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The Double Tangeny Symmetries in Laguerre PlanesbyJarosªaw KOSIOREK and Andrzej MATRA�Presented by Jan RYCHLEWSKISummary. The group generated by double tangeny symmetries in a Laguerre plane isinvestigated. The geometri lassi�ation of involutions of a symmetri Laguerre plane isgiven. We introdue the notion of projetive automorphisms using the double tangeny andparallel perspetivities. We give the desription of the groups of projetive automorphismsand automorphisms generated by double tangeny symmetries as subgroups of the group
M(F, R) of automorphisms of a hain geometry Σ(F, R) following Benz.Introdution. In [7℄ we introdued the axioms (C) and (S) harater-izing miquelian Laguerre planes of harateristi di�erent from 2. Any La-guerre plane L satisfying (C) and (S) will be alled a symmetri Laguerreplane. For any pair of non-tangent irles K,L and any point p ∈ K of asymmetri Laguerre plane there is exatly one irle through p tangent toboth K and L. This de�nes the so alled double tangeny perspetivity. It hasa unique extension to a double tangeny symmetry SK,L, i.e. an involutoryautomorphism exhanging K,L (f. [7℄) and preserving all the irles tan-gent to both K and L. A symmetry with two pointwise �xed generators isa speial ase of a double tangeny symmetry, the same as the Laguerre in-version onsidered by H. Mäurer in [9℄. It is natural to investigate the groupof automorphisms generated by all double tangeny symmetries. This givesa new approah to the results of H. Mäurer (f. [10℄, [11℄) and yields somenew results.In [2℄ W. Benz desribed a Laguerre plane over a �eld F as a haingeometry Σ(F,R) where R is the ring of dual numbers over F. This yieldsa lear representation of the group Aut(L) as the group M(F,R) desribedby homographies and automorphisms of R preserving F.2000 Mathematis Subjet Classi�ation: Primary 51B15.Key words and phrases: miquelian Laguerre plane, double tangeny symmetry, pro-jetive automorphism. [123℄ © Instytut Matematyzny PAN, 2007
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In [12℄ H. Zeitler proved for symmetri Minkowski planes that the prod-uts of an even number of symmetries with respet to irles are exatlynormographies, i.e. the homographies represented by matries with determi-nants from F∗R∗2. Additionally any normography is a produt of at mostfour symmetries. In symmetri Laguerre planes the notion of normographyannot be applied beause F∗R∗2 = R∗.In this paper we desribe the subgroup of M(F,R) generated by doubletangeny symmetries (Theorem 2.2). In general this group properly on-tains the group generated by symmetries with pointwise �xed generators.We emphasize that homographies of symmetri Laguerre planes are exatlyproduts of an even number of double tangeny symmetries (two or four).We give a geometri desription of involutions of symmetri Laguerre planesby invariant irles. We prove that a symmetry with respet to a irle isa omposition of three double tangeny symmetries, and other involutionsare ompositions of two suh symmetries. In [7℄ we introdued the doubletangeny penil 〈K,L〉 as the set of irles tangent to both K and L. Weinvestigate the group generated by double tangeny symmetries assoiatedwith pairs of irles from this penil. We get the three-re�etion theoremfor double tangeny symmetries (f. Theorem 3.1(3)) similar to that forsymmetries with respet to irles from an orthogonal penil in symmetriMinkowski planes (f. [12℄).In the last setion we introdue the notion of t-projetivity as the om-position of double tangeny and parallel perspetivities. We show that thevon Staudt group of a irle (assoiated with t-projetivities) is PGL2(F)(Theorem 4.1). This motivates the de�nition of a projetive automorphism ofa symmetri Laguerre plane as an automorphism whih has a t-projetivityas the restrition to any irle (De�nition 4.3). Theorem 4.2 haraterizesthe group of all projetive automorphisms. This group properly ontains thegroup generated by double tangeny symmetries.Aknowledgements. The authors wish to thank the reviewer for manyhelpful remarks and suggestions.
1. Preliminaries. A Laguerre plane is a struture L = (P, C, ‖), where

