GENERAL TOPOLOGY

Hyperspaces of Finite Sets in Universal Spaces for Absolute Borel Classes

by

Kotaro MINE, Katsuro SAKAI and Masato YAGUCHI

Presented by Czesław BESSAGA

Summary. By $\operatorname{Fin}(X)$ (resp. $\operatorname{Fin}^k(X)$), we denote the hyperspace of all non-empty finite subsets of X (resp. consisting of at most k points) with the Vietoris topology. Let $\ell_2(\tau)$ be the Hilbert space with weight τ and $\ell_2^{\mathrm{f}}(\tau)$ the linear span of the canonical orthonormal basis of $\ell_2(\tau)$. It is shown that if $E = \ell_2^{\mathrm{f}}(\tau)$ or E is an absorbing set in $\ell_2(\tau)$ for one of the absolute Borel classes $\mathfrak{a}_{\alpha}(\tau)$ and $\mathfrak{M}_{\alpha}(\tau)$ of weight $\leq \tau$ ($\alpha > 0$) then $\operatorname{Fin}(E)$ and each $\operatorname{Fin}^k(E)$ are homeomorphic to E. More generally, if X is a connected E-manifold then $\operatorname{Fin}(X)$ is homeomorphic to E and each $\operatorname{Fin}^k(X)$ is a connected E-manifold.

1. Introduction. Throughout the paper, spaces are metrizable and maps are continuous. Let τ be an infinite cardinal. Let $\ell_2(\tau)$ be the Hilbert space of weight τ and $\ell_2^{f}(\tau)$ the linear span of the canonical orthonormal basis of $\ell_2(\tau)$. We write $\ell_2(\aleph_0) = \ell_2$ and $\ell_2^{f}(\aleph_0) = \ell_2^{f}$. Given a space E, a paracompact Hausdorff space is called a *manifold modeled on* E or an E-manifold if it can be covered by open sets which are homeomorphic to (\approx) open sets in E.

In [1], Bestvina and Mogilski constructed universal spaces for separable absolute Borel classes as absorbing sets in the Hilbert cube $Q = \mathbf{I}^{\mathbb{N}}$ or the pseudo-interior $s = (0, 1)^{\mathbb{N}}$, and they also gave topological characterizations of those spaces and manifolds modeled on them. Recently, in [14] and [8], the present authors generalized the results of [1] to non-separable absolute Borel classes. For each countable ordinal $\alpha > 0$, let $\Lambda_{\alpha}(\tau)$ and $\Omega_{\alpha}(\tau)$ be absorbing sets in $\ell_2(\tau)$ for the classes $\mathfrak{a}_{\alpha}(\tau)$ and $\mathfrak{M}_{\alpha}(\tau)$, respectively, where $\mathfrak{a}_{\alpha}(\tau)$ and $\mathfrak{M}_{\alpha}(\tau)$ are respectively the additive and multiplicative absolute

²⁰⁰⁰ Mathematics Subject Classification: 54B20, 57N20, 54H05.

Key words and phrases: hyperspace of finite subsets, Vietoris topology, Hausdorff metric, universal spaces, absolute Borel classes, Hilbert space, absorbing set.

Borel classes α with weight $\leq \tau$. Then $\Lambda_{\alpha}(\tau)$ ($\alpha \geq 1$) and $\Omega_{\alpha}(\tau)$ ($\alpha \geq 2$) are universal spaces in the classes $\mathfrak{a}_{\alpha}(\tau)$ and $\mathfrak{M}_{\alpha}(\tau)$, respectively. The space $\Omega_1(\tau)$ is homeomorphic to $\ell_2(\tau) \times \ell_2^{\tilde{f}}$, which is a universal space in the class of σ -completely metrizable spaces (¹) with weight $\leq \tau$. Note that this class is a proper subclass of $\mathfrak{a}_2(\tau)$. Although $\mathfrak{a}_1(\aleph_0)$ is the class of σ -compact metrizable spaces, $\mathfrak{a}_1(\tau)$ is in general the class of σ -locally compact metrizable (²) spaces with weight $\leq \tau$ (cf. [15]). Moreover, $\Lambda_1(\tau) \approx \ell_2^{\rm f}(\tau) \times Q$ and $\Omega_2(\tau) \approx \Omega_1(\tau)^{\mathbb{N}} \approx \Lambda_1(\tau)^{\mathbb{N}}$ (see [8]).

On the other hand, in [3], Curtis and Nguyen To Nhu proved that

the hyperspace Fin(X) of non-empty finite subsets of X with the Vietoris topology is homeomorphic to ℓ_2^{f} if and only if X is nondegenerate, connected, locally path-connected σ -compact and strongly countable-dimensional.

Moreover, Curtis [2] showed that

 $\operatorname{Fin}(Q) \approx \operatorname{Fin}(\ell_2^{\mathrm{f}} \times Q) \approx \ell_2^{\mathrm{f}} \times Q.$

Recently, the last author [19] proved that

 $\operatorname{Fin}(\ell_2(\tau)) \approx \ell_2(\tau) \times \ell_2^{\mathrm{f}} \ (\approx \Omega_1(\tau)).$

For each $k \in \mathbb{N}$, let $\operatorname{Fin}^{k}(X)$ be the subspace of $\operatorname{Fin}(X)$ consisting of subsets with cardinality $\leq k$. For this hyperspace, the following are known:

- (1) $\operatorname{Fin}^k(Q) \approx Q$ (Fedorchuk [6]),
- (2) $\operatorname{Fin}^{k}(\ell_{2}) \approx \ell_{2}$ and $\operatorname{Fin}^{k}(\ell_{2}^{f} \times Q) \approx \ell_{2}^{f} \times Q$ (Nguyen To Nhu [10]), (3) $\operatorname{Fin}^{k}(\ell_{2} \times \ell_{2}^{f}) \approx \ell_{2} \times \ell_{2}^{f}$ and $\operatorname{Fin}^{k}((\ell_{2}^{f})^{\mathbb{N}}) \approx (\ell_{2}^{f})^{\mathbb{N}}$ (Nguyen To Nhu and the second author [11]),

where $\ell_2^{\mathrm{f}} \times Q \approx \Lambda_1(\aleph_0)$, $\ell_2 \times \ell_2^{\mathrm{f}} \approx \Omega_1(\aleph_0)$ and $(\ell_2^{\mathrm{f}})^{\mathbb{N}} \approx \Omega_2(\aleph_0)$. In this paper, we show the following theorem:

