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the following onditions are equivalent (f. [3, 4, 9, 10, 24℄):(i) F is taut.(ii) Hn(M/F) 6= 0.(iii) Hn(M/F) = R.(iv) H∗(M/F) satis�es the Poinaré Duality (PD).Although the basi ohomology of a singular riemannian foliation (SRF forshort) on a ompat manifold is �nite-dimensional (f. [25℄), the relationbetween the above onditions is not straightforwardly exportable to the sin-gular framework. As pointed out in [11℄, the singular nature of a SRF ona ompat manifold prevents any global metri on it from making all theleaves minimal (see also [17℄).The example presented in this paper shows that if, for �ows, we replae�taut� by �isometri��these two properties are equivalent for regular rie-mannian �ows (see [15℄)�we annot reover PD. To reover it we have toadapt the basi ohomology to the strati�ation de�ned by the SRF. Forthat purpose, we have de�ned the �basi intersetion ohomology� (BIC forshort) for SRFs (see [18, 19℄). The alulations for the example show that itsBIC satis�es the Poinaré Duality. It has been proven in [16℄ that so doesthe BIC of any singular riemannian �ow (isometri or not).The main part of this note is dediated to the proof of the equivaleneof onditions (i)�(iii) for SRFs on ompat onneted manifolds for the BIC.We also prove that the top-dimensional BIC groups are isomorphi to 0 or R.The authors would like to thank the referee for many useful ommentswhih helped improve the paper.In what follows, M is a onneted, seond ountable, Hausdor�, smooth(C∞) manifold of dimension m without boundary. All the maps onsideredare smooth unless otherwise indiated. If F is a foliation on M and V is asaturated submanifold of M we shall write (V,F) for the indued foliatedmanifold and FV for the indued foliation.1. Singular riemannian foliations (1). We are going to work in theframework of the singular riemannian foliations introdued by Molino.1.1. The SRF. A singular riemannian foliation (SRF for short) on amanifold M is a partition F of M into onneted immersed submanifolds,alled leaves, with the following properties:I. The module of smooth vetor �elds tangent to the leaves is transitiveon eah leaf.

(1) For notions relating to riemannian foliations we refer the reader to [13, 24℄ and forsingular riemannian foliations to [13, 12, 14, 1℄.
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II. There exists a riemannian metri µ on M , alled an adapted metri,suh that eah geodesi that is perpendiular to a leaf at one pointremains perpendiular to every leaf it meets.The �rst ondition implies that (M,F) is a singular foliation in the senseof [23℄ and [22℄. Notie that the restrition of F to a saturated open subsetprodues a SRF.In the next two subsetions we reall some basi properties of SRFs whihan be found in [13, 1℄ or are easy orollaries of the properties proved there.1.2. Strati�ations. Classifying the points of M aording to the dimen-sion of leaves yields a strati�ation SF of M into smooth embedded sub-manifolds. The restrition of F to a stratum S is a regular foliation FS . Thestrata are ordered by: S1 � S2 ⇔ S1 ⊂ S2.There are several types of strata. The minimal (resp. maximal) strataare the losed strata (resp. open strata). The open strata are alled regularand the others singular. We denote by Sσ

F the family of singular strata. Inthe ase of SRFs, the singular strata are of odimension greater than 1, sothere is just one regular stratum R if the manifold is onneted (f. [13℄).The dimension of the foliation F is the dimension of the biggest leaves of
F , that is, dimF = dimFR. The union of the singular strata is the singularpart Σ = M \ R.A stratum S is a boundary stratum if there exists a stratum S′ with
S � S′ and codimM F = codimS′ FS′−1. This terminology an be explainedby the following example. Take M = S

4 and F given by the orbits of the
T

2-ation (u, v) ·(z1, z2, t) = (u ·z1, v ·z2, t), where S
4 = {(z1, z2, t) ∈ C

2×R |
|z1|2 + |z2|2 + t2 = 1}. Here, the north pole (0, 0, 1), the south pole (0, 0,−1)and the ylinders {z1 6= 0}, {z2 6= 0} are boundary strata and we have
M/F = D = {(x, y) ∈ R

