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Summary. Let K be a �eld, a, b ∈ K and ab 6= 0. Consider the polynomials g1(x) =
xn + ax + b, g2(x) = xn + ax2 + bx, where n is a �xed positive integer. We show that foreah k ≥ 2 the hypersurfae given by the equation

S
i
k : u

2 =
k

∏

j=1

gi(xj), i = 1, 2,ontains a rational urve. Using the above and van de Woestijne's reent results we showhow to onstrut a rational point di�erent from the point at in�nity on the urves Ci :
y2 = gi(x), (i = 1, 2) de�ned over a �nite �eld, in polynomial time.1. Introdution. R. Shoof showed in [4℄ how to ount the rationalpoints on the ellipti urve E : y2 = x3 + ax + b de�ned over the �nite�eld Fp, where p > 3 is a prime, in polynomial time. Surprisingly, thisalgorithm yields the order of the group E(Fp) without providing any point(di�erent from the point at in�nity) on the urve E expliitly. In [4℄ theproblem was posed to onstrut an algorithm determining a rational point
P ∈ E(Fp) \ {O} in polynomial time.To the author's best knowledge, the �rst work onerning this problemappeared in 2004. A. Shinzel and M. Skaªba showed in [3℄ how to deter-mine e�iently a rational point on the urve of the form y2 = xn + a, where2000 Mathematis Subjet Classi�ation: Primary 11D25, 11D41; Seondary 14G15.Key words and phrases: hyperellipti urves, rational points, diophantine equations,�nite �elds.The author is a sholarship holder of the Stanisªaw Estreiher Fund.[97℄ © Instytut Matematyzny PAN, 2007
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n = 3, 4, a ∈ Fq and q = pm. In ase n = 3, they gave expliit elements
y1, y2, y3, y4 ∈ Fq suh that for at least one i ≤ 4 the equation y2

i = x3 + ahas a solution in Fq. In ase n = 4, they onstruted y1, y2, y3 ∈ Fq suh thatfor at least one i ≤ 3, the equation y2
i = x4 + a has a solution in Fq.A solution of the subproblem of �nding the x-oordinate of a rationalpoint on the ellipti urve

E : y2 = x3 + ax + b =: f(x)in ase a, b ∈ Fq, a 6= 0, q = pm and p > 3, was provided in [7℄ (for manyappliations the y-oordinate is not needed). The key element of the proofwas a onstrution of non-onstant rational funtions x1, x2, x3, u ∈ K(t)whih satisfy the equation(1.1) u2 = f(x1)f(x2)f(x3).We know that the multipliative group F∗

q is yli. This fat plus the para-metri solution obtained prove that for at least one i ≤ 3, the element f(xi)is a square in Fq. If now q = p or q = pm and an element v ∈ Fq \ F2
qis given, then using Shoof's and Tonnelli�Shanks' algorithm (given in [6℄)respetively, we an alulate a square root of f(xi) in polynomial time.In his PhD dissertation [8℄, Ch. van de Woestijne showed how in poly-nomial time, for given b0, b1, . . . , bn ∈ F∗

q , we an �nd integers i, j with
0 ≤ i < j ≤ n and an element b ∈ F∗

q suh that bi/bj = bn. Note that toalulate this nth root, it is not neessary to have the element v ∈ Fq \ Fn
q ,and the algorithm whih omputes this root is deterministi. It is easy tosee that having x1, x2, x3 satisfying the identities (1.1) for some u ∈ Fq andusing van de Woestijne's result we an �nd a rational point on the urve

y2 = f(x) in polynomial time. This idea was used in [5℄. The authors on-struted a rational urve (di�erent from the one in [7℄) on the hypersurfae
u2 = f(x1)f(x2)f(x3), where f is a given polynomial of degree three. How-ever, in order to obtain an expliit form of the urve, it is neessary to solvethe equation αx2 + βy2 = γ in Fq for some α, β, γ (this an be done in de-terministi polynomial time, but of ourse it lengthens the time needed toompute a rational point on E). The authors also showed how to onstrutrational points on ellipti urves de�ned over �nite �elds of harateristi 2and 3.A natural question arising here onerns the existene of rational urveson a hypersurfae of the form(1.2) Sk : u2 =

k
∏

i=1

g(xi),where g ∈ Z[x] has no multiple roots. Note that in this ase Sk is smooth. Itappears that this problem has not been onsidered so far. Papers [7℄ and [5℄
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show that for k odd, �nding rational urves on the hypersurfae Sk an beuseful in �nding rational points on hyperellipti urves (de�ned over a �nite�eld) of the form

