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Hyperspaes of Finite Sets in Universal Spaesfor Absolute Borel ClassesbyKotaro MINE, Katsuro SAKAI and Masato YAGUCHIPresented by Czesªaw BESSAGA
Summary. By Fin(X) (resp. Fink(X)), we denote the hyperspae of all non-empty �nitesubsets of X (resp. onsisting of at most k points) with the Vietoris topology. Let ℓ2(τ)be the Hilbert spae with weight τ and ℓf2(τ) the linear span of the anonial orthonormalbasis of ℓ2(τ). It is shown that if E = ℓf2(τ) or E is an absorbing set in ℓ2(τ) for one ofthe absolute Borel lasses aα(τ) and Mα(τ) of weight ≤ τ (α > 0) then Fin(E) and eah
Fink(E) are homeomorphi to E. More generally, if X is a onneted E-manifold then
Fin(X) is homeomorphi to E and eah Fink(X) is a onneted E-manifold.1. Introdution. Throughout the paper, spaes are metrizable andmaps are ontinuous. Let τ be an in�nite ardinal. Let ℓ2(τ) be the Hilbertspae of weight τ and ℓf

2(τ) the linear span of the anonial orthonormalbasis of ℓ2(τ). We write ℓ2(ℵ0) = ℓ2 and ℓf
2(ℵ0) = ℓf

2. Given a spae E,a paraompat Hausdor� spae is alled a manifold modeled on E or an
E-manifold if it an be overed by open sets whih are homeomorphi to(≈) open sets in E.In [1℄, Bestvina and Mogilski onstruted universal spaes for separableabsolute Borel lasses as absorbing sets in the Hilbert ube Q = I

N or thepseudo-interior s = (0, 1)N, and they also gave topologial haraterizationsof those spaes and manifolds modeled on them. Reently, in [14℄ and [8℄,the present authors generalized the results of [1℄ to non-separable absoluteBorel lasses. For eah ountable ordinal α > 0, let Λα(τ) and Ωα(τ) beabsorbing sets in ℓ2(τ) for the lasses aα(τ) and Mα(τ), respetively, where
aα(τ) and Mα(τ) are respetively the additive and multipliative absolute2000 Mathematis Subjet Classi�ation: 54B20, 57N20, 54H05.Key words and phrases: hyperspae of �nite subsets, Vietoris topology, Hausdor�metri, universal spaes, absolute Borel lasses, Hilbert spae, absorbing set.[409℄
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Borel lasses α with weight ≤ τ . Then Λα(τ) (α ≥ 1) and Ωα(τ) (α ≥ 2)are universal spaes in the lasses aα(τ) and Mα(τ), respetively. The spae
Ω1(τ) is homeomorphi to ℓ2(τ)× ℓf

2, whih is a universal spae in the lassof σ-ompletely metrizable spaes (1) with weight ≤ τ . Note that this lassis a proper sublass of a2(τ). Although a1(ℵ0) is the lass of σ-ompatmetrizable spaes, a1(τ) is in general the lass of σ-loally ompat metriz-able (2) spaes with weight ≤ τ (f. [15℄). Moreover, Λ1(τ) ≈ ℓf
2(τ) × Q and

Ω2(τ) ≈ Ω1(τ)N ≈ Λ1(τ)N (see [8℄).On the other hand, in [3℄, Curtis and Nguyen To Nhu proved thatthe hyperspae Fin(X) of non-empty �nite subsets of X with theVietoris topology is homeomorphi to ℓf
2 if and only if X is non-degenerate, onneted, loally path-onneted σ-ompat and stronglyountable-dimensional.Moreover, Curtis [2℄ showed that

Fin(Q) ≈ Fin(ℓf
2 × Q) ≈ ℓf

2 × Q.Reently, the last author [19℄ proved that
Fin(ℓ2(τ)) ≈ ℓ2(τ) × ℓf

2 (≈ Ω1(τ)).For eah k ∈ N, let Fink(X) be the subspae of Fin(X) onsisting of subsetswith ardinality ≤ k. For this hyperspae, the following are known:(1) Fink(Q) ≈ Q (Fedorhuk [6℄),(2) Fink(ℓ2) ≈ ℓ2 and Fink(ℓf
2 × Q) ≈ ℓf

2 × Q (Nguyen To Nhu [10℄),(3) Fink(ℓ2×ℓf
2) ≈ ℓ2×ℓf

2 and Fink((ℓf
2)