2
∣
∣ x2 + y2 ≤ 1} . The boundary ∂(M/F) is givenby S

1, the union of the quotient set of the boundary strata. In fat, the linkof the maximal boundary strata is a sphere with the one leaf foliation (seefor example [18℄ for the notion of a link).The depth of SF , written depthSF , is de�ned to be the largest i for whihthere exists a hain of strata S0 ≺ S1 ≺ · · · ≺ Si. So, depthSF = 0 if andonly if the foliation F is regular.1.3. Tubular neighborhood. Any stratum S ∈ SF is a proper submani-fold of the riemannian manifold (M,F , µ), so it has a tubular neighborhood
(TS , τS , S). Reall that assoiated with this neighborhood are the followingsmooth maps:

• The radius map ̺S : TS → [0, 1[ de�ned �berwise: z 7→ |z|. Eah t 6= 0is a regular value of ̺S . The pre-image ̺−1
S (0) is S.
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• The ontration HS : TS × [0, 1] → TS de�ned �berwise: (z, r) 7→ r · z.The restrition (HS)t : TS → TS is an embedding for eah t 6= 0 and

(HS)0 ≡ τS .These two maps satisfy ̺S(r · u) = r̺S(u). The tubular neighborhoodan be hosen to have the following two important properties:(a) Eah (̺−1
S (t),F) is a SRF.(b) Eah (HS)t : (TS ,F) → (TS ,F) is a foliated map.We shall say that (TS , τS , S) is a foliated tubular neighborhood of S. The ex-istene of foliated tubular neighborhoods follows from the homotheti trans-formation lemma of [13℄.The hypersurfae DS = ̺−1

S (1/2) is the ore of the tubular neighborhood.We have the inequality depthSFDS
< depthSFTS

.2. Basi intersetion ohomology (2). Goresky and MaPherson in-trodued the intersetion ohomology for the study of singular manifolds.This ohomology generalizes the usual de Rham ohomology for manifoldsand has similar properties. Following the same priniple, the basi interse-tion ohomology has been introdued for the study of SRFs, generalizing thebasi ohomology.We �x a manifold M endowed with a SRF F . We write m = dimM and
n = codimM F .2.1. The BIC. A perversity is a map p : Sσ

F → Z = Z∪{−∞,∞}. Thereare several partiular perversities:
• the onstant perversity c, de�ned by c(S) = c, where c ∈ Z,
• the (basi) top perversity t, de�ned by t(S) = n − codimS FS − 2,(f. 1.2),
• the boundary perversity ∂, de�ned by ∂ = min(0, t).The basi intersetion ohomology (BIC for short) IH∗

p(M/F) is the o-homology of the omplex Ω∗
p(M/F) of p-intersetion basi forms. A p-inter-setion basi form is a basi form de�ned on R and having a vertial degree

‖ω‖S , relative to a foliated tubular neighborhood (TS , τS , S), lower than p(S)for eah singular stratum S (see [18, 19℄ for the exat de�nition). Reall that
‖ω‖S ≤ i when ω(v0, . . . , vi,−) = 0 for eah family {v0, . . . , vi} of vetorstangent to the �bers of τS .If depthSF = 0 then IH∗

p(M/F) = H∗(M/F) for any perversity p.2.2. Mayer�Vietoris. A overing {U, V } of M by saturated open subsetshas a subordinate partition of unity made up of basi funtions (see the
(2) For notions relating to basi ohomology we refer the reader to [5, 25℄, for basiintersetion ohomology to [18, 19℄ and for intersetion ohomology to [6, 2℄.
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lemma below). For suh a overing we have the Mayer�Vietoris sequene(1) 0 → Ω∗

p(M/F) → Ω∗
p(U/F) ⊕ Ω∗

p(V/F) → Ω∗
p((U ∩ V )/F) → 0,where the maps are de�ned by restrition. The third map is onto sine the ele-ments of the partition of unity are 0-basi funtions and Ω∗

