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DIFFERENCE AND FUNCTIONAL EQUATIONS

On Probability Distribution Solutionsof a Funtional EquationbyJanusz MORAWIEC and Ludwig REICHPresented by Andrzej LASOTA
Summary. Let 0 < β < α < 1 and let p ∈ (0, 1). We onsider the funtional equation

ϕ(x) = pϕ

(

x − β

1 − β

)

+ (1 − p)ϕ

(

min

{

x

α
,
x(α − β) + β(1 − α)

α(1 − β)

})

and its solutions in two lasses of funtions, namely
I = {ϕ: R → R | ϕ is inreasing, ϕ|(−∞,0] = 0, ϕ|[1,∞) = 1},

C = {ϕ: R → R | ϕ is ontinuous, ϕ|(−∞,0] = 0, ϕ|[1,∞) = 1}.We prove that the above equation has at most one solution in C and that for some pa-rameters α, β and p suh a solution exists, and for some it does not. We also determineall solutions of the equation in I and we show the exat onnetion between solutions inboth lasses.1. Introdution. In [4℄ M. Corsolini onsidered solutions ψ: [0, 1] →
[0, 1] of the funtional equation

ψ(x) =

{

pψ[fs(x)] + qψ[fv(x)] if fv(x) ∈ [0, 1),
pψ[fs(x)] + q if fv(x) ∈ [1,∞),(1)with given numbers α, β, p, q ∈ (0, 1) suh that p + q = 1 and funtions

fs: [0, 1] → [0, 1], fv: [0, 1] → [0,max{1, βα−1}] de�ned by
fs(x) =







0 if x ∈ [0, β],
x− β

1 − β
if x ∈ (β, 1],2000 Mathematis Subjet Classi�ation: Primary 39B22, 39B12; Seondary 60E05,26A30.Key words and phrases: funtional equations, inreasing solutions, ontinuous distri-bution funtions.This researh was supported by the Silesian University Mathematis Department(Funtional Equations in a Single Variable program).[389℄
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fv(x) =











x

α
if x ∈ [0, β],

x(α− β) + β(1 − α)

α(1 − β)
if x ∈ (β, 1].For more details see [3℄ where the onnetion of this problem with a problemfrom game theory an be found. In a private orrespondene M. Corsoliniasked about the existene of monotoni solutions ψ of (1) suh that ψ(0) = 0and ψ(1) = 1.The following result gives a positive answer to this question in the asewhere α ≤ β (see [10℄ and [11℄).

Theorem A. If α ≤ β, then equation (1) has exatly one bounded solu-tion ψ: [0, 1] → R suh that ψ(0) = 0 and ψ(1) = 1. Moreover:(i) ψ is ontinuous and inreasing.(ii) If α = β, then ψ is stritly inreasing and either absolutely ontin-uous or singular.(iii) If α < β then there exists a family J of disjoint open subintervalsof (0, 1) suh that ψ is onstant on eah of them and [0, 1] \
⋃

J isof Lebesgue measure zero.In this paper we are interested in the ase where β < α.Assume β < α and de�ne funtions f1, f2: R → R by
f1(x) =

x− β

1 − β
and f2(x) =











x

α
if x ≤ β,

x(α− β) + β(1 − α)

α(1 − β)
if x > β.It is obvious that f1 and f2 are ontinuous, stritly inreasing,

f1(x) < x < f2(x) < 1 for every x ∈ (0, 1)(2)and
f1(x) ≤ 0 for every x ∈ (−∞, β].(3) Now, the question of M. Corsolini an be restated as the question ofexistene of an inreasing solution ϕ: R → R of the equation

ϕ(x) = pϕ[f1(x)] + qϕ[f2(x)](E)suh that
ϕ|(−∞,0] = 0 and ϕ|[1,∞) = 1.(4) We �rst observe that the answer to the question of M. Corsolini is pos-itive. More preisely, the funtion χ[1,∞) is a solution of equation (E) sat-isfying ondition (4). (Here and throughout, χI denotes the harateristifuntion, de�ned on the real line, of the set I.)
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Sine we have the existene of a solution of (E) satisfying (4) we an askabout its uniqueness. The next observation suggests that equation (E) mayhave a lot of solutions ϕ: R → R satisfying (4).
Remark 1. If ϕ: R → R is a solution of equation (E) satisfying ondition

(4), then for every λ ∈ R the funtion φ: R → R de�ned by
φ(x) =

{

λϕ(x) if x ∈ (−∞, 1),
1 if x ∈ [1,∞),is a solution of (E) satisfying φ|(−∞,0] = 0 and φ|[1,∞) = 1.2. An example. To show that equation (E) may have many solutions

ϕ: R → R satisfying (4) and, moreover, that the ase β < α is di�erent fromthat studied in [10℄ and [11℄ we onsider the following situation.
Example. Fix 0 < β < α < 1 and let ∼ be the equivalene relationon R de�ned by

x ∼ y ⇔
∨

n∈N

∨

g1,...,gn∈{f1,f2,f−1
1 ,f−1

2 }

(x = g1 ◦ · · · ◦ gn(y)).