MAIN THEOREM. Let E be one of the spaces $\ell_2^{\rm f}(\tau)$, $\Lambda_{\alpha}(\tau)$, $\Omega_{\alpha}(\tau)$, where $\alpha > 0$. Then $\operatorname{Fin}(E) \approx E$ and $\operatorname{Fin}^k(E) \approx E$ for each $k \in \mathbb{N}$. More generally, if X is a connected E-manifold then $\operatorname{Fin}(X) \approx E$ and each $\operatorname{Fin}^{k}(X)$ is a connected E-manifold.

2. Preliminaries. For a metrizable space X, let $\mathfrak{a}_0(X)$ and $\mathfrak{M}_0(X)$ be the collections of all open sets and of all closed sets in X, respectively. For a countable ordinal $\alpha > 0$, by transfinite induction, we define $\mathfrak{a}_{\alpha}(X)$ (resp. $\mathfrak{M}_{\alpha}(X)$) as the collection of all countable unions (resp. intersections) of sets in $\bigcup_{\beta < \alpha} \mathfrak{a}_{\beta}(X) \cup \mathfrak{M}_{\beta}(X)$. Then $\mathfrak{M}_{1}(X)$ and $\mathfrak{a}_{1}(X)$ are the collections of all

^{(&}lt;sup>1</sup>) A metrizable space is σ -completely metrizable if it is a countable union of completely metrizable <u>closed</u> subsets.

 $^(^{2})$ A metrizable space is σ -locally compact metrizable if it is a countable union of locally compact (closed) subsets. See footnote 1 in [8].

 G_{δ} sets and of all F_{σ} sets in X, respectively. Sets in $\mathfrak{a}_2(X), \mathfrak{M}_2(X), \ldots$ are said to be $G_{\delta\sigma}, F_{\sigma\delta}, \ldots$ in X, respectively. For each subset $A \subset X$, we have $\operatorname{Fin}(A) \subset \operatorname{Fin}(X)$. It is easy to see that $\operatorname{Fin}(A)$ is open (resp. closed) in $\operatorname{Fin}(X)$ if A is open (resp. closed) in X. Then, by transfinite induction on α , we have

$$A \in \mathfrak{a}_{\alpha}(X) \implies \operatorname{Fin}(A) \in \mathfrak{a}_{\alpha}(\operatorname{Fin}(X)),$$
$$A \in \mathfrak{M}_{\alpha}(X) \implies \operatorname{Fin}(A) \in \mathfrak{M}_{\alpha}(\operatorname{Fin}(X)).$$

For an infinite cardinal τ , we denote by $\mathfrak{a}_{\alpha}(\tau)$ (resp. $\mathfrak{M}_{\alpha}(\tau)$) the class of all metrizable spaces X with $w(X) \leq \tau$ such that $X \in \mathfrak{a}_{\alpha}(Y)$ (resp. $X \in \mathfrak{M}_{\alpha}(Y)$) whenever X is embedded in a metrizable space Y. Then $\mathfrak{M}_{1}(\tau)$, $\mathfrak{a}_{1}(\tau)$, $\mathfrak{M}_{2}(\tau)$, $\mathfrak{a}_{2}(\tau)$,... are the classes of *absolutely* G_{δ} , *absolutely* F_{σ} , *absolutely* $G_{\delta\sigma}$, *absolutely* $F_{\sigma\delta}$,... spaces with weight $\leq \tau$. Note that $\mathfrak{a}_{0}(\tau) = \emptyset$ and $\mathfrak{M}_{0}(\tau) = \mathfrak{M}_{0}(\aleph_{0})$ is the class of compact metrizable spaces. As is well known, absolutely G_{δ} spaces are nothing else than completely metrizable spaces. A separable metrizable space is absolutely F_{σ} if and only if it is σ -compact. In the general case, a metrizable space is absolutely F_{σ} if and only if it is σ -locally compact (cf. [15]). We denote by $\mathfrak{a}_{1}^{\omega}(\tau)$ the class of all spaces with weight $\leq \tau$ which are countable unions of locally compact, locally finite-dimensional closed sets.

Let \mathcal{C} be a class of spaces. Then

- \mathcal{C} is topological if $(X \in \mathcal{C}, X \approx Y) \Rightarrow Y \in \mathcal{C}$,
- C is closed (resp. open) hereditary if $(X \in C, A \subset X$ is closed (resp. open) in X) $\Rightarrow A \in C$,
- \mathcal{C} is additive if $(X = X_1 \cup X_2 \text{ and } X_1, X_2 \in \mathcal{C} \text{ are closed in } X) \Rightarrow X \in \mathcal{C}$.
- \mathcal{C} is productive if $X_1, X_2 \in \mathcal{C} \Rightarrow X_1 \times X_2 \in \mathcal{C}$.

By \mathcal{C}_{σ} , we denote the class consisting of all metrizable spaces which can be expressed as countable unions of <u>closed</u> subspaces contained in \mathcal{C} . Then $\mathfrak{M}_1(\tau)_{\sigma}$ is the class of σ -completely metirzable spaces with weight $\leq \tau$. Clearly, if \mathcal{C} is closed hereditary then \mathcal{C}_{σ} is closed and open hereditary.

Now, suppose that C is the topological class $\mathfrak{a}_{\alpha}(\tau)$ ($\alpha \geq 1$), $\mathfrak{M}_{\alpha}(\tau)$ ($\alpha \geq 2$) or $\mathfrak{a}_{1}^{\omega}(\tau)$. Then $C = C_{\sigma}$ is open and closed hereditary, additive, productive and contains $\mathbf{I}^{n} \times D(\tau)$ for all $n \in \mathbb{N}$, where $D(\tau)$ is the discrete space with card $D(\tau) = \tau$.