0
(•/F)·Ω∗

p(•/F) ⊂
Ω∗

p(•/F). Thus, the sequene is exat. This result is no longer true for moregeneral overings.For the existene of the above Mayer�Vietoris sequene we need the fol-lowing folklore result, well known for ompat Lie group ations and regularriemannian foliations.2.2.1. Lemma. A overing {U, V } of M by saturated open subsets has asubordinate partition of unity made up of basi funtions.2.3. Compat supports. In this note we need to work with the BIC withompat supports. The support of a di�erential form ω ∈ Ω∗
p(M/F), written

suppω, is the losure in M of {x ∈ M | ω(x) 6= 0}. We denote by Ω∗
p,c(M/F)the omplex of p-intersetion basi forms with ompat support. Its ohomol-ogy is IH∗

p,c(M/F). When M is ompat, we have IH∗
p,c(M/F) = IH∗

p(M/F),and if depthSF = 0 then H∗
p,c(M/F) = H∗

c (M/F) for any perversity p.Assoiated to a saturated open overing {U, V } of M we have the Mayer�Vietoris sequene (see Lemma 2.2.1)
(2) 0 → Ω∗

p,c((U ∩ V )/F) → Ω∗
p,c(U/F) ⊕ Ω∗

p,c(V/F)

→ Ω∗
p,c(M/F) → 0,where the maps are de�ned by inlusion. The third map is onto sine theelements of the partition of unity are 0-basi funtions. Thus, the sequeneis exat.2.4. Example. Consider the isometri ation Φ : R × S

2d+2 → S
2d+2given by the formula

Φ(t, (z0, . . . , zd, x)) = (ea0πitz0, . . . , e
adπitzd, x),with (a0, . . . , ad) 6= (0, . . . , 0). Here, S

2d+2 = {(z0, . . . , zd, x) ∈ C
d × R |

|z0|2 + · · · + |zd|
2 + x2 = 1}. There are two singular strata: the north pole

S1 = (0, . . . , 0, 1) and the south pole S2 = (0, . . . ,−1). The regular stratumis R = S
2d+1 × ]−1, 1[. Let r : R → R a smooth map, depending just onthe ]1, 1[ variable, with r ≡ 0 on ]0, 1/4[ ∪ ]3/4, 1[ and T10 r = 1. The basiohomology H∗(S2d+2/F) of the foliation de�ned by this �ow is the following:

i 0 1 2 3 4 5 · · · 2d 2d + 1

1 0 0 [dr ∧ e] 0 [dr ∧ e2] · · · 0 [dr ∧ ed]



434 J. I. Royo Prieto et al.
where e ∈ Ω2

2
(S2d+2/F) is an Euler form (f. [8℄). These alulations omediretly from the equalities

‖r‖Sk
= 0, ‖dr‖Sk

= −∞, ‖ej‖Sk
= ‖rej‖Sk

= 2j ,(3)
‖dr ∧ ej‖Sk

= −∞, dr ∧ ej = d(rej),for k = 1, 2 and j ∈ {1, . . . , d}.We notie that the top-dimensional basi ohomology group is isomorphito R, but this ohomology does not satisfy the Poinaré Duality in spite ofthe fat that the �ow is isometri! The lassial basi ohomology does nottake into aount the strati�ation SF . However, even for the SRF, the basiohomology is �nite-dimensional (f. [25℄).If we onsider the BIC of our example the piture hanges. The followingtable presents the BIC IH∗
p(S

k=2d+2/F) for the onstant perversities:
i 0 1 2 3 4 5 6 7 · · · k − 2 k − 1

p

< 0 0 [dr] 0 [e ∧ dr] 0 [e2
∧ dr] 0 [e3

∧ dr] · · · 0 [ed
∧ dr]

0, 1 1 0 0 [e ∧ dr] 0 [e2
∧ dr] 0 [e2

∧ dr] · · · 0 [ed
∧ dr]

2, 3 0 0 [e] 0 0 [e2
∧ dr] 0 [e3

∧ dr] · · · 0 [ed
∧ dr]

4, 5 1 0 [e] 0 [e2] 0 0 [e3
∧ dr] · · · 0 [ed

∧ dr]

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

k−4, k−3 1 0 [e] 0 [e2] 0 [e3] 0 · · · 0 [ed
∧ dr]