Equivalene relations of this type appear in a natural manner (see e.g. [2℄ or[7℄). Let [x] denote the equivalene lass of x and let M denote a ompleteset of representatives of all equivalene lasses of the relation ∼.Fix a funtion λ: M → R and de�ne φ: R → R by
φ(x) =







0 if x ∈ (−∞, 0],
λ(y)x if x ∈ [y] ∩ (0, 1) and y ∈M ,
1 if x ∈ [1,∞).Simple alulations show that

φ(x) = (1 − α)φ[f1(x)] + αφ[f2(x)](5)for every x ∈ R. In partiular, for every λ ∈ [0, 1] the funtion ϕ: R → Rde�ned by
ϕ(x) =







0 if x ∈ (−∞, 0],
λx if x ∈ (0, 1),
1 if x ∈ [1,∞),is an inreasing solution of (5) satisfying (4).In what follows we are interested in solutions ϕ of (E) in the followingtwo lasses of funtions:

I = {ϕ: R → R | ϕ is inreasing, ϕ|(−∞,0] = 0, ϕ|[1,∞) = 1},

C = {ϕ: R → R | ϕ is ontinuous, ϕ|(−∞,0] = 0, ϕ|[1,∞) = 1}.
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3. The uniqueness of solutions of (E) in the lass C. On aountof the Example we see that equation (E) may have a lot of solutions in thelass I. The �rst of our results shows that in C the situation is di�erent.
Theorem 1. Equation (E) has at most one solution in the lass C.Proof. Let ϕ1, ϕ2 ∈ C be solutions of (E) and put φ = ϕ1 − ϕ2. Then φis a ontinuous solution of (E) vanishing on (−∞, 0] ∪ [1,∞). Put

M = sup{|φ(x)| : x ∈ R}and suppose, ontrary to our laim, that M > 0. Let
x0 = inf{x ∈ (0, 1) : |φ(x)| = M} ∈ (0, 1).By (2), f1(x0) < x0. Then |φ[f1(x0)]| < M , whene

M = |φ(x0)| ≤ p|φ[f1(x0)]| + q|φ[f2(x0)]| < pM + qM = M,a ontradition.4. Some properties of solutions of (E) in the lasses I and C.To get information about the existene of a solution of (E) in the lass C weneed some properties of solutions of (E) in I and C.
Lemma 1. If ϕ ∈ I is a solution of (E), then ϕ is ontinuous at everypoint x 6= 1.Proof. The funtion ϕ0: R → R given by

ϕ0(x) = lim
y→x+

ϕ(y) − lim
z→x−

ϕ(z)is a nonnegative solution of (E) suh that
n−1
∑

j=0

ϕ0(xj) ≤ 1 whenever 0 ≤ x0 < · · · < xn−1 ≤ 1,(6)and ϕ0(x) = 0 if and only if ϕ is ontinuous at x. It is enough to show that
ϕ0 vanishes on [0, 1).Sine ϕ0(0) = qϕ0(0), we have ϕ0(0) = 0. Suppose

L := sup{ϕ0(x) : x ∈ (0, 1)} > 0,�x a positive integer n ≥ 1/L+ q/p and an x0 ∈ (0, 1) suh that
ϕ0(x0) > (1 − qn)L.Then

(1 − qn)L < ϕ0(x0) = pϕ0[f1(x0)] + qϕ0[f2(x0)] ≤ pL+ qϕ0[f2(x0)],whene
ϕ0(x1) > (1 − qn−1)L,where x1 := f2(x0). By (2), x1 ∈ (x0, 1). By indution we obtain
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ϕ0(xj) > (1 − qn−j)L, where xj = f j

2 (x0) for j = 0, 1, . . . , n− 1,and (x0, x1, . . . , xn−1) is a stritly inreasing sequene of numbers from (0, 1).Consequently,
n−1
∑

j=0

ϕ0(xj) > L
(

n−
n−1
∑

j=0

qn−j
)