N) ≈ (ℓf
2)

N (Nguyen To Nhu andthe seond author [11℄),where ℓf
2 ×Q ≈ Λ1(ℵ0), ℓ2 × ℓf

2 ≈ Ω1(ℵ0) and (ℓf
2)

N ≈ Ω2(ℵ0). In this paper,we show the following theorem:Main Theorem. Let E be one of the spaes ℓf
2(τ), Λα(τ), Ωα(τ), where

α > 0. Then Fin(E) ≈ E and Fink(E) ≈ E for eah k ∈ N. More generally ,if X is a onneted E-manifold then Fin(X) ≈ E and eah Fink(X) is aonneted E-manifold.2. Preliminaries. For a metrizable spae X, let a0(X) and M0(X) bethe olletions of all open sets and of all losed sets in X, respetively. Fora ountable ordinal α > 0, by trans�nite indution, we de�ne aα(X) (resp.
Mα(X)) as the olletion of all ountable unions (resp. intersetions) of setsin ⋃

β<α aβ(X) ∪ Mβ(X). Then M1(X) and a1(X) are the olletions of all
(1) A metrizable spae is σ-ompletely metrizable if it is a ountable union of om-pletely metrizable losed subsets.
(2) A metrizable spae is σ-loally ompat metrizable if it is a ountable union ofloally ompat (losed) subsets. See footnote 1 in [8℄.
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Gδ sets and of all Fσ sets in X, respetively. Sets in a2(X), M2(X), . . . aresaid to be Gδσ, Fσδ, . . . in X, respetively. For eah subset A ⊂ X, we have
Fin(A) ⊂ Fin(X). It is easy to see that Fin(A) is open (resp. losed) in
Fin(X) if A is open (resp. losed) in X. Then, by trans�nite indution on α,we have

A ∈ aα(X) ⇒ Fin(A) ∈ aα(Fin(X)),

A ∈ Mα(X) ⇒ Fin(A) ∈ Mα(Fin(X)).For an in�nite ardinal τ , we denote by aα(τ) (resp. Mα(τ)) the lassof all metrizable spaes X with w(X) ≤ τ suh that X ∈ aα(Y ) (resp.
X ∈ Mα(Y )) whenever X is embedded in a metrizable spae Y . Then M1(τ),
a1(τ), M2(τ), a2(τ), . . . are the lasses of absolutely Gδ, absolutely Fσ, abso-lutely Gδσ, absolutely Fσδ, . . . spaes with weight ≤ τ . Note that a0(τ) = ∅and M0(τ) = M0(ℵ0) is the lass of ompat metrizable spaes. As is wellknown, absolutely Gδ spaes are nothing else than ompletely metrizablespaes. A separable metrizable spae is absolutely Fσ if and only if it is
σ-ompat. In the general ase, a metrizable spae is absolutely Fσ if andonly if it is σ-loally ompat (f. [15℄). We denote by aω

1 (τ) the lass ofall spaes with weight ≤ τ whih are ountable unions of loally ompat,loally �nite-dimensional losed sets.Let C be a lass of spaes. Then
• C is topologial if (X ∈ C, X ≈ Y ) ⇒ Y ∈ C,
• C is losed (resp. open) hereditary if (X ∈ C, A ⊂ X is losed (resp.open) in X) ⇒ A ∈ C,
• C is additive if (X = X1 ∪ X2 and X1, X2 ∈ C are losed in X) ⇒

X ∈ C.
• C is produtive if X1, X2 ∈ C ⇒ X1 × X2 ∈ C.By Cσ, we denote the lass onsisting of all metrizable spaes whih anbe expressed as ountable unions of losed subspaes ontained in C. Then

M1(τ)σ is the lass of σ-ompletely metirzable spaes with weight ≤ τ .Clearly, if C is losed hereditary then Cσ is losed and open hereditary.Now, suppose that C is the topologial lass aα(τ) (α ≥ 1), Mα(τ) (α ≥ 2)or aω
1 (τ). Then C = Cσ is open and losed hereditary, additive, produtiveand ontains I

n × D(τ) for all n ∈ N, where D(τ) is the disrete spae with
cardD(τ) = τ .For eah spae X, we denote by E(X) the lass of all spaes whih arehomeomorphi to a losed subset of X. Note that