≥ k − 2 1 0 [e] 0 [e2] 0 [e3] 0 · · · [ed] 0These alulations ome diretly from the equalities (3).We notie that the top-dimensional basi ohomology group is isomorphieither to 0 or R. These ohomology groups are �nite-dimensional. We reoverthe Poinaré Duality in the perverse sense:
IH∗

p(S
k/F) ∼= IHn−∗

q (Sk/F)for two omplementary perversities: p + q = t = k − 3.This is more general. We have proved that the basi intersetion oho-mology is �nite-dimensional and satis�es this perverse Poinaré Duality forthe linear foliations (f. [19, 20℄) and for riemannian �ows (f. [16℄).3. Top lass. The top group Hn(M/F) of the basi ohomology of aregular riemannian foliation F de�ned on a onneted ompat manifold Mis R or 0. Here n = codimM F . We prove the same result for the top group
IHn

p (M/F) when F is a SRF de�ned on a onneted ompat manifold M .To do so, we need three lemmas.
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3.1. Lemma. Consider a foliated tubular neighborhood (TS , τS , S) of asingular stratum S ∈ SF . Fix a smooth funtion f : ]0, 1[→ [0, 1] with f ≡0 on

]0, 1/4] and f ≡ 0 on [3/4, 1[. The map [ω] 7→ [df∧ω] de�nes an isomorphism
IH∗−1

p,c (DS/F) ∼= IH∗
p,c(DS × ]0, 1[ /F × I), where I is the point foliation ofthe interval.Proof. Consider the following di�erential omplexes:

A
∗ = {ω ∈ Ω∗

p(DS × ]0, 3/4[/F × I) | suppω ⊂ K × [c, 3/4[for a ompat K ⊂ DS and 0 < c < 3/4}

B
∗ = {ω ∈ Ω∗

p(DS × ]1/4, 1[/F × I) | suppω ⊂ K × ]1/4, c]for a ompat K ⊂ DS and 1/4 < c < 1}

C
∗ = {ω ∈ Ω∗

p(DS × ]1/4, 3/4[/F × I) | suppω ⊂ K × ]1/4, 3/4[for a ompat K ⊂ DS}.Proeeding as in (2) we get the short exat sequene
0 → Ω∗

p,c(DS × ]0, 1[/F × I) → A
∗ ⊕ B

∗ → C
∗ → 0.The assoiated long exat sequene is

· · · → H i−1(C∗)
δ
→ IH i

p,c(DS × ]0, 1[/F × I) → H i(A∗) ⊕ H i(B∗)

→ H i(C∗) → · · · ,where the onneting morphism is δ([ω]) = [df ∧ ω].Before performing the alulation let us introdue some notation. Let βbe a di�erential form in Ωi(DS×]a, b[) whih does not inlude the dt fator.Denote by Tc− β(s)∧ds and T−c β(s)∧ds the forms in Ωi(DS × ]a, b[) obtainedfrom β by integration with respet to s, that is,
( c\

−

β(s) ∧ ds
)

(x, t)(~v1, . . . , ~vi) =

c\
t

(β(x, s)(~v1, . . . , ~vi)) ds

(−\
c

β(s) ∧ ds
)

(x, t)(~v1, . . . , ~vi) =

t\
c

(β(x, s)(~v1, . . . , ~vi)) ds,where c ∈ ]a, b[, (x, t) ∈ DS × ]a, b[ and (~v1, . . . , ~vi) ∈ T(x,t)(DS × ]a, b[).Eah di�erential form ω ∈ A
∗, B

∗, C
∗ an be written as ω = α + dt ∧ βwhere α and β do not ontain dt. Consider a yle ω = α + dt ∧ β ∈ A

iwith suppω ⊂ K × [c, 3/4[ for a ompat K ⊂ DS and 0 < c < 3/4. Wehave ω = −d(
Tc/2
− β(s) ∧ ds). Sine supp

Tc/2
− β(s)∧ ds ⊂ K × [c, 3/4[, we get

H∗(A∗) = 0. In the same way, we get H∗(B∗) = 0. We onlude that
δ : H∗−1(C∗) → IH∗

p,c(DS × ]0, 1[/F × I)is an isomorphism.
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The foliated homotopy L : DS × ]1/4, 3/4[ × [0, 1] → DS × ]1/4, 3/4[,de�ned by L((u, t), s) = (u, (1−s)t+s/2), satis�es L(K×]1/4, 3/4[×[0, 1]) ⊂

K × ]1/4, 3/4[ for eah ompat K ⊂ DS . So, the map [α] 7→ [α] indues anisomorphism(4) I : IH∗
p,c(DS/F) → H∗(C∗).The isomorphism δ◦I gives the result.3.2. Lemma. Consider a foliated tubular neighborhood TS of a singularstratum S ∈ SF . The inlusion TS \ S →֒ TS indues an onto map