P is a set of points denoted by small Latin letters, C ⊂ 2P is a set of irlesdenoted by apital Latin letters, and ‖ ⊂ P × P is an equivalene relationknown as parallelity. The equivalene lasses of ‖ will be alled generatorsand denoted also by apital Latin letters. We suppose that the followingaxioms are satis�ed:(1) Any three mutually non-parallel points a, b, c are joined by a uniqueirle, denoted by (a, b, c)◦.
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(2) For every irle K and any two non-parallel points p ∈ K, q /∈ Kthere is preisely one irle L whih passes through q and satis�es

K ∩ L = {p}.(3) For any point p and any irle K there exists exatly one point qsuh that p ‖ q and q ∈ K; we write q = pK.(4) There is a irle ontaining at least three but not all points.We say irles K and L are tangent at p if K ∩ L = {p} or K = L. If p is apoint of a irle K then we write 〈p,K〉 for the penil of irles tangent to
K at the point p. If q ∦ p the irle of the penil 〈p,K〉 passing through qwill be denoted by (p,K, q)◦. For any pair of non-parallel points x, y the setof irles ontaining them will be alled the penil of irles with the verties
x, y and denoted by 〈x, y〉.For any irles K,L the map

[K
p
→ L] : K → L; x 7→ xLis alled a parallel perspetivity.The derived plane at a point p of a Laguerre plane L onsists of all pointsnot parallel to p and, as lines, all irles passing through p (exluding p) andall generators not passing through p. The derived plane is an a�ne planeand is denoted by Ap.An automorphism of a Laguerre plane is a permutation of the set ofpoints whih maps irles to irles (and generators to generators). An au-tomorphism φ is alled entral if there exists a �xed point p suh that φindues a entral ollineation of Ap, the projetive extension of the deriveda�ne plane Ap.An L-homothety is a entral automorphism whih indues a homothetyof Ap for some �xed point p. An automorphism φ is an L-homothety i� thereexist non-parallel points p, q suh that φ(M) = M for any M ∈ 〈p, q〉.An L-strain is a entral automorphism whih indues a entral ollinea-tion of Ap with a proper axis for some �xed point p. The L-strain will besaid to be with respet to a generator or with respet to a irle if the axis isassoiated with a generator or a irle respetively. An involutory L-strainwith respet to a generator �xes also the points of the other generator.It is alled a Laguerre symmetry and denoted by SX,Y ;M where X,Y arethe pointwise �xed generators and M is a �xed irle (not pointwise). Aninvolutory L-strain with respet to a irle is alled the symmetry (withrespet to the irle) and denoted by SK where K is the �xed irle.A Laguerre plane L = (P, C, ‖) is alled symmetri if the following axiomsare satis�ed:(C) For any irles K,L and any point p ∈ K \ L there exists exatlyone irle M suh that M ∈ 〈p,K〉 and |M ∩ L| = 1.
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(S) If K,L,M,N are irles and a, b, c, d are points with K ∩ L = {a},

L ∩M = {b}, M ∩ N = {c}, N ∩ K = {d} and a ∦ c, then thereexists a irle passing through a, b, c, d.We have ([7, Theorem 2.2, p. 241℄):Theorem 1.1. A Laguerre plane L is symmetri i� it is a plane over a�eld of harateristi di�erent from 2.In the following we assume L to be a symmetri Laguerre plane.For any distint irles K,L and a point p ∈ K \ L the unique irle ofthe penil 〈p,K〉 tangent to L will be denoted by (p,K,L)◦, and the pointof tangeny of the irles L and (p,K,L)◦ by pKL. Additionally we de�ne
pKL := p for p ∈ K ∩ L. For distint irles K,L the set of irles tangentto K and L will be denoted by 〈K,L〉 and alled a double tangeny penil.If K and L are tangent at p we have 〈K,L〉 = 〈p,K〉 by [7, Proposition 2.1,p. 241℄. If K,L are any non-tangent irles the map