For each space X, we denote by $\mathcal{E}(X)$ the class of all spaces which are homeomorphic to a closed subset of X. Note that

$$\begin{aligned} \mathcal{E}(\Lambda_{\alpha}(\tau)) &= \mathfrak{a}_{\alpha}(\tau) \quad (\alpha \geq 1), \quad \mathcal{E}(\Omega_{\alpha}(\tau)) = \mathfrak{M}_{\alpha}(\tau) \quad (\alpha \geq 2), \\ \mathcal{E}(\Omega_{1}(\tau)) &= \mathfrak{M}_{1}(\tau)_{\sigma} \quad \text{and} \quad \mathcal{E}(\ell_{2}^{\mathrm{f}}(\tau)) = \mathfrak{a}_{1}^{\omega}(\tau). \end{aligned}$$

For each open cover \mathcal{U} of Y, two maps $f, g: X \to Y$ are \mathcal{U} -close (or f is \mathcal{U} -close to g) if each $\{f(x), g(x)\}$ is contained in some $U \in \mathcal{U}$. A closed set $A \subset X$ is called a Z-set (resp. a strong Z-set) in X provided, for each open cover \mathcal{U} of X, there is a map $f: X \to X$ such that f is \mathcal{U} -close to id_X and $f(X) \cap A = \emptyset$ (resp. $\mathrm{cl}\,f(X) \cap A = \emptyset$). A subset $X \subset Y$ is homotopy dense in Y if there is a homotopy $h: Y \times \mathbf{I} \to Y$ such that $h_0 = \mathrm{id}_Y$ and $h_t(Y) \subset X$ for every t > 0. When X is an ANR, a closed set A is a Z-set in X if and only if $X \setminus A$ is homotopy dense in X (cf. Corollary 3.3 of [16]). A countable union of (strong) Z-sets in X is called a (strong) Z_{σ} -set in X. A (strong) Z_{σ} -set in itself. A Z-embedding is an embedding whose image is a Z-set.

A space X is said to be universal for a class \mathcal{C} (simply, \mathcal{C} -universal) if every map $f: C \to X$ of $C \in \mathcal{C}$ can be approximated by Z-embeddings. We say that X is strongly universal for \mathcal{C} (simply, strongly \mathcal{C} -universal) when the following condition is satisfied:

(su_C) for each $C \in C$ and each closed set $D \subset C$, if $f : C \to X$ is a map such that f|D is a Z-embedding, then, for each open cover \mathcal{U} of X, there is a Z-embedding $h : C \to X$ such that h|D = f|D and h is \mathcal{U} -close to f.

A C-absorbing set in Y is a homotopy dense subset $X \subset Y$ such that $X \in C_{\sigma}$ and X is a strongly C-universal strong Z_{σ} -space. In [13, Theorem 3.8], Sakai and Yaguchi generalized a characterization of C-absorbing sets by Bestvina and Mogilski [1, Theorem 5.3] to the following non-separable case:

THEOREM 2.1. Let C be a closed hereditary additive topological class of spaces such that $\mathbf{I}^n \times D(\tau) \in C$ for each $n \in \mathbb{N}$. Suppose that there exists a C-absorbing set E in $\ell_2(\tau)$. Then an AR X with $w(X) \leq \tau$ is homeomorphic to E if and only if $X \in C_{\sigma}$, X is strongly C-universal and X is a strong Z_{σ} -space.

The open embedding theorem of E-manifolds [1, Corollary 5.7] can also be generalized to the non-separable case [13, Theorem 3.9] as follows:

THEOREM 2.2. Under the assumption of Theorem 2.1, every connected E-manifold can be embedded in E as an open set.

In this paper, $X_{\mathbf{f}}^{\mathbb{N}}$ denotes the weak product of X with a base point $* \in X$, that is,

 $X_{\mathbf{f}}^{\mathbb{N}} = \{ (x_i)_{i \in \mathbb{N}} \in X^{\mathbb{N}} \mid x_i = * \text{ except for finitely many } n \in \mathbb{N} \}.$

In order to make the base point clear, we write $X_{\rm f}^{\mathbb{N}}(*)$. As is easily observed, Proposition 2.5 of [1] is valid for a non-separable AR X. Then we have the following proposition: PROPOSITION 2.3. Under the assumptions of Theorem 2.1, if C is productive then $E \approx E_{\rm f}^{\mathbb{N}}$.

Proof. Since $\mathcal{C} \subset \mathcal{E}(E) \subset \mathcal{E}(E_{\mathrm{f}}^{\mathbb{N}})$, it follows from Proposition 2.5 of [1] that $E_{\mathrm{f}}^{\mathbb{N}}$ is strongly $\mathcal{E}(E)$ -universal. Moreover, $E_{\mathrm{f}}^{\mathbb{N}} \subset \ell_2(\tau)^{\mathbb{N}} \approx \ell_2(\tau)$ and E is homotopy dense in $\ell_2(\tau)$. Then $E_{\mathrm{f}}^{\mathbb{N}}$ can be embedded into $\ell_2(\tau)^{\mathbb{N}}$ as a homotopy dense subset. By Lemma 2.2 of [8], $E_{\mathrm{f}}^{\mathbb{N}}$ is a strong Z_{σ} -space. Since $E \in \mathcal{C}_{\sigma}$ and \mathcal{C} is productive, we have $E_{\mathrm{f}}^{\mathbb{N}} \in \mathcal{C}_{\sigma}$. Hence, $E \approx E_{\mathrm{f}}^{\mathbb{N}}$ by Theorem 2.1.

The following is due to Nguyen To Nhu [9, Theorem 2.1, Corollary 2.3]:

THEOREM 2.4. For every ANR (resp. AR) X and $k \in \mathbb{N}$, the hyperspaces $\operatorname{Fin}(X)$ and $\operatorname{Fin}^{k}(X)$ are also ANR's (resp. AR's).