E(Λα(τ)) = aα(τ) (α ≥ 1), E(Ωα(τ)) = Mα(τ) (α ≥ 2),

E(Ω1(τ)) = M1(τ)σ and E(ℓf
2(τ)) = a

ω
1 (τ).
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For eah open over U of Y , two maps f, g : X → Y are U-lose (or f is

U-lose to g) if eah {f(x), g(x)} is ontained in some U ∈ U . A losed set
A ⊂ X is alled a Z-set (resp. a strong Z-set) in X provided, for eah openover U of X, there is a map f : X → X suh that f is U -lose to idX and
f(X)∩A = ∅ (resp. cl f(X)∩A = ∅). A subset X ⊂ Y is homotopy dense in
Y if there is a homotopy h : Y × I → Y suh that h0 = idY and ht(Y ) ⊂ Xfor every t > 0. When X is an ANR, a losed set A is a Z-set in X if andonly if X \A is homotopy dense in X (f. Corollary 3.3 of [16℄). A ountableunion of (strong) Z-sets in X is alled a (strong) Zσ-set in X. A (strong)
Zσ-spae is a (strong) Zσ-set in itself. A Z-embedding is an embedding whoseimage is a Z-set.A spae X is said to be universal for a lass C (simply, C-universal) ifevery map f : C → X of C ∈ C an be approximated by Z-embeddings. Wesay that X is strongly universal for C (simply, strongly C-universal) whenthe following ondition is satis�ed:(suC) for eah C ∈ C and eah losed set D ⊂ C, if f : C → X is a mapsuh that f |D is a Z-embedding, then, for eah open over U of X,there is a Z-embedding h : C → X suh that h|D = f |D and h is

U -lose to f .A C-absorbing set in Y is a homotopy dense subset X ⊂ Y suh that
X ∈ Cσ and X is a strongly C-universal strong Zσ-spae. In [13, Theo-rem 3.8℄, Sakai and Yaguhi generalized a haraterization of C-absorbingsets by Bestvina and Mogilski [1, Theorem 5.3℄ to the following non-separablease:Theorem 2.1. Let C be a losed hereditary additive topologial lass ofspaes suh that I

n × D(τ) ∈ C for eah n ∈ N. Suppose that there exists a
C-absorbing set E in ℓ2(τ). Then an AR X with w(X) ≤ τ is homeomorphito E if and only if X ∈ Cσ, X is strongly C-universal and X is a strong
Zσ-spae.The open embedding theorem of E-manifolds [1, Corollary 5.7℄ an alsobe generalized to the non-separable ase [13, Theorem 3.9℄ as follows:Theorem 2.2. Under the assumption of Theorem 2.1, every onneted
E-manifold an be embedded in E as an open set.In this paper, XN

f
denotes the weak produt of X with a base point

∗ ∈ X, that is,
XN

f = {(xi)i∈N ∈ XN | xi = ∗ exept for �nitely many n ∈ N}.In order to make the base point lear, we write XN

f
(∗). As is easily observed,Proposition 2.5 of [1℄ is valid for a non-separable AR X. Then we have thefollowing proposition:
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Proposition 2.3. Under the assumptions of Theorem 2.1, if C is pro-dutive then E ≈ EN

f
.Proof. Sine C ⊂ E(E) ⊂ E(EN

f
), it follows from Proposition 2.5 of [1℄that EN

f
is strongly E(E)-universal. Moreover, EN

f
⊂ ℓ2(τ)N ≈ ℓ2(τ) and

E is homotopy dense in ℓ2(τ). Then EN

f
an be embedded into ℓ2(τ)N asa homotopy dense subset. By Lemma 2.2 of [8℄, EN

f
is a strong Zσ-spae.Sine E ∈ Cσ and C is produtive, we have EN

f
∈ Cσ. Hene, E ≈ EN

f
byTheorem 2.1.The following is due to Nguyen To Nhu [9, Theorem 2.1, Corollary 2.3℄:Theorem 2.4. For every ANR (resp. AR) X and k ∈ N, the hyperspaes

Fin(X) and Fink(X) are also ANR's (resp. AR's).Note that every map f : X → Y indues a map f̃ : Fin(X) → Fin(Y )de�ned by f̃(A) = f(A) = {f(x) | x ∈ A}. Moreover, for a homotopy
h : X × I → Y , we de�ne h̃ : Fin(X) × I → Fin(Y ) and h̃k : Fink(X) × I →

Fink(Y ) for eah k ∈ N by h̃t(A) = h̃k
t (A) = ht(A) = {ht(x) | x ∈ A}. Thenit is easy to see that h̃ and h̃k are ontinuous, so they are also homotopies.