[K
t
→ L] : K → L; x 7→ xKLis alled a double tangeny perspetivity.By (C) and [7, Proposition 2.2, p. 241℄ we have:Proposition 1.1. Let K,L be non-tangent irles , a ∈ K\L, b := aKL,

c := aL, d := bK and N := (c, L, d)◦. Then N is tangent to K.By [7, Theorem 3.1, p. 242℄ a double tangeny perspetivity [K
t
→ L]has a unique extension to an involutory automorphism. This automorphismis alled the double tangeny symmetry assoiated with K,L and denoted by

SK,L.[7, Theorem 3.1, p. 242℄ and [7, Theorem 3.2, p. 244℄ imply:Proposition 1.2. Let K,L be non-tangent irles. Then:(1) SK,L(M) = M for M ∈ 〈K,L〉 and onversely SK,L is the only suhautomorphism.(2) If SK,L(x) 6= x, then SK,L(M) = M for M ∈ 〈x, SK,L(x)〉.(3) If L′ = SK,L(K ′) 6= K ′, then SK,L = SK′,L′ .(4) If K∩L = {x, y}, then SK,L = SX,Y ;M where M is any irle �xed by
SK,L and X,Y are the generators through x, y respetively. If K ∩ L
= ∅, then SK,L does not have �xed points.(5) SX,Y ;M = SX,Y ;M ′ where M ′ is any irle �xed by SX,Y ;M .(6) Through any pair of points x, y suh that x ∈ X, y ∈ Y there isexatly one irle �xed by SX,Y ;M .Diret alulations (over a �eld of harateristi di�erent from 2) givethe following properties of the symmetry with respet to a irle:
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Proposition 1.3. Let K,L,M ∈ C. Then:(1) There is exatly one irle P suh that SP (K) = L, and SP is theunique automorphism interhanging K,L and preserving all genera-tors.(2) There is exatly one irle N suh that SK ◦ SL ◦ SM = SN .Let F be a �eld of harateristi di�erent from 2 and let R be a ringextension of F by an element ε with ε2 = 0. We denote by AutF R thegroup of all automorphisms of R preserving F and by AutF R the group ofall automorphisms of R preserving F pointwise (f. [12℄). We have(1.1) AutF R = {φσ

λ | λ ∈ F∗, σ ∈ Aut F}where φσ
λ(a+ bε) := aσ + λbσε. Let φλ := φid

λ . Then(1.2) AutF R = {φλ | λ ∈ F∗}.An automorphism φλ is an involution i� λ = −1; we write z := φ−1(z).Aording to [2℄ any symmetri Laguerre plane is isomorphi to a haingeometry Σ(F,R) = (PF, CF, ‖F) where PF = P(R), CF = {P(F)ϕ | ϕ ∈ Γ(R)}and Γ(R) := PGL2(R). Any element x of P(R) (a point) with representative
(x1, x2) is denoted by [x1, x2]. The relation of parallelity is de�ned by(1.3) [x1, x2] ‖F [y1, y2] :⇔

∣

∣

∣

∣

∣

x1 x2

y1 y2

∣

∣

∣

∣

∣

∈ R \ R∗.Any element M of CF (a irle) is a set of points desribed by the equation(1.4) [x1, x2] M

[

x1

x2

]

= 0

where M
T

+ M = 0. The matrix M an be written
M :=

[

αε 1+βε
2

−1−βε
2 γε

]

where α, β, γ ∈ F (f. [2, p. 27℄). We say that the irle M has matrix M.This representation is useful beause of the onnetion with parabolas (andlines) with equations y + αx2 + βx+ γ = 0 in the so alled isotropi model(f. [2, p. 19℄).We have (f. [2, Satz 3.1, p. 88℄ for any ommutative ring R):Proposition 1.4. For any two triples of mutually non-parallel points
(x, y, z) and (x′, y′, z′) there exists exatly one ϕ ∈ Γ(R) suh that ϕ(x) = x′,
ϕ(y) = y′, ϕ(z) = z′.An easy alulation gives:
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Proposition 1.5. Two irles with matries