Note that every map $f: X \to Y$ induces a map $\tilde{f}: \operatorname{Fin}(X) \to \operatorname{Fin}(Y)$ defined by $\tilde{f}(A) = f(A) = \{f(x) \mid x \in A\}$. Moreover, for a homotopy $h: X \times \mathbf{I} \to Y$, we define $\tilde{h}: \operatorname{Fin}(X) \times \mathbf{I} \to \operatorname{Fin}(Y)$ and $\tilde{h}^k: \operatorname{Fin}^k(X) \times \mathbf{I} \to \operatorname{Fin}^k(Y)$ for each $k \in \mathbb{N}$ by $\tilde{h}_t(A) = \tilde{h}_t^k(A) = h_t(A) = \{h_t(x) \mid x \in A\}$. Then it is easy to see that \tilde{h} and \tilde{h}^k are continuous, so they are also homotopies.

3. Universality. Given an admissible metric d for X, we use the admissible metric for $X^{\mathbb{N}}$ defined as follows:

$$\varrho\bigl((x_i)_{i\in\mathbb{N}},(y_i)_{i\in\mathbb{N}}\bigr) = \sup_{i\in\mathbb{N}}\min\{d(x_i,y_i),2^{-i}\}.$$

Then $\rho_{\rm H}$ is the Hausdorff metric induced by the metric ρ .

PROPOSITION 3.1. Let X be a non-degenerate AR and W an open set in $\operatorname{Fin}(X_{\mathrm{f}}^{\mathbb{N}})$ or $\operatorname{Fin}^{k}(X_{\mathrm{f}}^{\mathbb{N}})$ for some $k \in \mathbb{N}$. Then W is universal for $\mathcal{E}(X)$.

Proof. Because of similarity, we shall prove only the case of $\operatorname{Fin}(X_{\mathrm{f}}^{\mathbb{N}})$. Let $Y = X_{\mathrm{f}}^{\mathbb{N}} \subset X^{\mathbb{N}}$. Since the weak product $Y_{\mathrm{f}}^{\mathbb{N}}(*)$ of Y with a base point $* \in Y$ is homeomorphic to $X_{\mathrm{f}}^{\mathbb{N}}$, we may show the universality of every open set W in $\operatorname{Fin}(Y_{\mathrm{f}}^{\mathbb{N}}(*))$. Let $f: A \to W$ be a map of $A \in \mathcal{E}(X)$. For each open cover \mathcal{U} of W, take a collection $\widetilde{\mathcal{U}}$ of open sets of $\operatorname{Fin}((X^{\mathbb{N}})^{\mathbb{N}})$ such that $\mathcal{U} = \{U \cap \operatorname{Fin}(Y_{\mathrm{f}}^{\mathbb{N}}(*)) \mid U \in \widetilde{\mathcal{U}}\}$. Then $\widetilde{W} = \bigcup \widetilde{\mathcal{U}}$ is an open subset of $\operatorname{Fin}((X^{\mathbb{N}})^{\mathbb{N}})$. Suppose that $\alpha: \widetilde{W} \to (0,1)$ is a map such that if a map $g: Y \to \operatorname{Fin}((X^{\mathbb{N}})^{\mathbb{N}})$ is α -close to f then $g(Y) \subset \widetilde{W}$ and g is $\widetilde{\mathcal{U}}$ -close to f. Since Y is an AR, we have a map $\lambda: Y \times Y \times \mathbf{I} \to Y$ such that $\lambda(x, x, t) = x$ for every $t \in \mathbf{I}, \lambda(x, y, 0) = x$ and $\lambda(x, y, 1) = y$ (such a map is called an *equi-connecting map*). Using this map, we can define a homotopy $\varphi: Y^{\mathbb{N}} \times Y \times \mathbf{I} \to Y^{\mathbb{N}}$ as follows:

$$\varphi(x, z, 1) = (x_1, z, z, z, *, *, ...),$$

$$\varphi(x, z, 2^{-1}) = (x_1, x_2, z, z, z, *, *, ...),$$

...

$$\varphi(x, z, 2^{-n}) = (x_1, ..., x_n, z, z, z, *, *, ...),$$

...

$$\varphi(x, z, 0) = (x_1, x_2, x_3, ...) = x$$

and for $2^{-n} < t < 2^{-n+1}$,

 $\varphi(x, z, t) = (x_1, \dots, x_n, \lambda(x_{n+1}, z, 2^n t - 1), z, z, \lambda(z, *, 2^n t - 1), *, *, \dots).$ Observe that $\rho(x, \varphi(x, z, t)) < t$ for any t > 0.

Since $A \in \mathcal{E}(X)$, we can take a closed embedding $h : A \hookrightarrow Y = X_{\mathrm{f}}^{\mathbb{N}}$ such that $* \notin h(A)$ and h(A) is closed in $X^{\mathbb{N}}$. Define $g : A \to \operatorname{Fin}(Y^{\mathbb{N}})$ by

$$g(y) = \{\varphi(x, h(y), \alpha(f(y))) \mid x \in f(y)\}.$$

It is clear that g is continuous. Since $\varrho(x, \varphi(x, h(y), \alpha(f(y))) < \alpha(f(y)))$, it follows that $\varrho_{\mathrm{H}}(f(y), g(y)) < \alpha(f(y))$, that is, g is α -close to f. Note that $\varphi(Y^{\mathbb{N}} \times Y \times (0, 1]) \subset Y_{\mathrm{f}}^{\mathbb{N}}(*)$, which means $g(A) \subset W$. Thus, it remains to prove that $g: A \to W$ is a Z-embedding.

To see that g is injective, let g(y) = g(y') and fix a point

$$x = (x_1, \ldots, x_n, *, *, *, \ldots) \in g(y) = g(y')$$

with $x_n \neq *$. Then $x_{n-1} = h(y) = h(y')$ by the definition of φ . Since h is an embedding, we have y = y'.