3. Universality. Given an admissible metri d for X, we use the admis-sible metri for XN de�ned as follows:
̺
(
(xi)i∈N, (yi)i∈N

)
= sup

i∈N

min{d(xi, yi), 2
−i}.Then ̺H is the Hausdor� metri indued by the metri ̺.Proposition 3.1. Let X be a non-degenerate AR and W an open setin Fin(XN

f
) or Fink(XN

f
) for some k ∈ N. Then W is universal for E(X).Proof. Beause of similarity, we shall prove only the ase of Fin(XN

f
).Let Y = XN

f
⊂ XN. Sine the weak produt Y N

f
(∗) of Y with a base point

∗ ∈ Y is homeomorphi to XN

f
, we may show the universality of every openset W in Fin(Y N

f
(∗)). Let f : A → W be a map of A ∈ E(X). For eahopen over U of W , take a olletion Ũ of open sets of Fin((XN)N) suhthat U = {U ∩ Fin(Y N

f
(∗)) | U ∈ Ũ}. Then W̃ =

⋃
Ũ is an open subsetof Fin((XN)N). Suppose that α : W̃ → (0, 1) is a map suh that if a map

g : Y → Fin((XN)N) is α-lose to f then g(Y ) ⊂ W̃ and g is Ũ -loseto f . Sine Y is an AR, we have a map λ : Y × Y × I → Y suh that
λ(x, x, t) = x for every t ∈ I, λ(x, y, 0) = x and λ(x, y, 1) = y (suh a map isalled an equi-onneting map). Using this map, we an de�ne a homotopy
ϕ : Y N × Y × I → Y N as follows:
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ϕ(x, z, 1) = (x1, z, z, z, ∗, ∗, . . . ),

ϕ(x, z, 2−1) = (x1, x2, z, z, z, ∗, ∗, . . . ),

· · ·

ϕ(x, z, 2−n) = (x1, . . . , xn, z, z, z, ∗, ∗, . . . ),

· · ·

ϕ(x, z, 0) = (x1, x2, x3, . . . ) = xand for 2−n < t < 2−n+1,
ϕ(x, z, t) = (x1, . . . , xn, λ(xn+1, z, 2nt − 1), z, z, λ(z, ∗, 2nt − 1), ∗, ∗, . . . ).Observe that ̺(x, ϕ(x, z, t)) < t for any t > 0.Sine A ∈ E(X), we an take a losed embedding h : A →֒ Y = XN

f
suhthat ∗ /∈ h(A) and h(A) is losed in XN. De�ne g : A → Fin(Y N) by

g(y) = {ϕ(x, h(y), α(f(y))) | x ∈ f(y)}.It is lear that g is ontinuous. Sine ̺(x, ϕ(x, h(y), α(f(y))) < α(f(y)), itfollows that ̺H(f(y), g(y)) < α(f(y)), that is, g is α-lose to f . Note that
ϕ(Y N × Y × (0, 1]) ⊂ Y N

f
(∗), whih means g(A) ⊂ W . Thus, it remains toprove that g : A → W is a Z-embedding.To see that g is injetive, let g(y) = g(y′) and �x a point

x = (x1, . . . , xn, ∗, ∗, ∗, . . . ) ∈ g(y) = g(y′)with xn 6= ∗. Then xn−1 = h(y) = h(y′) by the de�nition of ϕ. Sine h is anembedding, we have y = y′.To see that g is losed, let ai ∈ A (i ∈ N) and G ∈ W̃ with g(ai) → G. Weshow that (ai)i∈N has a onvergent subsequene. By taking a subsequene,we may assume that α(f(ai)) → t ∈ I. Then t > 0. Otherwise, f(ai) → Gbeause ̺H(f(ai), g(ai)) < α(f(ai)) → 0. Hene, α(f(ai)) → α(G) > 0,whih is a ontradition. Thus, we an hoose n ∈ N so that 2−n < t < 2−n+2.Take z = (zn)n∈N ∈ G ⊂ (XN)N. Note that ̺(z, g(ai)) → 0. For eah i ∈ N,we an hoose xi ∈ f(ai) so that ϕ(xi, h(ai), α(f(ai))) → z. For su�ientlylarge i ∈ N, 2−n < α(f(yi)) < 2−n+2, in whih ase
prn+2 ◦ϕ(xi, h(ai), α(f(ai))) = h(ai),where prn : Y N → Y is the projetion onto the nth fator. Therefore, h(ai) →