[

α1ε
1+β1ε

2

−1−β1ε
2 γ1ε

]

,

[

α2ε
1+β2ε

2

−1−β2ε
2 γ2ε

]

are tangent i� (β1 − β2)
2 = 4(α1 − α2)(γ1 − γ2).We will denote by E the irle P(F) (with matrix [ 0

−1/2
1/2
0

]).Any automorphism ϕ of Σ(F,R) is a map(1.5) [x1, x2] 7→ [xτ
1, x

τ
2 ]

[

a b

c d

]

where τ ∈ AutF R and ∣

∣

a b
c d

∣

∣ ∈ R∗ (f. [2, Satz 3.1, p. 176℄).In the following we suppose that ∣

∣

a b
c d

∣

∣ ∈ F∗ in (1.5) (this is possible sine
F∗R∗2 = R∗).The group of automorphisms of Σ(F,R) is denoted by M(F,R). If L is asymmetri Laguerre plane, then the group Aut(L) is isomorphi to M(F,R).Reall that the group Γ (R) (a normal subgroup of M(F,R)) onsists ofthe maps de�ned by (1.5) with τ = id; we denote by Γ (R), Γ̃ (R) the normalsubgroups of M(F,R) desribed by (1.5) for τ ∈ {id, φ−1}, τ ∈ AutF Rrespetively.2. Involutions. The group generated by double tangeny sym-metriesTheorem 2.1. Let ϕ ∈ Γ̃ (R) be an involution. Then exatly one of thefollowing holds :

(a) For any x 6= ϕ(x) and M ∈ 〈x, ϕ(x)〉 we have ϕ(M) = M . Then ϕis a double tangeny symmetry and it maps
[x1, x2] 7→ [x1, x2]

[

a r

s −a

]

, where r, s ∈ F.

(b) There exists exatly one irle K suh that ϕ(x) = x for x ∈ K. Then
ϕ = SK , ϕ is a omposition of three double tangeny symmetries andit maps

[x1, x2] 7→ [x1, x2]

[

a rε

sε a

]

, where r, s ∈ F.

(c) For any x ∦ ϕ(x) there exists exatly one M ∈ 〈x, ϕ(x)〉 suh that
ϕ(M) = M . Then ϕ is a omposition of two double tangeny sym-metries and it maps

[x1, x2] 7→ [x1, x2]

[

a b

c −a

]

.
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We have divided the proof into a sequene of lemmas.Lemma 2.1. If a map [x1, x2] 7→ [xτ

1 , x
τ
2 ]

[

a b
c d

] with τ ∈ AutF R is aninvolution, then τ = id or τ(x) = x for x ∈ R. In the �rst ase we have
d = −a. In the seond ase, either(2.1) d = −a and b, c ∈ For(2.2) d = a and b, c ∈ R \ R∗.Proof. From [xττ

1 , xττ
2 ]AτA = [x, y] it follows that τ2 = id.A standard omputation in the ring R proves the assertion for the ase

τ = id. Therefore in what follows we assume that τ = φ−1 is the onjugay.From the ondition
[

a b

c d

] [

a b

c d

]

= λ

[

1 0

0 1

]

where λ ∈ F∗ we get
aa+ bc = bc+ dd,(2.3)
ab+ bd = 0,(2.4)
ac+ cd = 0.(2.5)Now, (2.3) gives aa− dd = bc− bc. Sine aa− dd ∈ F and bc− bc ∈ R \ R∗,we get

aa = dd,(2.6)
bc = bc.(2.7)Write

A =

[

a b

c d

]

, B =

[

−d b

c −a

]

.