To see that g is closed, let $a_i \in A$ $(i \in \mathbb{N})$ and $G \in \widetilde{W}$ with $g(a_i) \to G$. We show that $(a_i)_{i\in\mathbb{N}}$ has a convergent subsequence. By taking a subsequence, we may assume that $\alpha(f(a_i)) \to t \in \mathbf{I}$. Then t > 0. Otherwise, $f(a_i) \to G$ because $\rho_{\mathrm{H}}(f(a_i), g(a_i)) < \alpha(f(a_i)) \to 0$. Hence, $\alpha(f(a_i)) \to \alpha(G) > 0$, which is a contradiction. Thus, we can choose $n \in \mathbb{N}$ so that $2^{-n} < t < 2^{-n+2}$. Take $z = (z_n)_{n\in\mathbb{N}} \in G \subset (X^{\mathbb{N}})^{\mathbb{N}}$. Note that $\rho(z, g(a_i)) \to 0$. For each $i \in \mathbb{N}$, we can choose $x_i \in f(a_i)$ so that $\varphi(x_i, h(a_i), \alpha(f(a_i))) \to z$. For sufficiently large $i \in \mathbb{N}$, $2^{-n} < \alpha(f(y_i)) < 2^{-n+2}$, in which case

$$\operatorname{pr}_{n+2} \circ \varphi(x_i, h(a_i), \alpha(f(a_i))) = h(a_i),$$

where $\operatorname{pr}_n : Y^{\mathbb{N}} \to Y$ is the projection onto the *n*th factor. Therefore, $h(a_i) \to z_{n+2} \in X^{\mathbb{N}}$. Since *h* is a closed embedding of *A* not only into *Y* but also into X^N , it follows that $(a_i)_{i \in \mathbb{N}}$ is convergent in *A*. Thus, $g : A \to W$ is closed. Moreover, g(A) is a closed subset of \widetilde{W} .

Now, we shall show that g(A) is a Z-set in W. Let $Y_{\mathrm{f}}^{\mathbb{N}}(*')$ be the weak product of Y with a base point *' different from *. Suppose \mathcal{V} is an open cover of W. Choose a collection $\widetilde{\mathcal{V}}_1$ of open sets of $\operatorname{Fin}((X^{\mathbb{N}})^{\mathbb{N}})$ so that $\mathcal{V} =$ $\{U \cap \operatorname{Fin}(Y_{\mathrm{f}}^{\mathbb{N}}(*)) \mid U \in \widetilde{\mathcal{V}}_1\}$ and $\widetilde{V} = \bigcup \widetilde{\mathcal{V}}_1 \subset \widetilde{W}$. Let $\widetilde{\mathcal{V}}_2$ be an open cover of V which is a star-refinement of $\widetilde{\mathcal{V}}_1$. Since $\operatorname{Fin}(Y_{\mathrm{f}}^{\mathbb{N}}(*'))$ is homotopy dense in $\operatorname{Fin}((X^{\mathbb{N}})^{\mathbb{N}})$, there exists a map $i_1: \widetilde{V} \to \widetilde{V} \cap \operatorname{Fin}(Y_{\mathrm{f}}^{\mathbb{N}}(*'))$ such that i_1 is $\widetilde{\mathcal{V}}_2$ -close to $\operatorname{id}_{\widetilde{V}}$. Recall that g(A) is closed in \widetilde{V} . Hence, $\widetilde{V} \setminus g(A)$ is open in $\operatorname{Fin}((X^{\mathbb{N}})^{\mathbb{N}})$. Thus, we can find a map

$$i_2: \widetilde{V} \setminus g(A) \to (\widetilde{V} \setminus g(A)) \cap \operatorname{Fin}(Y_{\mathrm{f}}^{\mathbb{N}}(*))$$

such that i_2 is $\widetilde{\mathcal{V}}_2$ -close to $\mathrm{id}_{\widetilde{\mathcal{V}}}$. Observe that

$$g(A) \subset \operatorname{Fin}(Y_{\mathrm{f}}^{\mathbb{N}}(*)) \quad \text{and} \quad \operatorname{Fin}(Y_{\mathrm{f}}^{\mathbb{N}}(*)) \cap \operatorname{Fin}(Y_{\mathrm{f}}^{\mathbb{N}}(*')) = \emptyset.$$

Then we have $i_1(\widetilde{V}) \subset \widetilde{V} \setminus g(A)$. The map $i = i_2 \circ i_1 : W \to W$ is \mathcal{V} -close to id_W and $i(W) \cap g(A) = \emptyset$. Therefore, g(A) is a Z-set in W.

By replacing $Y = X_{f}^{\mathbb{N}}$ with $Y = X^{\mathbb{N}}$ in the proof above, we can also show the following proposition:

PROPOSITION 3.2. Let X be a non-degenerate AR and W an open set in $\operatorname{Fin}(X^{\mathbb{N}})$ or $\operatorname{Fin}^{k}(X^{\mathbb{N}})$ for some $k \in \mathbb{N}$. Then W is universal for $\mathcal{E}(X)$.

By the same proof as for Proposition 2.2 of [1], we can obtain the following non-separable version:

PROPOSITION 3.3. Let C be an open and closed hereditary topological class. If each open subset of an ANR X is C-universal and every Z-set in X is a strong Z-set, then X is strongly C-universal.

Due to Proposition 2.4 in [14], when $\mathcal{C} = \mathfrak{M}_1(\tau)$ in the above, it is not necessary to assume that every Z-set in X is a strong Z-set. Thus, we have the following generalization of Proposition 7.3 of [19]:

COROLLARY 3.4. Let X be a non-degenerate AR such that $\mathfrak{M}_1(\tau) \subset \mathcal{E}(X)$ and let $k \in \mathbb{N}$. Then $\operatorname{Fin}(X^{\mathbb{N}})$, $\operatorname{Fin}(X_{\mathrm{f}}^{\mathbb{N}})$, $\operatorname{Fin}^k(X^{\mathbb{N}})$ and $\operatorname{Fin}^k(X_{\mathrm{f}}^{\mathbb{N}})$ are strongly $\mathfrak{M}_1(\tau)$ -universal.