zn+2 ∈ XN. Sine h is a losed embedding of A not only into Y but also into
XN , it follows that (ai)i∈N is onvergent in A. Thus, g : A → W is losed.Moreover, g(A) is a losed subset of W̃ .Now, we shall show that g(A) is a Z-set in W . Let Y N

f
(∗′) be the weakprodut of Y with a base point ∗′ di�erent from ∗. Suppose V is an openover of W . Choose a olletion Ṽ1 of open sets of Fin((XN)N) so that V =

{U ∩ Fin(Y N

f
(∗)) | U ∈ Ṽ1} and Ṽ =

⋃
Ṽ1 ⊂ W̃ . Let Ṽ2 be an open over
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of V whih is a star-re�nement of Ṽ1. Sine Fin(Y N

f
(∗′)) is homotopy densein Fin((XN)N), there exists a map i1 : Ṽ → Ṽ ∩ Fin(Y N

f
(∗′)) suh that i1 is

Ṽ2-lose to id
Ṽ
. Reall that g(A) is losed in Ṽ . Hene, Ṽ \ g(A) is open in

Fin((XN)N). Thus, we an �nd a map
i2 : Ṽ \ g(A) → (Ṽ \ g(A)) ∩ Fin(Y N

f (∗))suh that i2 is Ṽ2-lose to id
Ṽ
. Observe that

g(A) ⊂ Fin(Y N

f (∗)) and Fin(Y N

f (∗)) ∩ Fin(Y N

f (∗′)) = ∅.Then we have i1(Ṽ ) ⊂ Ṽ \ g(A). The map i = i2 ◦ i1 : W → W is V-lose to
idW and i(W ) ∩ g(A) = ∅. Therefore, g(A) is a Z-set in W .By replaing Y = XN

f
with Y = XN in the proof above, we an also showthe following proposition:Proposition 3.2. Let X be a non-degenerate AR and W an open set in

Fin(XN) or Fink(XN) for some k ∈ N. Then W is universal for E(X).By the same proof as for Proposition 2.2 of [1℄, we an obtain the followingnon-separable version:Proposition 3.3. Let C be an open and losed hereditary topologiallass. If eah open subset of an ANR X is C-universal and every Z-set in Xis a strong Z-set , then X is strongly C-universal.Due to Proposition 2.4 in [14℄, when C = M1(τ) in the above, it is notneessary to assume that every Z-set in X is a strong Z-set. Thus, we havethe following generalization of Proposition 7.3 of [19℄:Corollary 3.4. Let X be a non-degenerate AR suh that M1(τ) ⊂
E(X) and let k ∈ N. Then Fin(XN), Fin(XN

f
), Fink(XN) and Fink(XN

f
) arestrongly M1(τ)-universal.By Toru«zyk's haraterization of Hilbert spaes [17℄ (f. [18℄), The-orem 2.4 and Corollary 3.4 imply the following non-separable version ofCorollary 2.4 of [9℄:Theorem 3.5. For eah k ∈ N, the hyperspae Fink(ℓ2(τ)) of the Hilbertspae ℓ2(τ) with weight τ is homeomorphi to ℓ2(τ).Remark 1. Due to Proposition 6.1 of [19℄, Fin(X) is a strong Z-spaefor every normed linear spae X with dimX ≥ 1. As a ombination ofTheorems 2.1, 2.4 and Corollary 3.4, we have the main result of [19℄, that is,Theorem 3.6. The hyperspae Fin(ℓ2(τ)) of the Hilbert spae ℓ2(τ) withweight τ is homeomorphi to ℓ2(τ) × ℓf

2.
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4. Z-sets in Fin(X)Lemma 4.1. Let X be an ANR and A a Z-set in X. Then Fin(A) is a

Z-set in Fin(X), and Fink(A) is a Z-set in Fink(X) for any k ∈ N. Thus,if X is a Zσ-spae then Fin(A) and Fink(A) are also Zσ-spaes.Proof. We deal with the ase of Fin(A). Sine X is an ANR, X \ A ishomotopy dense in X, hene Fin(X \A) is homotopy dense in Fin(X). Sine
Fin(A) ⊂ Fin(X)\Fin(X \A), it follows that Fin(A) is a Z-set in Fin(X). Itan be similarly shown that Fink(A) is a Z-set in Fink(X) for any k ∈ N.Note that every Z-set in ℓ2(τ) is a strong Z-set [7℄. Sine ℓ2(τ) × ℓf