> L

(

n−
q

1 − q

)

≥ 1,whih ontradits (6).From now on let (ϕn : n ∈ N) denote a sequene of funtions from R to
R de�ned as follows:

ϕ1(x) = χ(0,∞)(x) and ϕn+1(x) = pϕn[f1(x)] + qϕn[f2(x)](7)for any n ∈ N and x ∈ R.By indution we get the following observation.
Lemma 2. The sequene (ϕn : n ∈ N) de�ned by (7) is a dereasingsequene of funtions from I, and its limit Φ,

Φ(x) = lim
n→∞

ϕn(x) for every x ∈ R,(8)is a solution of (E) and belongs to I.Proof. Sine
ϕ2(x) = pϕ1[f1(x)] + qϕ1[f2(x)] = pχ(β,∞)(x) + qχ(0,∞)(x) ≤ ϕ1(x)for every x ∈ R, the obvious indution shows that (ϕn : n ∈ N) dereases.The rest is evident.
Theorem 2. Equation (E) has a solution in the lass C if and only ifthe funtion Φ de�ned by (8) and (7) is ontinuous.Proof. If Φ is ontinuous, then, by Lemma 2, it is a solution of (E) in thelass C. Assume now that ψ ∈ C is a solution of (E). Let M = sup{ψ(x) :

x ∈ R}. Obviously, M ∈ [1,∞). Moreover, there exists a y ∈ [0, 1] suh that
M = ψ(y). By Remark 1, the funtion Ψ : R → R given by

Ψ(x) =

{

M−1ψ(x) if x ∈ (−∞, 1),
1 if x ∈ [1,∞),(9)is a solution of (E). Sine Ψ ≤ ϕ1, an obvious indution shows that Ψ ≤ ϕnfor every n ∈ N. Consequently, Ψ ≤ Φ. In partiular,

M = ψ(y) = lim
x→y−

ψ(x) = M lim
x→y−

Ψ(x) ≤M lim
x→y−

Φ(x).From this and Lemma 2 we see that
1 ≤ lim

x→y−

Φ(x) ≤ lim
x→1−

Φ(x) ≤ Φ(1) = 1,whih together with Lemma 1 gives Φ ∈ C.
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Lemma 3. If Φ is ontinuous, then it maps (0, 1) into itself.Proof. Suppose that there exists an x < 1 suh that Φ(x) = 1. Thenfrom Lemma 2 we dedue that there exists a y ∈ (0, 1) suh that Φ(x) < 1for every x < y and Φ(x) = 1 for every x ≥ y. This together with (2) gives

1 = Φ(y) = pΦ[f1(y)] + qΦ[f2(y)] < p+ q = 1,a ontradition.Now suppose that there exists an x > 0 suh that Φ(x) = 0. Then fromLemma 2 we dedue that there exists a y ∈ (0, 1) suh that Φ(x) = 0 forevery x ≤ y and Φ(x) > 0 for every x > y. This together with (2) gives
0 = Φ(y) = pΦ[f1(y)] + qΦ[f2(y)] = qΦ[f2(y)] > 0,a ontradition.

Lemma 4. If ϕ ∈ I is a solution of equation (E) whih is onstant onan interval I ⊂ R, then ϕ is also onstant on the intervals f1(I) and f2(I).Proof. Fix x1, x2 ∈ I suh that x1 < x2. Then
pϕ[f1(x1)] + qϕ[f2(x1)] = ϕ(x1) = ϕ(x2) = pϕ[f1(x2)] + qϕ[f2(x2)]and sine all the funtions ourring above are inreasing we have

ϕ[f1(x1)] = ϕ[f1(x2)] and ϕ[f2(x1)] = ϕ[f2(x2)].This proves the assertion.
Theorem 3. If Φ is ontinuous, then it is stritly inreasing on theinterval [0, 1] and it is either absolutely ontinuous or singular.Proof. Suppose that Φ is not stritly inreasing on [0, 1] and let [a, b] ⊂