By Toruńczyk's characterization of Hilbert spaces [17] (cf. [18]), Theorem 2.4 and Corollary 3.4 imply the following non-separable version of Corollary 2.4 of [9]:

THEOREM 3.5. For each $k \in \mathbb{N}$, the hyperspace $\operatorname{Fin}^k(\ell_2(\tau))$ of the Hilbert space $\ell_2(\tau)$ with weight τ is homeomorphic to $\ell_2(\tau)$.

REMARK 1. Due to Proposition 6.1 of [19], $\operatorname{Fin}(X)$ is a strong Z-space for every normed linear space X with dim $X \geq 1$. As a combination of Theorems 2.1, 2.4 and Corollary 3.4, we have the main result of [19], that is,

THEOREM 3.6. The hyperspace $\operatorname{Fin}(\ell_2(\tau))$ of the Hilbert space $\ell_2(\tau)$ with weight τ is homeomorphic to $\ell_2(\tau) \times \ell_2^{\mathrm{f}}$.

4. Z-sets in Fin(X)

LEMMA 4.1. Let X be an ANR and A a Z-set in X. Then $\operatorname{Fin}(A)$ is a Z-set in $\operatorname{Fin}(X)$, and $\operatorname{Fin}^k(A)$ is a Z-set in $\operatorname{Fin}^k(X)$ for any $k \in \mathbb{N}$. Thus, if X is a \mathbb{Z}_{σ} -space then $\operatorname{Fin}(A)$ and $\operatorname{Fin}^k(A)$ are also \mathbb{Z}_{σ} -space.

Proof. We deal with the case of Fin(A). Since X is an ANR, $X \setminus A$ is homotopy dense in X, hence Fin $(X \setminus A)$ is homotopy dense in Fin(X). Since Fin $(A) \subset Fin(X) \setminus Fin(X \setminus A)$, it follows that Fin(A) is a Z-set in Fin(X). It can be similarly shown that Fin^k(A) is a Z-set in Fin^k(X) for any $k \in \mathbb{N}$.

Note that every Z-set in $\ell_2(\tau)$ is a strong Z-set [7]. Since $\ell_2(\tau) \times \ell_2^{\rm f}$ is homotopy dense in $\ell_2(\tau) \times \ell_2 \approx \ell_2(\tau)$, every Z-set in $\ell_2(\tau) \times \ell_2^{\rm f}$ is a strong Z-set by Lemma 2.2 of [8].

PROPOSITION 4.2. Let X be a non-degenerate AR. In the spaces $\operatorname{Fin}(X_{\mathrm{f}}^{\mathbb{N}})$ and $\operatorname{Fin}^{k}(X_{\mathrm{f}}^{\mathbb{N}})$, $k \in \mathbb{N}$, every Z-set is a strong Z-set. Thus, $\operatorname{Fin}(X_{\mathrm{f}}^{\mathbb{N}})$ and $\operatorname{Fin}^{k}(X_{\mathrm{f}}^{\mathbb{N}})$ are strong Z_{σ} -spaces.

Proof. We may assume that $X_{\rm f}^{\mathbb{N}}$ can be embedded into Hilbert space as a homotopy dense subset. Indeed, X can be embedded into a completely metrizable AR \widetilde{X} as a homotopy dense subset [12]. Hence, $X_{\rm f}^{\mathbb{N}}$ is homotopy dense in $\widetilde{X}^{\mathbb{N}}$ which is homeomorphic to $\ell_2(\tau)$ [17]. Thus, $\operatorname{Fin}(X_{\rm f}^{\mathbb{N}})$ and $\operatorname{Fin}^k(X_{\rm f}^{\mathbb{N}})$ are homotopy dense subsets of $\operatorname{Fin}(\ell_2(\tau))$ and $\operatorname{Fin}^k(\ell_2(\tau))$, respectively. Since $\operatorname{Fin}(\ell_2(\tau)) \approx \ell_2(\tau) \times \ell_2^{\rm f}$ and $\operatorname{Fin}^k(\ell_2(\tau)) \approx \ell_2(\tau)$ (Theorems 3.6 and 3.5), it follows from Lemma 2.2 of [8] that every Z-set in $\operatorname{Fin}(X)$ is a strong Z-set. Since $X_{\rm f}^{\mathbb{N}}$ is a Z_{σ} -space, $\operatorname{Fin}(X_{\rm f}^{\mathbb{N}})$ and $\operatorname{Fin}^k(X_{\rm f}^{\mathbb{N}})$ are Z_{σ} -spaces. Thus, they are strong Z_{σ} -spaces.

REMARK 2. It can also be shown that $\operatorname{Fin}(X^{\mathbb{N}})$ is a strong Z_{σ} -space if X is a non-degenerate AR. Indeed, $\operatorname{Fin}(X^{\mathbb{N}})$ can also be embedded into the strong Z_{σ} -space $\operatorname{Fin}(\ell_2(\tau)) \approx \ell_2(\tau) \times \ell_2^{\mathrm{f}}$ (Theorem 3.6). Since every AR which is a homotopy dense subset of a Z_{σ} -space is also a Z_{σ} -space, we see that $\operatorname{Fin}(X^{\mathbb{N}})$ is a Z_{σ} -space.

5. Absolute Borel classes. Let d be an admissible metric for X. Then the Vietoris topology on Fin(X) is induced by the Hausdorff metric

$$d_{\mathrm{H}}(A,B) = \max\big\{\sup_{a\in A} d(a,B), \sup_{b\in B} d(b,A)\big\},\,$$

where $d(a, A) = \inf_{y \in A} d(x, y)$. For each $k \in \mathbb{N}$, let ϱ be the metric for X^k defined as follows:

$$\varrho(x,y) = \max_{i \le k} d(x_i, y_i).$$

Let $q_k: X^k \to \operatorname{Fin}^k(X)$ be the natural surjection defined by

$$q_k((x_1,...,x_k)) = \{x_1,...,x_k\}.$$

Then it is clear that

$$d_{\mathrm{H}}(q_k(x), q_k(y)) \le \varrho(x, y) \quad \text{for any } x, y \in X^k.$$

This means that q_k is uniformly continuous. Note that

card
$$q_k^{-1}(A) \le k!$$
 for each $A \in \operatorname{Fin}^k(X)$.

