha} = gf$ for some string module $M = X(\omega)$, $f : P(y) \to M$ and $g : M \to P(x)$. Then M has a submodule of the form $\operatorname{Im} f = X(\delta_l^{-1} \dots \delta_1^{-1} \varepsilon_1 \dots \varepsilon_k)$ with $l \leq p, k \leq n$. If k < n then for a vertex $z = t(\varepsilon_{k+1})$ we have $f_z = 0$ and hence $(gf)_z = 0$, which implies $f_{\alpha} \neq gf$. Therefore, we conclude that k = n. Moreover, since \mathcal{X}_{δ_1} is finite there exists an integer $j \geq 1$ such that $X((\delta_1 \dots \delta_p)_{R^j}) = X((\delta_p^{-1} \dots \delta_1^{-1})_{L^j}) = X(\delta_l^{-1} \dots \delta_1^{-1})$ and hence $X(\delta_l^{-1} \dots \delta_1^{-1} \varepsilon_1 \dots \varepsilon_k) = X(\nu_{L^j})$ for some j. The fact that $X(\varepsilon_1 \dots \varepsilon_n)$ is a factor module of M and $\varepsilon_1 \dots \varepsilon_n = \varepsilon_1 \dots \varepsilon_r$ is a maximal non-zero path in $\mathcal{X}_{\varepsilon_1}$, implies that $\omega = \omega' \delta_1^{-1} \varepsilon_1 \dots \varepsilon_n$ for some walk ω' in (Q_A, I_A) . But then $\delta_1 \omega'^{-1} \in \mathcal{X}_{\delta_1}$ and we conclude that $X(\omega) = X(\nu_{L^m})$ for some $m \geq 1$. Thus there is no proper factorization of f_{α} through an A-module different from $X(\nu_{L^i}), i \in \{1, \dots, b\}$. Hence $f_{\alpha} = f_{b+1} \dots f_1$ up to scalar multiplication since $\operatorname{End}_A(P(x)) \cong K$.

Consider now $r \ge n+1$. Then we have $\alpha \delta_1, \alpha \varepsilon_1 \dots \varepsilon_{n+1} \in \text{Gen}(I_A)$. Since by assumption \mathcal{X}_{δ_1} and $\mathcal{X}_{\varepsilon_1 \dots \varepsilon_{n+1}}$ are finite sets, there are positive integers aand b such that

$$X(\nu_{R^aL^b}) = X(\varepsilon_1 \dots \varepsilon_n).$$

Thus $f_{\alpha} \in \operatorname{rad}_{A}^{a+b+1}(P(y), P(x))$. We claim that $f_{\alpha} \notin \operatorname{rad}_{A}^{a+b+2}(P(y), P(x))$. Suppose that f_{α} has a non-trivial factorization $f_{\alpha} = gf$ for $f: P(y) \to M$, $g: M \to P(x)$ and a string module $M = X(\omega)$ different from $X(\nu_{R^{i}L^{j}})$ for $1 \leq i \leq a, 1 \leq j \leq b$. As above, M contains a submodule $\operatorname{Im} f = X(\delta_{l}^{-1} \dots \delta_{1}^{-1} \varepsilon_{1} \dots \varepsilon_{k})$ for $l \leq p$ and $k \leq r$, and has a factor module $X(\varepsilon_{1} \dots \varepsilon_{n})$. If k < n, then for the vertex $z = t(\varepsilon_{k+1})$ we have $f_{z} = 0$ and hence $(gf)_{z} = 0$, which implies $f_{\alpha} \neq gf$, a contradiction. Therefore, $k \geq n$. Since $X(\varepsilon_{1} \dots \varepsilon_{n})$ is a factor module of M, we have $\omega = \omega' \delta_{1}^{-1} \varepsilon_{1} \dots \varepsilon_{n}$ or $\omega = \omega_{1} \delta_{1}^{-1} \varepsilon_{1} \dots \varepsilon_{n} \varepsilon_{n+1} \omega_{2}$ for some walks $\omega', \omega_{1}, \omega_{2}$ and an arrow ε_{n+1} in (Q_{A}, I_{A}) . Using the same arguments as above we infer that in both cases $\omega = \nu_{R^{i}L^{j}}$ with $1 \leq i \leq a, 1 \leq j \leq b$. Clearly, there is no cycle in Γ_{A} having only $X(\nu_{R^iL^j})$ with $i \in \{1, \ldots, a\}, j \in \{1, \ldots, b\}$ as vertices. Thus $f_{\alpha} \in \operatorname{rad}_A^{a+b+1} \setminus \operatorname{rad}_A^{a+b+2}$.