ι : IHn
p,c((TS \ S)/F) → IHn

p,c(TS/F).Moreover, if p(S) ≤ t(S) then ι is an isomorphism.Proof. We proeed in several steps.(a) Rewriting IH∗
p,c(TS/F). We have seen in [19℄ that we an identify

Ω∗
p,c(TS/F) with the omplex
{ω ∈ Ω∗

p,c(DS × [0, 1[/F × I) | ‖ω|DS×{0}‖τS
≤ p(S) and
‖dω|DS×{0}‖τS

≤ p(S)}.Here ‖ − ‖τS
denotes the vertial degree relative to the �bration τS : DS ≡

DS × {0} → S. Reall that ‖0‖τS
= −∞. Under this identi�ation, theomplex Ω∗

p,c((TS \ S)/F) beomes Ω∗
p,c(DS × ]0, 1[,F × I).(b) Chasing IHn

p,c(TS/F). Consider the omplex
D
∗ =







ω ∈ Ω∗
p(DS × [0, 3/4[/F × I)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

‖ω|DS×{0}‖τS
≤ p(S),

‖dω|DS×{0}‖τS
≤ p(S) and

suppω ⊂ K × [0, 3/4[for a ompat K ⊂ DS





and the omplexes B
∗, C

∗ as in the proof of Lemma 3.1. The short exatsequene
0 → Ω∗

p,c(TS/F) → D
∗ ⊕ B

∗ → C
∗ → 0produes the long exat sequene

→ Hn−1(D∗) ⊕ Hn−1(B∗) → Hn−1(C∗)
δ′
→ IHn

p,c(TS/F)

→ Hn(D∗) ⊕ Hn(B∗) → Hn(C∗) → 0where the onneting morphism is δ′([ω]) = [df ∧ ω] for a smooth map
f : [0, 1[ → [0, 1] with f ≡ 0 on [0, 1/4] and f ≡ 0 on [3/4, 1[.() Relating H∗(C∗) and H∗(D∗). We have already seen that H∗(B∗) = 0.Consider a yle ω = α + dt∧ β ∈ D

n. For degree reasons, we have α(0) = 0and then ω = d(
T−
0 β(s) ∧ ds). Sine supp

T−
0 β(s) ∧ ds ⊂ K × [0, 3/4[ we
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get Hn(D∗) = 0. From the above long exat sequene, we obtain the exatsequene

Hn−1(D∗) → Hn−1(C∗)
δ′
→ IHn

p,c(TS/F) → 0.(d) Conlusion. Sine the map I is an isomorphism (f. (4)) the ompo-sition δ′◦I : IH∗−1
p,c (DS/F) → IHn

p,c(TS/F) is an onto map. Lemma 3.1 showsthat ι is an onto map. It remains to prove that ι is an isomorphism when
p(S) ≤ t(S). We prove Hn−1(D∗) = 0. Proeeding as in () it su�es toonsider a yle ω = α + dt ∧ β ∈ D

n−1([0, 3/4[) and show that α(0) = 0.Suppose that α(0) 6= 0. The foliation F indues a foliation FτS
tangent tothe �bers of τS : DS → S suh that dimF = dimFτS

+dimFS (f. [13, 18℄).By degree reasons, sine α(0) ∈ Ωn−1
p,c (DS/F), we an write

t(S) ≥ p(S) ≥ ‖α(0)‖τS

= (dimM − dimS) − 1
︸ ︷︷ ︸

dimension of the fiber of τS

− (dimF − dimFS)
︸ ︷︷ ︸

dimFτS

= t(S) + 1.