LEMMA 5.1. The map q_k is perfect.

Proof. It suffices to show that a sequence $(x_n)_{n\in\mathbb{N}}$ in X^k has a convergent subsequence if $(q_k(x_n))_{n\in\mathbb{N}}$ is convergent in $\operatorname{Fin}^k(X)$. Let $q_k(x_n)$ be convergent to $A \in \operatorname{Fin}^k(X)$. For each $j \leq k$,

$$d(\mathrm{pr}_{i}(x_{n}), A) \leq d_{\mathrm{H}}(q_{k}(x_{n}), A) \to 0 \quad (n \to \infty),$$

where $\operatorname{pr}_j : X^k \to X$ is the projection onto the *j*th factor. Since A is finite, any subsequence of $(\operatorname{pr}_j(x_n))_{n\in\mathbb{N}}$ has a convergent subsequence. Then it is easy to find a subsequence $(x_{n_i})_{i\in\mathbb{N}}$ such that $(\operatorname{pr}_j(x_{n_i}))_{i\in\mathbb{N}}$ is convergent in X for every $j \leq k$, which means that $(x_{n_i})_{i\in\mathbb{N}}$ is convergent in X^k .

PROPOSITION 5.2. For a σ -locally compact metric space X, Fin(X) is also σ -locally compact, i.e., $X \in \mathfrak{a}_1(\tau) \Rightarrow Fin(X) \in \mathfrak{a}_1(\tau)$.

Proof. Let $X = \bigcup_{n \in \mathbb{N}} X_n$, where X_n is a locally compact subset of X with $X_n \subset X_{n+1}$. Since the perfect image of a locally compact space is also locally compact ([4, Theorem 3.7.12]), it follows from Lemma 5.1 that $\operatorname{Fin}^k(X_k)$ is locally compact. Then $\operatorname{Fin}(X) = \bigcup_{k \in \mathbb{N}} \operatorname{Fin}^k(X_k)$ is σ -locally compact. \blacksquare

Note that if $f: X \to Y$ is a closed map and $0 < \operatorname{card} f^{-1}(y) \le k \ (< \infty)$ for every $y \in Y$ then $\dim Y \le \dim X + k - 1$ [5, Theorem 3.3.7]. Then, by the same proof as for Proposition 5.2 above, we have the following:

Proposition 5.3. $X \in \mathfrak{a}_1^{\omega}(\tau) \Rightarrow \operatorname{Fin}(X) \in \mathfrak{a}_1^{\omega}(\tau)$.

By Proposition 5.1 of [19], if X is completely metrizable then Fin(X) is σ -completely metrizable, that is,

$$X \in \mathfrak{M}_1(\tau) \Rightarrow \operatorname{Fin}(X) \in \mathfrak{M}_1(\tau)_{\sigma} \subset \mathfrak{a}_2(\tau).$$

We also have the following:

$$X \in \mathfrak{M}_1(\tau)_\sigma \Rightarrow \operatorname{Fin}(X) \in \mathfrak{M}_1(\tau)_\sigma.$$

PROPOSITION 5.4. For each countable ordinal $\alpha \geq 2$,

$$X \in \mathfrak{a}_{\alpha}(\tau) \implies \operatorname{Fin}(X) \in \mathfrak{a}_{\alpha}(\tau), X \in \mathfrak{M}_{\alpha}(\tau) \implies \operatorname{Fin}(X) \in \mathfrak{M}_{\alpha}(\tau).$$

Proof. We handle the cases of $X \in \mathfrak{a}_2(\tau)$ and $X \in \mathfrak{M}_2(\tau)$. Then the result can be obtained by transfinite induction.

If $X \in \mathfrak{a}_2(\tau)$, let $X = \bigcup_{i \in \mathbb{N}} X_i$, where each X_i is completely metrizable. Without loss of generality, we may assume $X_i \subset X_{i+1}$ for each $i \in \mathbb{N}$; then $\operatorname{Fin}(X) = \bigcup_{i \in \mathbb{N}} \operatorname{Fin}(X_i)$. Since each $\operatorname{Fin}(X_i)$ is σ -completely metrizable, $\operatorname{Fin}(X)$ is also σ -completely metrizable. This means $\operatorname{Fin}(X) \in \mathfrak{a}_2(\tau)$.

If $X \in \mathfrak{M}_2(\tau)$, let \widetilde{X} be the completion of X. Since X is $F_{\sigma\delta}$ in \widetilde{X} , Fin(X) is also $F_{\sigma\delta}$ in Fin (\widetilde{X}) . By Proposition 5.1 of [19], Fin (\widetilde{X}) is F_{σ} in the completely metrizable space $\operatorname{Cld}_{\mathrm{H}}(\widetilde{X})$. This means Fin(X) is $F_{\sigma\delta}$ in $\operatorname{Cld}_{\mathrm{H}}(\widetilde{X})$. Thus, Fin $(X) \in \mathfrak{M}_2(\tau)$.

REMARK 3. For each $k \in \mathbb{N}$, $\operatorname{Fin}^{k}(X)$ is closed in $\operatorname{Fin}(X)$. For the spaces $\operatorname{Fin}^{k}(X)$, $k \in \mathbb{N}$, we have the same results as for $\operatorname{Fin}(X)$ above.

6. Proof of the Main Theorem. First, we prove the following:

THEOREM 6.1. Let C be an open and closed hereditary, additive, productive and topological class of spaces such that $\mathbf{I}^n \times D(\tau) \in C$ for each $n \in \mathbb{N}$. Suppose that there exists a C-absorbing set E in $\ell_2(\tau)$. Then $\operatorname{Fin}(E)$ and $\operatorname{Fin}^k(E)$, $k \in \mathbb{N}$, are strongly C-universal.