C : y2 = g(x).Note moreover that if deg g = 2, 3, 4 and k is even number, then it iseasy to �nd rational urves on Sk. Indeed, if k = 2, then on S2 we havethe rational urve (x1, x2, u) = (t, t, g(t)). If now deg g = 2, then using astandard proedure we an parametrize the rational solutions of the equation
u2 = g(t)g(x). For deg g = 3 or deg g = 4 we at similarly, exept that thistime we use an algorithm of adding points on a urve of genus one withknown rational points. In this way we obtain in�nitely many rational urveson S2. As an immediate onsequene of the above reasoning, we obtain urveson Sk for any even integer k > 2.However, if deg g > 4 or k is an odd integer, then the task seems tobe muh more di�ult and the ruial question arises whether for a given
g ∈ Z[x] there is an odd k suh that Sk ontains a rational urve.Let now a, b ∈ K, ab 6= 0, and onsider the polynomials

g1(x) = xn + ax + b, g2(x) = xn + ax2 + bx,where n is a �xed positive integer. In this paper we prove that if g = g1 or
g = g2, then for eah k ≥ 2 there is a rational urve on the surfae Sk.Together with Woestijne's results this shows that rational points on theurve Ci : y2 = gi(x) an be found in polynomial time. Let us also note that if
n is even, then gi(−b/a) = (b/a)n and the �nite point P = (−b/a, (b/a)n/2)lies on the urve y2 = gi(x), so in this ase the problem of existene ofrational points on Ci is easy. However, this of ourse does not provide arational urve on Sk when n is even.2. Rational urves on Si

k. In this setion we onsider the hypersurfae
Si

k : u2 =

k
∏

j=1

gi(xj),where i ∈ {1, 2} is �xed. As diret examination of the existene of rationalurves on Si
k is di�ult, we redue the problem to examining simpler objets.Let a, b, c, d ∈ K satisfy the ondition

(∗) (a 6= 0 or c 6= 0) and (b 6= 0 or d 6= 0).Let m, n be �xed positive integers and onsider the surfaes
S1 : g1(x)zm = yn + cy + d,

S2 : g2(x)zm = yn + cy2 + dy.
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We will prove that a rational urve lies on eah of these surfaes. Usingthese urves we will onstrut urves on Si

2 and Si
3. Sine eah positiveinteger ≥ 2 is of the form 2k + 3l, as an immediate onsequene we obtainthe existene of rational urves on Si

k for eah k ≥ 2.We start with the followingLemma 2.1. Let n, m ∈ N+ and let a, b, c, d ∈ K satisfy (∗). Then oneah of the surfaes S1, S2 there is a rational urve.Proof. Let F1(x, y, z) := g1(x)zm − (yn + cy + d) and F2(x, y, z) :=
g2(x)zm − (yn + cy2 + dy). Set x = T , y = tmT , z = tn. It is easy tosee that the equation F1(T, tmT, tn) = 0 has the root

T = −
btmn − d

atmn − ctm
,whih gives us a parametri urve L1 on S1 given by

L1 : x(t) = −
btmn − d

atmn − ctm
, y(t) = −

btmn − d

atm(n−1) − c
, z(t) = tn.The same method an be applied to �nd a rational urve on S2. In this asethe equation F2(T, tmT, tn) = 0 has two roots, T = 0 and

T = −
btm(n−1) − d

atm(n−1) − ctm
.A rational urve L2 on S2 is given by the equations

L2 : x(t) = −
btm(n−1) − d

atm(n−1) − ctm
, y(t) = −

btm(n−1) − d

atm(n−2) − c
, z(t) = tn.Note that the ondition (∗) is ruial in both ases.Remark 2.2. The surfae S1 appeared in [2℄ with the additional as-sumption a = c, b = d, m = 2, n = 3. In this ase the urve L1 was usedto show that for a given j 6= 0,1728 there are in�nitely many ellipti urveswith j-invariant equal to j and Mordell�Weil rank ≥ 2.A speial ase of the surfae S1, when m = 2, n = 3, was also onsideredin [1℄. In this ase the urve L1 was used to show that on S1 the set ofrational points is dense in the topology of R3.Using the above lemma we an prove the followingTheorem 2.3. Let K be a �eld and set g1(x) = xn + ax + b, g2(x) =

xn + ax2 + bx, where a, b ∈ K, ab 6= 0. Let t, u be variables.(1) If n ≥ 3 is a positive integer , set
X1(t) = −

b

a

t2n − 1

t2n − t2
, X2(t) = t2X1(t), U(t) = tng1(X1(t)).
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Then