(2) If P(y) is not a string module then $f_{\alpha} : P(y) \to P(x)$ factorizes through $P(y)/\operatorname{soc} P(y) = X(\nu)$ where ν is a non-zero walk in (Q_A, I_A) . We repeat the above arguments to show that $X(\varepsilon_1 \ldots \varepsilon_n) = X(\nu_{R^a L^b})$ for some $a, b \ge 1$ and that f_{α} factorizes only through modules of the form $X(\nu_{R^i L^j})$, $1 \le i \le a, 1 \le j \le b$.

Now we show the implication $(i) \Rightarrow (ii)$.

Assume $f_{\alpha} \notin \operatorname{rad}_{A}^{\infty}(P(y), P(x))$ and P(y) is a string module $X(\delta_{p}^{-1} \dots \delta_{1}^{-1} \varepsilon_{1} \dots \varepsilon_{r})$ with the above notation and $\delta_{p}^{-1} \dots \delta_{1}^{-1}$ may be a trivial walk in (Q_{A}, I_{A}) . We denote by $f_{\alpha|}$ left multiplication by $\overline{\alpha}$ defined on a factor module $X(\varepsilon_{1} \dots \varepsilon_{r})$ of P(y). The composition $f_{\alpha|}g$ for a canonical epimorphism $g: P(y) \to X(\varepsilon_{1} \dots \varepsilon_{r})$ is equal to f_{α} . Hence, $f_{\alpha|} \notin \operatorname{rad}_{A}^{\infty}(X(\varepsilon_{1} \dots \varepsilon_{r}), P(x))$. Then, for $f_{\alpha|} = \sum_{i=1}^{j} \lambda_{i} f_{i}$ with non-zero $\lambda_{i} \in K, j \geq 1$, there exists $i \in \{1, \dots, j\}$ and a positive integer m such that

$$f_i \in \operatorname{rad}_A^m \setminus \operatorname{rad}_A^{m+1}$$

Consider $f_i: X(\varepsilon_1 \dots \varepsilon_r) \to P(x)$. If $X((\varepsilon_1 \dots \varepsilon_r)_L) \neq 0$, then there is an arrow β in Q_A such that $t(\beta) = y$ and $\beta \varepsilon_1 \dots \varepsilon_r \notin I_A$. Hence $\alpha \varepsilon_1 \in I_A$ and f_i factorizes through a simple module S(y) at a vertex y. Moreover, $X((\varepsilon_1 \dots \varepsilon_r)_L) = X(\mu^{-1}\beta\varepsilon_1 \dots \varepsilon_r)$, where μ is a maximal non-zero path (may be trivial) which starts at $s(\beta)$ and $\mu \notin \mathcal{X}_{\beta}$. Observe that a nonzero morphism $h: X(\mu^{-1}\beta\varepsilon_1\ldots\varepsilon_r) \to P(x)$ factorizes through S(y) provided $\mu^{-1}\beta\varepsilon_1\ldots\varepsilon_r = \delta_1\ldots\beta\varepsilon_1\ldots\varepsilon_r$ or $\mu^{-1}\beta\varepsilon_1\ldots\varepsilon_r = \varepsilon_1\ldots\beta\varepsilon_1\ldots\varepsilon_r$, a contradiction. Hence f_i does not factorize through $X((\varepsilon_1 \dots \varepsilon_r)_L)$. Similarly, f_i does not factorize through $X((\varepsilon_1 \dots \varepsilon_r)_{R^k L})$ for any $1 \leq k \leq 1$ m-1. Therefore, f_i is a composition $f_i^m \dots f_i^2 f_i^1$ of irreducible morphisms $f_i^k : X((\varepsilon_1 \dots \varepsilon_r)_{R^{k-1}}) \to X((\varepsilon_1 \dots \varepsilon_r)_{R^k})$ for $1 \leq k \leq m-1$ and $f_i^m :$ $X(\varepsilon_1 \dots \varepsilon_n) \to P(x)$, because $X(\varepsilon_1 \dots \varepsilon_n)$ is a direct summand of rad P(x). Thus $X((\varepsilon_1 \ldots \varepsilon_n)_{R^{-1}}) = X((\varepsilon_1 \ldots \varepsilon_r)_{R^{m-1}})$ is a maximal element of $\mathcal{X}_{\varepsilon_1 \ldots \varepsilon_{n+1}}$. Applying now Lemma 2.1(a) we conclude that $X(\varepsilon_1 \ldots \varepsilon_r)$ is a minimal element of $\mathcal{X}_{\varepsilon_1...\varepsilon_{n+1}}$ and by Lemma 2.1(c), $\mathcal{X}_{\varepsilon_1...\varepsilon_{n+1}}$ is finite. Analogously, we show that \mathcal{X}_{δ_1} is a finite set.