This ontradition gives α(0) = 0.3.3. Lemma. Let N be a ompat manifold endowed with a RF N . If Ois a onneted saturated open subset of N, then Hn
c (O/N ) = 0 or R.Proof. We proeed in two steps.The foliation N is transversally orientable. The result omes essentiallyfrom the basi Poinaré duality theorem for non-ompat manifolds (f. [21℄).The foliation NO is a transversally orientable omplete foliation sine O isa saturated open subset of the ompat manifold N . Then we have the iso-morphism Hn

c (O/N ) ∼= H0(O/N ,P) where P is the homologial orientationsheaf of NO. Sine the manifold O is onneted, and the sheaf P is loallytrivial and the stalk is R, it follows that Hn
c (O/N ) = 0 or R.General ase. Consider the transverse orientation overing π : (N∗,N ∗)

→ (N,N ) (see [7℄). The overing is given by a foliated ation of Z2. The foli-ation N ∗ is a transversally orientable RF. We have the equality Hn
c (O/F) =

(Hn
c (π−1(O)/F∗))Z2 . The subset π−1(O) is a saturated open subset of N∗.If π−1(O) is onneted then the result omes from the previous ase. Other-wise π−1(O) has two onneted omponents foliated di�eomorphi to O andthe Z2-ation interhanges them. The result now omes from the previousase.The �rst result of this note is the following.3.4. Theorem. Let M be a onneted ompat manifold endowed witha SRF F . If n = codimM F and p is a perversity on M, then

IHn
p (M/F) = 0 or R.
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Proof. For eah i ∈ Z we write:
• Σi ⊂ M for the union of the strata of dimension less than or equalto i,
• Ti for the tubular neighborhood of Σi in M \ Σi−1.We have M \Σ−1 = M and M \Σm−1 = R, where m = dim M . Lemma 3.3gives Hn

c (R/F) = 0 or R. We get the result if we prove that the inlusion
M \ Σi →֒ M \ Σi−1 indues an onto map

Hn
c ((M \ Σi)/F) → Hn

c ((M \ Σi−1)/F)for i ∈ {0, . . . , m − 1}.From the open overing {M \ Σi,
⋃

dim S=i TS} of M \ Σi−1, we obtainthe Mayer�Vietoris sequene
⊕

dim S=i

Hn
c ((TS \ S)/F) → Hn

c ((M \ Σi)/F) ⊕
⊕

dim S=i

Hn
c (TS/F)

→ Hn
c ((M \ Σi−1)/F) → 0.Now, Lemma 3.2 gives the result.Combining Theorem 3.4 with the tautness haraterization of [17℄, weget 3.5. Corollary. Let M be a onneted ompat manifold endowed witha SRF F . Suppose that F is transversally orientable. Consider a perversity

p on M with p ≤ t. If n = codimM F , then the following two statements areequivalent :(a) The foliation FR is taut , where R is the regular stratum of (M,F).(b) The ohomology group IHn
p (M/F) is R.Proof. We know from [17℄ that (a) is equivalent to Hn

c (R/F) = R. So, itsu�es to prove that Hn
c (R/F) ∼= IHn

p (M/F) (f. Lemma 3.3). We proeedas in the proof of the previous theorem hanging �onto map� to �isomor-phism�.3.6. Remarks. (a) The perversity p = −∞ satis�es p ≤ t. In thisase the group IHn
p (M/F) beomes Hn(M/F , Σ/F). Here, the relative basiohomology IH∗

p(M/F , Σ/F) is omputed from the relative basi omplex
Ω∗(M/F , Σ/F) = {ω ∈ Ω∗(M/F) | ω ≡ 0 on Σ}.(b) The boundary perversity ∂ satis�es ∂ ≤ t. In this ase the group

IHn
∂
(M/F) beomes Hn(M/F , ∂(M/F)). Here, the relative basi ohomol-ogy H∗(M/F , ∂(M/F)) is omputed from the relative basi omplex

Ω∗(M/F , ∂(M/F)) = {ω ∈ Ω∗(M/F) | ω ≡ 0 on the boundary strata}.In partiular, when the boundary strata do not appear then IHn
∂
(M/F) =

Hn(M/F).
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() If p 6≤ t then the group IHn

p (M/F) does not establish the tautness of
(R,F). For example, we always have IHn

t+1
(M/F) = Hn((M \ Σ)/F) = 0 if

Σ 6= ∅.(d) In Theorem 3.4 and Corollary 3.5 we an suppose that the manifold
M is not ompat and replae IHn

p (M/F) by IHn
p,c(M/F).