Suppose �rst that b ∈ R∗. By (2.4), (2.7) we obtain bA = bB. Sine
detB = detA and detA ∈ F∗ we get detA = detB. Hene A = λB where
λ = ±1. The ase λ = −1 is impossible beause then b = −b, whih ontra-dits b ∈ R∗. Thus d = −a, b = b, c = c, hene b ∈ F∗ and c ∈ F.Let us onsider the ase b /∈ R∗, whih gives a, d ∈ R∗. By (2.4)�(2.6) weobtain aA = −bB. Hene A = λB where λ = ±1. If λ = 1, then b = b, hene
b = 0. We also have d = −a and c = c, hene c ∈ F. This together with theprevious ase proves (2.1). If λ = −1, then a = d and b = −b, c = −c, hene
b, c ∈ R \ R∗.
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Lemma 2.2. An involution [x1, x2] 7→ [x1, x2]

[

a rε
sε a

], where r, s ∈ F, is asymmetry with respet to a irle with matrix
[

r
2a1
ε 1

2 − a2

2a1
ε

−1
2 − a2

2a1
ε − s

2a1
ε

]

where a = a1 + a2ε, a1, a2 ∈ F.Lemma 2.3. An involution ϕ: [x1, x2] 7→ [x1, x2]
[ a r

s −a

], where r, s ∈ F,is a double tangeny symmetry. A irle with matrix
M =

[

αε 1+βε
2

−1−βε
2 γε

]

is �xed by ϕ i� a1β = a2 + αs− γr where a = a1 + a2ε, a1, a2 ∈ F.Proof. A irle with matrix M is �xed by ϕ i� AMT = MAT where
A =

[ a r
s −a

]. A alulation shows that this equation is equivalent to a1β =
a2 + αs− γr.Suppose �rst that a ∈ F. Then ϕ �xes E (f. [2, Lemma 1.1, p. 94℄). Let
K,L be the irles with matries

[

ε 1
2

−1
2 0

]

,

[

a2

a2+rs
ε 1

2 + as
a2+rs

ε

−1
2 + as

a2+rs
ε s2

a2+rs
ε

]

.We have ϕ(K) = L and K,L are tangent to E by Proposition 1.5. We provethat ϕ = SK,L. By Proposition 1.5 a irle with matrix M is tangent to both
K and L i� β2 = 4(α− 1)γ and

(

β −
2as

a2 + rs

)2

= 4

(

α−
a2

a2 + rs

)(

γ −
s2

a2 + rs

)

.This learly fores aβ = sα − rγ. Thus ϕ(M) = M for M ∈ 〈K,L〉, hene
ϕ = SK,L by Proposition 1.2(1).Let a /∈ F. If a irle K has matrix M where △ = β2 − 4αγ 6= 0, then theinvolution

[x1, x2] 7→ [x1, x2]

[

− β
2△ − ε

4
α
△

− γ
△

β
2△ − ε

4

]

maps E to K. We prove that this involution is SK,E . To do this, we take theirle M = (p,E, ϕ(p))◦, where p = [p1, 1], p1 ∈ F, and infer that M is alsotangent to K. Any irle tangent to E at p has matrix
[

−mε 1+2p1mε
2

−1−2p1mε
2 −mp2

1ε

]

for some m ∈ F. From the ondition ϕ(p) ∈ M we dedue that m =
△/(4(αp2

1 + βp1 + γ)). From this, using Proposition 1.5 we onlude thatthe irles K,M are tangent.
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Lemma 2.4. An involution ϕ ∈ Γ (R) has �xed irles.Proof. By Lemma 2.1, ϕ is a map [x1, x2] 7→ [x1, x2]

[ a b
c −a

]. We reallthe assumption ∣

∣

a b
c −a

∣

∣ ∈ F∗. Write a = a1 + a2ε, b = b1 + b2ε, c = c1 + c2ε,where ai, bi, ci ∈ F. A irle with matrix
M =

[

αε 1+βε
2

−1−βε
2 γε

]

is �xed by ϕ i� BM = dMB
T where B =

[ a b
c −a

], d ∈ R∗. This equation isequivalent to the following system of linear equations:










2a1α+ b1β = b2,

c1α+ b1γ = −a2,

c1β − 2a1γ = −c2.This system has a solution sine c1b2 + 2a1a2 + b1c2 = 0 is equivalent to
∣

∣

a b
c −a

∣

∣ ∈ F∗.Lemma 2.5. An involution ϕ ∈ Γ (R) is the omposition SM ◦ SK,L forsome irles K,L,M . The irle M is an arbitrary irle �xed by ϕ.Proof. Let M be �xed by ϕ. By Proposition 1.4 there exists ψ ∈ Γ (R)suh that ψ(M) = E. The involution ψ ◦ ϕ ◦ ψ−1 has matrix [ q r
s −q

] where
q, r, s ∈ F sine ψ ◦ ϕ ◦ ψ−1(E) = E (f. [2, Lemma 1.1, p. 94℄). This in-volution is the omposition of the maps [x1, x2] 7→ [x1, x2] and [x1, x2] 7→
[x1, x2]

[ q r
s −q

]. By Lemmas 2.2 and 2.3, the �rst automorphism is SE andthe seond is SK′L′ for some irles K ′, L′. Hene ϕ = SM ◦ SK,L where
K = ψ(K ′), L = ψ(L′).Lemma 2.6. Let K,L,M,N be irles and a, b, c, d be points suh that
K ∩M = {a}, L ∩M = {b}, L ∩N = {c}, N ∩K = {d}, a ‖ c, b ‖ d andlet P be a irle suh that SP (K) = L. Then:

(1) SP (M) = N .
(2) P = SK,L(P ) = SM,N (P ).
(3) The irles K,L,M,N are �xed by SX,Y ;P where X,Y are the gen-erators through a, b respetively.
(4) SP = SX,Y ;P ◦ SK,L ◦ SM,N .Proof. (1) We have SP (a) = c, SP (b) = d. Hene SP maps M to a irletangent to K at d and to L at c. The only suh irle is N .
(2) Let P ′ := SK,L(P ). We have SP ′(K) = SK,L ◦ SP ◦ SK,L(K) = L,hene P = P ′ by Proposition 1.3(1). By (1) the same reasoning applies tothe equation SM,N (P ) = P .
(3) The symmetry SX,Y ;K �xes the irle M as a irle tangent to K at apoint of the generator X. Hene it also �xes the irle L (as a irle tangent to
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M at b). From this and Proposition 1.3(1) we onlude that SX,Y ;K(P ) = P .Hene, by Proposition 1.2(5), SX,Y ;K = SX,Y ;P and SX,Y ;P �xes eah of theirles K,L,M,N .