U(t)2 = g1(X1(t))g1(X2(t)).If now
X1(t) = −

b

a

t2(n−1) − 1

t2(n−1) − t2
, X2(t) = t2X1(t), U(t) = tng1(X1(t)),then

U(t)2 = g2(X1(t))g2(X2(t)).(2) If n is an odd integer , set
X1(t, u) = u,

X2(t, u) = −
b

a

t2ng1(u)n − 1

g1(u)(t2ng1(u)n−1 − t2)
,

X3(t, u) = t2g1(u)X2(t, u),

U(t, u) = tng1(u)(n+1)/2g1(X2(t, u)).Then
U(t, u)2 = g1(X1(t, u))g1(X2(t, u))g1(X3(t, u)).If now

X1(t, u) = u,

X2(t, u) = −
b

a

t2(n−1)g2(u)n−1 − 1

g2(u)(t2(n−1)g2(u)n−2 − t2)
,

X3(t, u) = t2g2(u)X2(t, u),

U(t, u) = tng2(u)(n+1)/2g2(X2(t, u)),then
U(t, u)2 = g2(X1(t, u))g2(X2(t, u))g2(X3(t, u)).Proof. We onsider the surfaes S1 and S2 from Lemma 2.1 with m = 2.To prove (1), note that the hange of variables z = z1/g1(x) shows that S1is birational to the surfae(2.1) S′ : z2

1 = (xn + ax + b)(yn + cy + d).Putting now a = c, b = d and using the equations of the urve L1 from theproof of Lemma 2.1, we obtain the statement of our theorem.Now we take the equations de�ning the urve L2 from the proof ofLemma 2.1 and repeat the above reasoning for the surfae S2. This endsthe proof of (1).To prove (2), onsider again the surfae S′ given by (2.1). If we now put
c = a/g1(u)n−1, d = b/g1(u)n and perform a hange of variables(2.2) u = X1, x = X2, y =

X3

g1(u)
, z1 = U1g1(u)−(n+1)/2,then after elementary alulations the equation of S′ is of the form
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U2

1 = g1(X1)g1(X2)g1(X3).If now x, y, z are rational funtions de�ning the urve L1 on the surfae S1for c = a/g1(u)n−1, d = b/g1(u)n, then alulating X1, X2, X3 from (2.2),we obtain a two-parameter solution of the above equation as given in thestatement of our theorem.The proof of (2) for g2(x) = xn +ax2 + bx is similar, with one di�erene:we substitute a/g2(u)n−2 and b/g2(u)n−1 for c, d respetively.Remark 2.4. If K is a �nite �eld with charK > 3, a, b ∈ K, ab 6= 0 andwe look for a rational point on the ellipti urve
E : y2 = x3 + ax + b =: f(x),then our rational urve lying on the hypersurfae S: u2 = f(x1)f(x2)f(x3)is muh simpler than that obtained by Skaªba. If xi = Xi(t), i = 1, 2, 3, arethe equations de�ning the urve on S, then if X1X2X3 = N/D for somerelatively prime polynomials N, D ∈ K[t], then deg N ≤ 26, deg D ≤ 25 forthe parametrization obtained by Skaªba, while deg N ≤ 8, deg D ≤ 6 for ourparametrization (with u ∈ K suh that f(u) 6= 0) from Theorem 2.3. Themultipliative struture of the funtions Xi is also very simple in our ase,whih in�uenes the speed of alulations.Moreover, our parametrization has the advantage over the one obtainedby Shallue and van de Woestijne that it does not require solving an equationof the form αx2 + βy2 = γ in K.Sine for n even we have gi(−a/b) = ((b/a)n/2)2, from the above theoremwe obtainCorollary 2.5. Let K be a �eld , a, b ∈ K, ab 6= 0. Then for eahpositive integer k ≥ 2 there is a rational urve on the hypersurfae