Proof. By the C-universality of E, we have $C \subset \mathcal{E}(E)$. Since $\operatorname{Fin}(E_{\mathrm{f}}^{\mathbb{N}})$ and $\operatorname{Fin}^{k}(E_{\mathrm{f}}^{\mathbb{N}})$ are AR's by Theorem 2.4 and every Z-set is a strong Z-set in these spaces, it follows from Propositions 3.1 and 3.3 that $\operatorname{Fin}(E_{\mathrm{f}}^{\mathbb{N}})$ and $\operatorname{Fin}^{k}(E_{\mathrm{f}}^{\mathbb{N}})$ are strongly C-universal. On the other hand, $E_{\mathrm{f}}^{\mathbb{N}} \approx E$ by Proposition 2.3, hence $\operatorname{Fin}(E) \approx \operatorname{Fin}(E_{\mathrm{f}}^{\mathbb{N}})$. Thus, we have the result.

Now, we shall prove the main theorem.

THEOREM 6.2. Suppose that E is homeomorphic to $\ell_2^{f}(\tau)$, $\Lambda_{\alpha}(\tau)$ or $\Omega_{\alpha}(\tau)$, where $\alpha \geq 1$ is a countable ordinal. Then the hyperspaces $\operatorname{Fin}(E)$ and $\operatorname{Fin}^{k}(E)$, $k \in \mathbb{N}$, are homeomorphic to E.

Proof. First, note that E is strongly universal for the class $\mathcal{C} = \mathcal{E}(E)$ and $E \in \mathcal{C}_{\sigma} = \mathcal{C}$. In §5, we have shown that $\operatorname{Fin}(E), \operatorname{Fin}^{k}(E) \in \mathcal{C}$. These spaces are strong Z_{σ} -spaces by Proposition 4.2 and are strongly \mathcal{C} -universal by Theorem 6.1. Thus, $\operatorname{Fin}(E) \approx \operatorname{Fin}^{k}(E) \approx E$ by Theorem 2.1.

Since every connected E-manifold X can be embedded into E as an open set by Theorem 2.2, $\operatorname{Fin}(X)$ and $\operatorname{Fin}^k(X)$ can also be embedded into $\operatorname{Fin}(E)$ and $\operatorname{Fin}^k(E)$ as open sets, respectively. Since X is connected, $\operatorname{Fin}(X)$ is an AR (cf. Proposition 3.1 of [19]) and each $\operatorname{Fin}^k(X)$ is connected. Hence, we have the following theorem.

THEOREM 6.3. Suppose that E is homeomorphic to $\ell_2^{\mathrm{f}}(\tau)$, $\Lambda_{\alpha}(\tau)$ or $\Omega_{\alpha}(\tau)$, where $\alpha \geq 1$ is a countable ordinal. Let X be a connected E-manifold. Then Fin(X) is homeomorphic to E and each Fin^k(X) is a connected E-manifold. \blacksquare

References

- M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite-dimensional absolute retracts, Michigan Math. J. 33 (1986), 291–313.
- D. Curtis, Hyperspaces of finite subsets as boundary sets, Topology Appl. 22 (1986), 97–107.
- D. Curtis and Nguyen To Nhu, Hyperspaces of finite subsets which are homeomorphic to ℵ₀-dimensional linear metric spaces, ibid. 19 (1985), 251-260.
- [4] R. Engelking, General Topology, rev. ed., Sigma Ser. Pure Math. 6, Heldermann, Berlin, 1989.
- [5] —, Theory of Dimensions, Finite and Infinite, Sigma Ser. Pure Math. 10, Heldermann, Berlin, 1995.
- [6] V. V. Fedorchuk, Covariant functors in the category of compacta, absolute retracts, and Q-manifolds, Uspekhi Mat. Nauk 36 (1981), no. 3, 177–195 (in Russian); English transl.: Russian Math. Surveys 36 (1981), no. 3, 211–233.
- [7] D.W. Henderson, Z-sets in ANR's, Trans. Amer. Math. Soc. 213 (1975), 205-216.
- [8] K. Mine, Universal spaces of non-separable absolute Borel classes, Tsukuba J. Math., to appear.
- [9] Nguyen To Nhu, Investigating the ANR-property of metric spaces, Fund. Math. 124 (1984), 243-254.
- [10] —, Hyperspaces of compact sets in metric linear spaces, Topology Appl. 22 (1986), 109–122.
- [11] Nguyen To Nhu and K. Sakai, Probability measure functions preserving infinitedimensional spaces, Colloq. Math. 70 (1996), 291-304.
- K. Sakai, The completion of metric ANR's and homotopy dense subsets, J. Math. Soc. Japan 52 (2000), 835–846.
- [13] K. Sakai and M. Yaguchi, Characterizing manifolds modeled on certain dense subspaces of non-separable Hilbert spaces, Tsukuba J. Math. 27 (2003), 143–159.
- [14] —, —, Hyperspaces of Banach spaces with the Attouch-Wets topology, Set-Valued Anal. 12 (2004), 329-344.
- [15] A. H. Stone, Absolute F_{σ} spaces, Proc. Amer. Math. Soc. 13 (1962), 495–499.
- [16] H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of *l*₂-manifolds, Fund. Math. 101 (1978), 93-110.
- [17] —, Characterizing Hilbert space topology, ibid. 111 (1981), 247–262.
- [18] —, A correction of two papers concerning Hilbert manifolds, ibid. 125 (1985), 89–93.
- M. Yaguchi, Hyperspaces of finite subsets of non-separable Hilbert spaces, Tsukuba J. Math., to appear.

K. Mine, K. Sakai and M. Yaguchi Institute of Mathematics University of Tsukuba

Tsukuba, 305-8571 Japan

E maile a sugar the tanks a

E-mail: pen@math.tsukuba.ac.jp sakaiktr@sakura.cc.tsukuba.ac.jp masato@math.tsukuba.ac.jp

> Received May 30, 2005; received in final form February 20, 2006

(7461)