Assume now that $f_{\alpha} \notin \operatorname{rad}_{A}^{\infty}(P(y), P(x))$ and P(y) is not a string Amodule. Let $\varepsilon_{1} \ldots \varepsilon_{r}$ be one of two maximal non-zero paths starting at vertex y where, for $1 \leq i \leq r$, ε_{i} denotes an arrow. Then we repeat the above considerations with respect to the factor module $X(\varepsilon_{1} \ldots \varepsilon_{r-1})$ of P(y).

CASE 2: α initiates a multinomial relation $\lambda_1 \omega_1 + \lambda_2 \alpha \varepsilon_1 \dots \varepsilon_n$ for some non-trivial path ω_1 in (Q_A, I_A) , $1 \le n \le r$ and non-zero $\lambda_1, \lambda_2 \in K$. Without loss of generality, we may assume (Q_A, I_A) is a presentation of the algebra A such that $\lambda_1 = 1$, $\lambda_2 = -1$. If α initiates a multinomial relation, say $\begin{aligned} &\alpha' \varepsilon_1' \dots \varepsilon_l' - \alpha \varepsilon_1 \dots \varepsilon_n \text{ with } 1 \leq l, 1 \leq n \leq r, \text{ then for a string module } P(y) = X(\delta_p^{-1} \dots \delta_1^{-1} \varepsilon_1 \dots \varepsilon_r) \text{ the morphism } f_\alpha : P(y) \to P(x) \text{ is the composition } \\ &f_\alpha | g \text{ of } g : P(y) \to X(\varepsilon_1 \dots \varepsilon_r) \text{ and } f_\alpha | : X(\varepsilon_1 \dots \varepsilon_r) \to P(x). \text{ If } P(y) \text{ is not a string } A\text{-module and } \delta_1 \dots \delta_p, \varepsilon_1 \dots \varepsilon_r \text{ are maximal non-zero paths which start } \\ & \text{at } y, \text{ then we take } X(\varepsilon_1 \dots \varepsilon_{r-1}) \text{ instead of } X(\varepsilon_1 \dots \varepsilon_r). \text{ Since rad } P(x) = \\ & X(\varepsilon_1 \dots \varepsilon_n \varepsilon_l'^{-1} \dots \varepsilon_1'^{-1}) \text{ it is sufficient to study } \mathcal{X}_{\delta_1} \text{ for } g \text{ (if } y \text{ is a source of an arrow } \delta_1 \text{ different from } \varepsilon_1) \text{ and } \mathcal{X}_{\varepsilon_1 \dots \varepsilon_n} \text{ for } f_\alpha|. \text{ To show the equivalence } \\ & (i) \Leftrightarrow (ii) \text{ in the second case, the arguments from Case 1 are now repeated.} \end{aligned}$

4. Examples. We end the paper with examples illustrating the Theorem.

EXAMPLE 4.1. Let A = KQ/I where Q is of the form

and $I = \langle \alpha^2, \gamma^2, \alpha\beta - \beta\gamma \rangle$. Consider the initiating arrow β . Then for $f_\beta : P(2) \to P(1)$ we have $\mathcal{X}_{\gamma} = \{\gamma, \gamma\beta^{-1}, \gamma\beta^{-1}\alpha\}$ and $f_\beta \notin \operatorname{rad}^{\infty}(P(2), P(1))$. Note that A is of finite representation type.

EXAMPLE 4.2. Let A = KQ/I where Q is as follows:

and I is the two-sided ideal of KQ generated by $\beta_1\varepsilon_1, \beta'_1\varepsilon'_1$. We know by [18] that the Auslander–Reiten quiver Γ_A of A has a component $\mathcal{P}(A)$ which contains all indecomposable projective A-modules. Furthermore, it is a starting component, that is, there are no non-zero morphisms $f : X \to Y$ for indecomposable modules $X \notin \mathcal{P}(A)$ and $Y \in \mathcal{P}(A)$ (see [18]). There is the following walk in $\mathcal{P}(A)$:

where S(4) denotes a simple module at vertex 4, $X(\alpha_2^{-1}\alpha_1^{-1}\beta_1\beta_2) = P(1)$ and $X(\varepsilon_1^{-1}\beta_2) = P(3)$. Consider $f_{\beta_1}: P(3) \to P(1)$. The set $\mathcal{X}_{\varepsilon_1}$ is infinite since it contains all walks of the form $\varepsilon_1 \varepsilon_1'^{-1} \beta_2' (\alpha_2'^{-1} \alpha_1'^{-1} \beta_1' \beta_2')^r$ for any integer $r \geq 1$. Thus $f_{\beta_1} \in \operatorname{rad}_A^\infty$ and $\mathcal{P}(A)$ is not generalized standard. Analogously, $f_{\beta_1'} \in \operatorname{rad}_A^\infty$, where $f_{\beta_1'}: P(6) \to P(7)$. Moreover, for all remaining arrows $\delta: x \to y$ in Q, morphisms $f_\delta: P(y) \to P(x)$ between indecomposable projective A-modules P(x) and P(y), belong to $\operatorname{rad}_A \setminus \operatorname{rad}_A^2$.