(4) We �rst prove that the omposition ϕ = SK,L ◦SM,N is an involution.If xKL ‖ SM,N (x) for any x ∈ K, then ϕ �xes all generators. It is lear that
ϕ(K) = L and ϕ(L) = K. Hene ϕ = SP by Proposition 1.3. From Lemmas2.1 and 2.3 we see that ϕ ∈ Γ (R). This is a ontradition sine SP /∈ Γ (R)by Lemma 2.2. Therefore there exists x ∈ K suh that xKL ∦ SM,N (x). Let
x′ := SM,N (x), Q := (x,K,L)◦, Q′ := (x′,K, L)◦. We get SM,N (Q′) = Q,hene ϕ(Q′) = Q sine SK,L(Q) = Q. This gives ϕ(x′) = x and ϕ is aninvolution by [2, Satz 3.2, p. 89℄. From ϕ(K) = L it follows that ϕ(P ) = P .Hene ϕ = SP ◦SR,S for some irles R,S by Lemma 2.5. It is also lear that
ϕ(X) = X and ϕ(Y ) = Y . Therefore SR,S = SX,Y ;P by Proposition 1.2(4),and (4) is proved.Corollary 2.1. Any involution ϕ ∈ Γ (R) is the omposition of twodouble tangeny symmetries.To omplete the proof of Theorem 2.1 it is enough to establish the fol-lowing extension of Lemma 2.4:Lemma 2.7. There is exatly one irle �xed by an involution ϕ ∈ Γ (R)through any point x suh that ϕ(x) 6= x.Proof. By Lemma 2.5, ϕ is the omposition of a double tangeny symme-try ψ and the symmetry SP , where P is any �xed irle of ϕ. If x ∈ P , then
ϕ(x) ∈ P and ϕ(x) = ψ(x). By Proposition 1.2(2), ψ �xes all the irles ofthe penil 〈x, ϕ(x)〉 while SP �xes only P . Hene P is the only irle through
x �xed by ϕ.Let us onsider the ase x /∈ P . Write y := xP . We get ϕ(y) =
ϕ(x)P sine ϕ(P ) = P . Let K ′ := (y, P, ϕ(x))◦, L′ := (ϕ(y), P, x)◦, M :=
(x, L′, ϕ(x))◦. From Proposition 1.1 it follows thatM ∈ 〈K ′, L′〉. It is evidentthat ϕ(K ′) = L′. Hene ϕ(M) = M . Set N = SP (M), x′ = SP (x). The irle
SP (L′) is tangent to N at x′. Let K := (x′, N, ϕ(x))◦. By Proposition 1.1,
K is tangent to K ′ at ϕ(x), hene K is tangent to M . Write L := SP (K). Itis lear that L ∈ 〈M,N〉, ϕ(K) = L and ϕ(N) = N . This gives ψ(M) = N ,hene ψ = SM,N , by Proposition 1.2(2). From Lemma 2.6(4) we onludethat ϕ = SK,L ◦ SX,ϕ(X);M where X is the generator through x. By Proposi-tion 1.2(1), SK,L �xes all the irles of the penil 〈x, ϕ(x)〉. By Proposition1.2(6), SX,ϕ(X);M �xes exatly one irle of the penil 〈x, ϕ(x)〉. From thiswe obtain the assertion for the point x.Lemma 2.8. Any automorphism ϕ ∈ Γ (R) is the omposition of twoinvolutions from Γ (R).
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Proof. An automorphism ϕ is the map [x1, x2] 7→ [x1, x2]

[

a b
c d

] (where
∣

∣

a b
c d

∣

∣ ∈ F∗). We have
[

a b

c d

]

=















































1

−bc

[

0 b

−c 0

]

·

[

bc bd

−ac −bc

] for bc ∈ R∗,

1

−c2

[

c d− a

0 −c

]

·

[

−cd ad− d2 − bc

c2 cd

] for c∈R∗, b /∈R∗,

1

−b2

[

−b 0

a− d b

]

·

[

ab b2

ad− a2 − bc −ab

] for b∈R∗, c /∈R∗.

Moreover, beause of the assumption ∣

∣

a b
c d

∣

∣ ∈ F∗ the matrix [

a b
c d

] is propor-tional (over R∗) to one of the following three whih, on the other hand, anbe deomposed as follows:
[

t rε

sε 1

]

=
1

rs

[

0 r

−s 0

]

·

[

−rsε −r

st rsε

] for r, s, t ∈ F∗,

[

t rε

0 1

]

=
1

1 − t

[

−rε t

t− 1 rε

]

·

[

rε −1

1 − t −rε

] for r, t ∈ F∗, t 6= 1,
[

1 rε

0 1

]

=

[

1 −rε

0 −1

]

·

[

1 0

0 −1

] for r ∈ F.Theorem 2.2.
(1) Γ (R) is the group generated by all double tangeny symmetries.
(2) Any automorphism ϕ ∈ Γ (R) is the omposition of two or four doubletangeny symmetries.Proof. (2) By Lemma 2.8 and Corollary 2.1.(1) By (2) and Theorem 2.1(b).3. The three-re�etion theoremLemma 3.1. Let x, y ∈ K, x ‖ z, x 6= y, z. If ϕ(x) = ϕ′(x), ϕ(y) = ϕ′(y),