[0, 1] be an interval of maximal length on whih Φ is onstant. It follows fromLemma 3 that [a, b] ⊂ (0, 1). Using Lemma 4 we see that φ is onstant onthe intervals [f1(a), f1(b)] and [f2(a), f2(b)]. Sine f1(b) − f1(a) > b − a, itfollows that [f1(a), f1(b)] ∩ (0, 1) = ∅, whih together with (2) and (3) gives
b ≤ β. Hene f2(b) − f2(a) > b − a and thus [f2(a), f2(b)] ∩ (0, 1) = ∅; thisontradits the fat that f2([0, 1]) ⊂ [0, 1].Now we show that the unique solution of (E) in the lass C is eitherabsolutely ontinuous or singular. Let Φ ∈ C be the unique solution of (E).By the Canonial Lebesgue Deomposition Theorem (see, e.g., [9, Theorem7.4.9℄) there exist exatly one absolutely ontinuous (and inreasing) funtion
ϕa: [0, 1] → R and exatly one singular (ontinuous and inreasing) funtion
ϕs: [0, 1] → R suh that ϕa(0) = 0 and

Φ(x) = ϕa(x) + ϕs(x)for every x ∈ [0, 1].
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Assume that ϕa does not vanish. We shall show that Φ is absolutelyontinuous. Let c = 1/ϕa(1) and de�ne φa: R → R and φs: R → R by
φa(x) =







0 if x < 0,
cϕa(x) if x ∈ [0, 1],
1 if x > 1, φs(x) =







0 if x < 0,
cϕs(x) if x ∈ [0, 1],
cϕs(1) if x > 1.Observe that the funtions φa and φs so de�ned are ontinuous, inreasing,

cΦ = φa + φsand
φa(x) + φs(x) = cΦ(x) = c [pΦ[f1(x)] + qΦ[f2(x)]]

= pφa[f1(x)] + qφa[f2(x)] + pφs[f1(x)] + qφs[f2(x)]for every x ∈ R. Sine φa ◦ f1 and φa ◦ f2 are absolutely ontinuous, and
φs ◦ f1 and φs ◦ f2 are singular, the uniqueness of the deomposition impliesthat there exists a real onstant d suh that

φa(x) = pφa[f1(x)] + qφa[f2(x)] + dfor every x ∈ R. Thus
1 = φa(1) = pφa[f1(1)] + qφa[f2(1)] + d = 1 + d,so d = 0, and hene φa ∈ C. By Theorem 1 we get φa = Φ.5. The existene of solutions of (E) in the lass C. We begin withthe ase where q ≥ α.

Lemma 5. Assume that q ≥ α. Then
Φ(x) ≥ x for every x ∈ [0, 1].Proof. It is enough to prove (by indution) that ϕn(x) ≥ x for all n ∈ Nand x ∈ [0, 1].

Theorem 4. If q ≥ α, then equation (E) has exatly one solution inthe lass C. Moreover , this solution is stritly inreasing on [0, 1] and eitherabsolutely ontinuous or singular.Proof. By Lemmas 2, 1 and 5, and by Theorem 2, we get the existene.The uniqueness follows from Theorem 1. The remaining assertion is a on-sequene of Theorem 3.
Theorem 5. Assume that

q ≤ α− pβ.(10)Then equation (E) has no solution in the lass C.
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Proof. Assumption (10) is equivalent to the inequality

p(1 − β) + qα
1 − β

α− β
≤ 1.Suppose that, ontrary to our laim, ϕ ∈ C is a solution of (E). Then byLemma 3 we have

β/α\
0

ϕ(x) dx > 0and
1\
0

ϕ(x) dx = q

β\
0

ϕ

(

x

α

)

dx+ p

1\
β

ϕ

(

x− β

1 − β

)

dx

+ q

1\
β

ϕ

(

x(α− β) + β(1 − α)

α(1 − β)

)

dx

= qα

β/α\
0

ϕ(y) dy + p(1 − β)

1\
0

ϕ(y) dy

+ qα
1 − β

α− β

1\
β/α

ϕ(y) dy

<

[

p(1 − β) + qα
1 − β

α− β

] 1\
0

ϕ(y) dy ≤
1\
0

ϕ(y) dy,a ontradition.6. Solutions of (E) in the lass I. We begin with a general resultonneting the existene of a solution of (E) in the lass C with the set of allsolutions of (E) in the lass I.
Theorem 6. (i) Equation (E) has a solution in the lass C if and onlyif (E) has a solution ψ ∈ I suh that ψ 6= χ[1,∞). Moreover :(ii) If ϕ ∈ C is a solution of (E), then ψ ∈ I is a solution of (E) if andonly if there exists a λ ∈ [0, 1] suh that

ψ(x) =

{

λϕ(x) if x ∈ (−∞, 1),
1 if x ∈ [1,∞).(11)(iii) If ψ ∈ I, ψ 6= χ[1,∞), is a solution of (E), then there exists a