2 ishomotopy dense in ℓ2(τ) × ℓ2 ≈ ℓ2(τ), every Z-set in ℓ2(τ) × ℓf
2 is a strong

Z-set by Lemma 2.2 of [8℄.Proposition 4.2. Let X be a non-degenerate AR. In the spaes Fin(XN

f
)and Fink(XN

f
), k ∈ N, every Z-set is a strong Z-set. Thus, Fin(XN

f
) and

Fink(XN

f
) are strong Zσ-spaes.Proof. We may assume that XN

f
an be embedded into Hilbert spae asa homotopy dense subset. Indeed, X an be embedded into a ompletelymetrizable AR X̃ as a homotopy dense subset [12℄. Hene, XN

f
is homo-topy dense in X̃N whih is homeomorphi to ℓ2(τ) [17℄. Thus, Fin(XN

f
) and

Fink(XN

f
) are homotopy dense subsets of Fin(ℓ2(τ)) and Fink(ℓ2(τ)), respe-tively. Sine Fin(ℓ2(τ)) ≈ ℓ2(τ) × ℓf

2 and Fink(ℓ2(τ)) ≈ ℓ2(τ) (Theorems 3.6and 3.5), it follows from Lemma 2.2 of [8℄ that every Z-set in Fin(X) is astrong Z-set. Sine XN

f
is a Zσ-spae, Fin(XN

f
) and Fink(XN

f
) are Zσ-spaes.Thus, they are strong Zσ-spaes.Remark 2. It an also be shown that Fin(XN) is a strong Zσ-spaeif X is a non-degenerate AR. Indeed, Fin(XN) an also be embedded intothe strong Zσ-spae Fin(ℓ2(τ)) ≈ ℓ2(τ) × ℓf

2 (Theorem 3.6). Sine every ARwhih is a homotopy dense subset of a Zσ-spae is also a Zσ-spae, we seethat Fin(XN) is a Zσ-spae.5. Absolute Borel lasses. Let d be an admissible metri for X. Thenthe Vietoris topology on Fin(X) is indued by the Hausdor� metri
dH(A, B) = max

{
sup
a∈A

d(a, B), sup
b∈B

d(b, A)
}
,where d(a, A) = infy∈A d(x, y). For eah k ∈ N, let ̺ be the metri for Xkde�ned as follows:

̺(x, y) = max
i≤k

d(xi, yi).Let qk : Xk → Fink(X) be the natural surjetion de�ned by
qk((x1, . . . , xk)) = {x1, . . . , xk}.
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Then it is lear that

dH(qk(x), qk(y)) ≤ ̺(x, y) for any x, y ∈ Xk.This means that qk is uniformly ontinuous. Note that
card q−1

k (A) ≤ k! for eah A ∈ Fink(X).Lemma 5.1. The map qk is perfet.Proof. It su�es to show that a sequene (xn)n∈N in Xk has a onver-gent subsequene if (qk(xn))n∈N is onvergent in Fink(X). Let qk(xn) beonvergent to A ∈ Fink(X). For eah j ≤ k,
d(prj(xn), A) ≤ dH(qk(xn), A) → 0 (n → ∞),where prj : Xk → X is the projetion onto the jth fator. Sine A is �nite,any subsequene of (prj(xn))n∈N has a onvergent subsequene. Then it iseasy to �nd a subsequene (xni

)i∈N suh that (prj(xni
))i∈N is onvergent in

X for every j ≤ k, whih means that (xni
)i∈N is onvergent in Xk.Proposition 5.2. For a σ-loally ompat metri spae X, Fin(X) isalso σ-loally ompat , i.e., X ∈ a1(τ) ⇒ Fin(X) ∈ a1(τ).Proof. Let X =

⋃
n∈N

Xn, where Xn is a loally ompat subset of Xwith Xn ⊂ Xn+1. Sine the perfet image of a loally ompat spae isalso loally ompat ([4, Theorem 3.7.12℄), it follows from Lemma 5.1 that
Fink(Xk) is loally ompat. Then Fin(X) =