Imagine now that Q is a finite quiver such that the number of arrows with a prescribed source or target is at most 2. The above theorem allows us to construct special biserial algebras A associated to a bound quiver (Q, I) such that the morphisms between indecomposable projective modules belong to an arbitrary given power of the radical rad_A. Obviously, if Q does not contain a subquiver of type $\widetilde{\mathbb{A}}_m$ then none of these morphisms belongs to rad_A[∞].

Acknowledgements. This research was supported by the grant No. N N201 269135 of the Polish Ministry of Science and Higher Education.

References

- J. L. Alperin, Local Representation Theory. Modular Representations as an Introduction to the Local Representation Theory of Finite Groups, Cambridge Stud. Adv. Math. 11, Cambridge Univ. Press, 1986.
- [2] S. Ariki, Hecke algebras of classical type and their representation type, Proc. London Math. Soc. 91 (2005), 355–413; Corrigendum: ibid. 92 (2006), 342–344.
- [3] I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, 2006.
- [4] M. C. R. Butler and C. M. Ringel, Auslander-Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra 15 (1987), 145–179.
- [5] W. Crawley-Boevey, Tameness of biserial algebras, Arch. Math. (Basel) 65 (1995), 399–407.
- W. Crawley-Boevey and R. Vila-Freyer, *The structure of biserial algebras*, J. London Math. Soc. 57 (1998), 41–54.
- [7] P. Dowbor and A. Skowroński, Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62 (1987), 311–337.
- [8] K. Erdmann, Blocks of Tame Representation Type and Related Algebras, Lecture Notes in Math. 1428, Springer, 1990.
- [9] K. Erdmann, T. Holm, O. Iyama and J. Schröer, Radical embeddings and representation dimension, Adv. Math. 185 (2004), 159–177.
- [10] K. Erdmann and A. Skowroński, On Auslander-Reiten components of blocks and selfinjective biserial algebras, Trans. Amer. Math. Soc. 330 (1992), 165–189.
- [11] R. Farnsteiner and A. Skowroński, Classification of restricted Lie algebras with tame principal block, J. Reine Angew. Math. 546 (2002), 1–45.
- [12] —, —, The tame infinitesimal groups of odd characteristic, Adv. Math. 205 (2006), 229–274.

[13]	P. Gabriel and	Ch. Riedtmann,	Group	representations	without	groups,	Comment.
	Math. Helv. 54	(1979), 240-287.					

- [14] I. M. Gelfand and V. A. Ponomarev, Indecomposable representations of the Lorentz group, Uspekhi Mat. Nauk 23 (1968), no. 2, 3–60 (in Russian).
- K. Igusa and G. Todorov, A characterization of finite Auslander-Reiten quivers, J. Algebra 89 (1984), 148–177.
- [16] Z. Pogorzały, *Regularly biserial algebras*, in: Topics in Algebra, Part 1, Banach Center Publ. 26, PWN, Warszawa, 1990, 371–384.
- [17] Z. Pogorzały and A. Skowroński, Selfinjective biserial standard algebras, J. Algebra 138 (1991), 491–504.
- [18] Z. Pogorzały and M. Sufranek, Starting and ending components of the Auslander-Reiten quivers of a class of special biserial algebras, Colloq. Math. 99 (2004), 111– 144.
- [19] J. Schröer, On the Krull-Gabriel dimension of an algebra, Math. Z. 233 (2000), 287–303.
- [20] —, On the infinite radical of a module category, Proc. London Math. Soc. 81 (2000), 651–674.
- [21] D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras 2: Tubes and Concealed Algebras of Euclidean Type, London Math. Soc. Student Texts 71, Cambridge Univ. Press, 2007.
- [22] —, —, Elements of the Representation Theory of Associative Algebras 3: Representation-Infinite Tilted Algebras, London Math. Soc. Student Texts 72, Cambridge Univ. Press, 2007.
- [23] A. Skowroński, Generalized standard Auslander-Reiten components, J. Math. Soc. Japan 46 (1994), 517–543.
- [24] A. Skowroński and J. Waschbüsch, Representation-finite biserial algebras, J. Reine Angew. Math. 345 (1983), 172–181.
- [25] B. Wald and J. Waschbüsch, Tame biserial algebras, J. Algebra 95 (1985), 480–500.

Alicja Jaworska Faculty of Mathematics and Computer Science Nicolaus Copernicus University 87-100 Toruń, Poland E-mail: alicja.jaworska@mat.umk.pl

Received May 18, 2011;	
received in final form June 29, 2011	(7834)