γ ∈ [1,∞) suh that the funtion ϕ: R → R given by
ϕ(x) =

{

γψ(x) if x ∈ (−∞, 1),
1 if x ∈ [1,∞),(12)is a solution of (E) in the lass C.
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Proof. If ϕ ∈ C is a solution of (E), then by Remark 1, so is ψ de�nedby (11). Sine λ ∈ [0, 1], by Theorem 3 we get ψ ∈ I.Assume now that ψ ∈ I is a solution of (E). From Lemma 1 we see that

ψ is ontinuous at every point x 6= 1.If limx→1− ψ(x) = 0, then ψ = χ[1,∞). Hene (11) holds with λ = 0.If limx→1− ψ(x) ∈ (0, 1], then the funtion ϕ: R → R de�ned by (12)with
γ =

1

limx→1− ψ(x)is a solution of (E) (f. Remark 1) ontinuous at 1 and ϕ ∈ I. This, togetherwith Lemma 1, shows that ϕ ∈ C.From Theorems 4, 5 and 7 we get the following two orollaries.
Corollary 1. Assume that q ≥ α and let ϕ ∈ C be the unique solutionof (E). Then every solution ψ ∈ I of (E) is of the form (11) with some

λ ∈ [0, 1].
Corollary 2. If (10) holds, then χ[1,∞) is the only solution of (E) inthe lass I.7. Consequenes of a theorem of K. Baron. We �rst observe thatequation (E) an be rewritten in the form

ϕ(x) =
\
Ω

ϕ(τ(x, ω)) dP (ω),(13)
where Ω = {1, 2} and P is a probability measure on 2Ω given by P ({1}) = p,
P ({2}) = q and τ(·, ω) = fω for ω ∈ {1, 2}. Now we an to try use knownresults on equation (13) in a muh more general setting to get informationon solutions of (E) in the lass I (or equivalently, by Theorem 6, in thelass C). To the best of our knowledge the following theorem of K. Baron [1℄is the most general result appliable to equation (E).
Theorem B (K. Baron). Assume that (Ω,A, P ) is a probability spaeand that τ : R×Ω → R is a funtion suh that for every ω ∈ Ω the funtion

τ(·, ω) is stritly inreasing and transforms R onto R, and for every x ∈ Rthe funtion τ(x, ·) is a random variable. Let L: Ω → (0,∞) be a randomvariable suh that
|τ(x, ω) − τ(y, ω)| ≥ L(ω)|x− y| for all x, y ∈ R, ω ∈ Ω(14)and

0 <
\
Ω

logL(ω) dP (ω) <∞.(15)
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If there exists an x0 ∈ R suh that\

{ω∈Ω : |τ(x0,ω)−x0|>L(ω)}

log
|τ(x0, ω) − x0|

L(ω)
dP (ω) <∞,(16)

then equation (13) has exatly one solution in the lass of probability distri-bution funtions.We wish to apply Theorem B to equation (E). Observe that sine both
f1 and f2 map R onto R, it follows that the main assumptions on τ hold. Itis evident that ondition (16) holds with any x0 ∈ R. Moreover, elementaryalulations shows that (14) holds with L given by

L(1) =
1

1 − β
, L(2) =

α− β

α(1 − β)and this funtion L is the best possible. Consequently, ondition (15) nowreads
0 < p log

1

1 − β
+ q log

α− β

α(1 − β)
(17)or equivalently

β

1 − (1 − β)1/q
< α.Let us mention here that ondition (15) has been used in some papers onfuntional equations (see e.g. [5℄ or [8℄) and on iterated funtion systems (seee.g. [6℄ and the referenes therein).As an immediate onsequene of Theorem B and Theorem 6 we get thefollowing result.

Theorem 7. Assume (17). Then:(i) Equation (E) has no solution in the lass C.(ii) The funtion χ[1,∞) is the unique solution of (E) in the lass I.We know that in some ases ondition (17) is stronger than ondition
(10); e.g. in the ase where p = q = 1/2 ondition (17) an be written as 1+
αβ < 2α, whereas ondition (10) takes the form 1 + β ≤ 2α. Unfortunately,we do not know if suh a onnetion is valid for all parameters p, α and βsuh that max{β, q} < α.We end this paper by asking when equation (E) has a solution in thelass C if q < α and neither (17) nor (10) holds.Aknowledgements. The main part of this work was done while the�rst author was visiting the Karl Franzens Universität in Graz. He thanks theKarl Franzens Universität and espeially Professor D. Gronau for hospitality.
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