Si
k : u2 =

k
∏

j=1

gi(xj), i = 1, 2.Beause the ase k = 3 and K = Fq, q = pm, is espeially interesting forus, we have to deide about the assumptions that would permit alulatingthe values of Xi(u, t) for i = 1, 2, 3 from the seond part of Theorem 2.3.We limit our onsiderations to the ase of g1 of odd degree n. For g2 thereasoning is similar.First, the funtions Xi(t, u) for i = 1, 2, 3 are non-onstant. Moreover,
X2 and X3 have the same denominator whih equals

D(t, u) = g1(u)t2
(t2g1(u))n−1 − 1

t2g1(u) − 1
.We know that vpm

−1 = 1 for eah v ∈ Fq. There are pm − n elements
u ∈ Fq for whih g1(u) 6= 0. If we �x suh a u, then beause degt D(t, u) =
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2(n− 1) and t2 |D(t, u), there are at least pm − 2(n− 1) + 1 elements t ∈ Fqfor whih D(t, u) 6= 0. Thus there are at least (pm − n)(pm − 2(n − 1) + 1)elements (t, u) in Fq × Fq for whih D(t, u) 6= 0. Hene if p > 2(n − 1) − 1then we an �nd t, u ∈ Fq suh that g1(Xj(t, u)) is a square for at least one
j ∈ {1, 2, 3}.3. Some remarks and questions. De�ne T to be the set of pairs
(t, u) ∈ Fq × Fq for whih we an ompute Xi(t, u), i = 1, 2, 3, from thepreeding setion. Then we an de�ne a map Φ from T to the urve C : y2 =
g1(x) by

Φ(t, u) =
(

Xj(t, u),
√

g1(Xj(t, u))
)

,where the square root is taken in Fq and j = min{i : g1(Xi(t, u)) is a square}.Note that there are at most 2q rational points on C over Fq, while T , as wehave proved, ontains at least (q−n)(q−2(n−1)+1) elements. This suggeststhe followingQuestion 3.1. Is the map Φ : T ∋ (t, u) 7→ Φ(t, u) ∈ C surjetive?Another question whih omes to mind is the following.Question 3.2. Fix g ∈ Z[x] without multiple roots. Is there an integer
k ≥ 2 suh that on the hypersurfae

Sk : u2 =
k

∏

j=1

g(xj)there are in�nitely many rational points with u 6= 0? Here we are interestedin non-trivial points on Sk, i.e. (x1, . . . , xk, u) suh that g(xi) 6= g(xj) for
i 6= j.It would also be interesting to know whether there are rational urves on
Sk if we onsider this hypersurfae over C (instead of Q).It seems that the following question is muh more di�ult.Question 3.3. Fix g ∈ Z[x] without multiple roots and a positive integer
k ≥ 2. Is there a non-trivial rational point with u 6= 0 on the hypersurfae Sk?If the k in Question 3.3 is odd we should also assume that for eah
p ∈ P ∪ {∞} the urve y2 = g(x) has a point over Qp (as usual Q∞ = R).It is lear that the assumption onerning loal solubility is neessary. Forexample, onsider the polynomial g(x) = 3 − x2. There are no Q3-rationalpoints on the urve y2 = g(x), whih immediately implies that there arenone on Sk.If g satis�es xng(1/x) = g(x) (suh polynomials are alled reiproal),then we have a rational urve x1 = t2, x2 = 1/t2, u = tng(1/t2) on thesurfae S2. As an immediate onsequene we onlude that if k is even, then
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there is a rational urve on Sk. Additionally, if the degree of g is odd, thenon S3 we have a rational urve given by

x1 = t, x2 = g(t), x3 =
1

g(t)
, u = g(t)(n+1)/2g

(

1

g(t)

)

,and hene for eah k ≥ 2 there is a rational urve on Sk.If g(x) = x4 + 1, then on S3 we have a rational urve with xi = xi(t),
i = 1, 2, 3, given by

x1 =
2t + 1

3t2 + 3t + 1
, x2 =

3t2 + 2t

3t2 + 3t + 1
, x3 =

3t2 + 4t + 1

3t2 + 3t + 1
.It would be very interesting to onstrut other families of polynomialswith the property that for eah k ≥ 2 there are rational urves (or in�nitelymany non-trivial rational points) on Sk.Aknowledgments. I would like to thank the anonymous referee for hisvaluable omments, and Professors A. Shinzel and K. Rusek for remarks im-proving the presentation. I am also grateful to Dr. M. Skaªba who aquaintedme with van de Woestijne's paper [8℄.
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