Referenes[1℄ H. Boualem and P. Molino, Modèles loaux saturés de feuilletages riemanniens sin-guliers, C. R. Aad. Si. Paris 316 (1993), 913�916.[2℄ J.-L. Brylinski, Equivariant intersetion ohomology , in: Contemp. Math. 139,Amer. Math. So., 1992, 5�32.[3℄ D. Domínguez, Finiteness and tenseness theorems for riemannian foliations, Amer.J. Math. 120 (1998), 1237�1276.[4℄ A. El Kaimi et G. Hetor, Déomposition de Hodge basique pour un feuilletageriemannien, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 3, 207�227.[5℄ A. El Kaimi, V. Sergiesu and G. Hetor, La ohomologie basique d'un feuilletageriemannien est de dimension �nie, Math. Z. 188 (1985), 593�599.[6℄ M. Goresky and R. MaPherson, Intersetion homology theory , Topology 19 (1980),135�162.[7℄ G. Hetor and U. Hirsh, Introdution to the Geometry of Foliations. Part A, As-pets Math., Vieweg, 1981.[8℄ G. Hetor and M. Saralegi-Aranguren, Intersetion ohomology of S
1-ations, Trans.Amer. Math. So. 338 (1993), 263�288.[9℄ F. W. Kamber et Ph. Tondeur, Harmoni Foliations, Leture Notes in Math. 949,Springer, 1982, 87�121.[10℄ X. Masa, Duality and minimality in riemannian foliations, Comment. Math. Helv.67 (1992), 17�27.[11℄ V. Miguel and R. Wolak,Minimal singular riemannian foliations, C. R. Math. Aad.Si. Paris 342 (2006), 33�36.[12℄ P. Molino, Feuilletages riemanniens réguliers et singuliers, in: Géométrie di�éren-tielle (Paris, 1986), Hermann, Paris, 1988, 173�201.[13℄ �, Riemannian Foliations, Progr. Math. 73, Birkhäuser, 1988.[14℄ �, Orbit-like foliations, in: Geometri Study of Foliations (Tokyo, 1993), WorldSi., Singapore, 1994, 97�119,[15℄ P. Molino et V. Sergiesu, Deux remarques sur les �ots riemanniens, ManusriptaMath. 51 (1985), 145�161.[16℄ J. I. Royo Prieto, Estudio ohomológio de �ujos riemannianos, Ph.D. Universidaddel País Vaso/Euskal Herriko Unibertsitatea, 2003,http://www.ehu.es/joseroyo/pdf/tesis.pdf.[17℄ J. I. Royo Prieto, M. Saralegi-Aranguren and R. Wolak, Tautness for riemannianfoliations on non-ompat manifolds, ArXiv.mathDG/0505675.[18℄ M. Saralegi-Aranguren and R. Wolak, The BIC of a onial �bration, Math. Notes77 (2005), 213�231.[19℄ �, �, The BIC of a de�ned by an abelian group of isometries,ArXiv.mathDG/0401407.[20℄ �, �, The Poinaré duality of a Killing foliation, preprint.



440 J. I. Royo Prieto et al.
[21℄ V. Sergiesu, Cohomologie basique et dualité des feuilletages riemanniens, Ann. Inst.Fourier (Grenoble) 35 (1985), no. 3, 137�158.[22℄ P. Stefan, Aessible sets, orbits, and foliations with singularities, Pro. LondonMath. So. 29 (1974), 699�713.[23℄ H. J. Sussmann, Orbits of families of vetor �elds and integrability of distributions,Trans. Amer. Math. So. 180 (1973), 171�188.[24℄ Ph. Tondeur, Geometry of Foliations, Monogr. Math. 90, Birkhäuser, 1997.[25℄ R. Wolak, Basi ohomology for singular riemanian foliations, Monatsh. Math. 128(1999), 159�163.José Ignaio Royo PrietoDepartamento de Matemátia ApliadaUniversidad del País VasoAlameda de Urquijo s/n, 48013 Bilbao, SpainE-mail: joseignaio.royo�ehu.esRobert WolakInstitute of MathematisJagiellonian UniversityReymonta 430-059 Kraków, PolandE-mail: robert.wolak�im.uj.edu.pl

Martintxo Saralegi-ArangurenFédération CNRSNord-Pas-de-Calais FR 2956UPRES-EA 2462 LMLFaulté Jean PerrinUniversité d'ArtoisRue Jean Souvraz SP 1862 307 Lens Cedex, FraneE-mail: saralegi�euler.univ-artois.fr
Reeived June 6, 2005;reeived in �nal form January 4, 2006 (7463)