⋃
k∈N

Fink(Xk) is σ-loallyompat.Note that if f : X → Y is a losed map and 0 < card f−1(y) ≤ k (< ∞)for every y ∈ Y then dimY ≤ dimX + k − 1 [5, Theorem 3.3.7℄. Then, bythe same proof as for Proposition 5.2 above, we have the following:Proposition 5.3. X ∈ aω
1 (τ) ⇒ Fin(X) ∈ aω

1 (τ).By Proposition 5.1 of [19℄, if X is ompletely metrizable then Fin(X) is
σ-ompletely metrizable, that is,

X ∈ M1(τ) ⇒ Fin(X) ∈ M1(τ)σ ⊂ a2(τ).We also have the following:
X ∈ M1(τ)σ ⇒ Fin(X) ∈ M1(τ)σ.Proposition 5.4. For eah ountable ordinal α ≥ 2,

X ∈ aα(τ) ⇒ Fin(X) ∈ aα(τ),

X ∈ Mα(τ) ⇒ Fin(X) ∈ Mα(τ).Proof. We handle the ases of X ∈ a2(τ) and X ∈ M2(τ). Then theresult an be obtained by trans�nite indution.
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If X ∈ a2(τ), let X =

⋃
i∈N

Xi, where eah Xi is ompletely metrizable.Without loss of generality, we may assume Xi ⊂ Xi+1 for eah i ∈ N;then Fin(X) =
⋃

i∈N
Fin(Xi). Sine eah Fin(Xi) is σ-ompletely metrizable,

Fin(X) is also σ-ompletely metrizable. This means Fin(X) ∈ a2(τ).If X ∈ M2(τ), let X̃ be the ompletion of X. Sine X is Fσδ in X̃,
Fin(X) is also Fσδ in Fin(X̃). By Proposition 5.1 of [19℄, Fin(X̃) is Fσin the ompletely metrizable spae CldH(X̃). This means Fin(X) is Fσδ in
CldH(X̃). Thus, Fin(X) ∈ M2(τ).Remark 3. For eah k ∈ N, Fink(X) is losed in Fin(X). For the spaes
Fink(X), k ∈ N, we have the same results as for Fin(X) above.6. Proof of the Main Theorem. First, we prove the following:Theorem 6.1. Let C be an open and losed hereditary , additive, produ-tive and topologial lass of spaes suh that I

n × D(τ) ∈ C for eah n ∈ N.Suppose that there exists a C-absorbing set E in ℓ2(τ). Then Fin(E) and
Fink(E), k ∈ N, are strongly C-universal.Proof. By the C-universality of E, we have C ⊂ E(E). Sine Fin(EN

f
) and

Fink(EN

f
) are AR's by Theorem 2.4 and every Z-set is a strong Z-set in thesespaes, it follows from Propositions 3.1 and 3.3 that Fin(EN

f
) and Fink(EN

f
)are strongly C-universal. On the other hand, EN

f
≈ E by Proposition 2.3,hene Fin(E) ≈ Fin(EN

f
). Thus, we have the result.Now, we shall prove the main theorem.Theorem 6.2. Suppose that E is homeomorphi to ℓf

2(τ), Λα(τ) or
Ωα(τ), where α ≥ 1 is a ountable ordinal. Then the hyperspaes Fin(E)and Fink(E), k ∈ N, are homeomorphi to E.Proof. First, note that E is strongly universal for the lass C = E(E)and E ∈ Cσ = C. In �5, we have shown that Fin(E), Fink(E) ∈ C. Thesespaes are strong Zσ-spaes by Proposition 4.2 and are strongly C-universalby Theorem 6.1. Thus, Fin(E) ≈ Fink(E) ≈ E by Theorem 2.1.Sine every onneted E-manifold X an be embedded into E as an openset by Theorem 2.2, Fin(X) and Fink(X) an also be embedded into Fin(E)and Fink(E) as open sets, respetively. Sine X is onneted, Fin(X) is anAR (f. Proposition 3.1 of [19℄) and eah Fink(X) is onneted. Hene, wehave the following theorem.Theorem 6.3. Suppose that E is homeomorphi to ℓf

2(τ), Λα(τ) or
Ωα(τ), where α ≥ 1 is a ountable ordinal. Let X be a onneted E-manifold.Then Fin(X) is homeomorphi to E and eah Fink(X) is a onneted E-manifold.
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