ϕ(z) = ϕ′(z), ϕ(K) = ϕ′(K) = K for automorphisms ϕ,ϕ′ ∈ Γ (R), then
ϕ = ϕ′.Proof. It is enough to prove that the identity is the only automorphism
ϕ ∈ Γ (R) �xing the points x, y, z and the irle K. Suppose that ϕ(v) 6= vfor some v ∈ K. By Proposition 1.4 there exists exatly one automorphismof Γ (R) mapping x, y, v to x, y, ϕ(v) respetively. This automorphism is the
L-homothety with verties x, y mapping v to ϕ(v). This ontradits our
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assumption ϕ(z) = z. Hene ϕ �xes K pointwise, and onsequently it is theidentity by Proposition 1.4.Theorem 3.1. Let K,L be non-tangent irles , x, x′ ∈ K\L and x 6= x′.Then:

(1) There exists exatly one automorphism ϕ∈ Γ (R) suh that ϕ(x) = x′,
ϕ(K) = K, ϕ(L) = L.

(2) The automorphism ϕ is the omposition of two double tangeny sym-metries SM ′,N ′ ◦ SM,N where M,N,M ′, N ′ ∈ 〈K,L〉 and SM,N anbe hosen arbitrarily.
(3) For any Mi, Ni ∈ 〈K,L〉 (Mi 6= Ni, 1 ≤ i ≤ 3) there exist M,N ∈

〈K,L〉 suh that SM1,N1
◦ SM2,N2

◦ SM3,N3
= SM,N .Proof. (1) Let us take ϕ := SM ′,N ◦ SM,N where M = (x,K,L)◦, M ′ =

(x′,K, L)◦, N ∈ 〈K,L〉, N 6= M,M ′; then ϕ is as required in (1). Now weshow that an automorphism ϕ required in (1) is indeed unique. Let y :=
xKL, y′ := x′KL, z := yK, z′ = y′K. We obtain ϕ(y) = y′, ϕ(z) = z′ andLemma 3.1 ompletes the proof.

(2) Let M,N be arbitrary distint irles of the penil 〈K,L〉, x′′ :=
SM,N (x), M ′ := (x′′,K, L)◦, N ′ := (x′,K, L)◦. It is easy to hek that ϕ =
SM ′,N ′ ◦ SM,N .

(3) This is lear from (1) and (2).Corollary 3.1. Any L-homothety with verties p, q an be representedas the omposition ϕ := SM ′,N ◦ SM,N where M,M ′, N ∈ 〈K,L〉 and K,Lare arbitrary distint irles of the penil 〈p, q〉.4. Projetivities and projetive automorphisms. A natural ques-tion arises how to de�ne a projetive automorphism of a symmetriLaguerre plane to preserve the analogy to the lassial de�nition of a pro-jetive ollineation, as a map whose restrition to any line is a projetivity,i.e. a omposition of perspetivities. We propose to use double tangenyand parallel perspetivities (f. De�nitions 4.1 and 4.3). This allows us toomit the notion of a derived a�ne plane. The restrition of any double tan-geny symmetry to any non-�xed irle is a double tangeny perspetivityby Proposition 1.2(3). For a �xed irle the restrition is a omposition ofdouble tangeny and parallel perspetivities (f. Theorem 4.1). Hene au-tomorphisms from Γ (R) should be alled projetive. The same refers to an
L-strain with respet to a irle sine its restrition is a parallel perspetiv-ity. The group Γ (R) does not ontain non-involutory L-strains with respetto irles. Indeed, any L-strain with respet to E is a map [x1, x2] 7→ [xτ

1, x
τ
2 ]where τ ∈ AutF R. Consequently, the proposed group of projetive automor-phisms is larger than Γ (R).
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A di�erene between Laguerre and Minkowski planes is worth pointingout here. For the latter, the only automorphism of R preserving F pointwiseis the involutory onjugay z 7→ z. Therefore, if we present a Minkowskiplane M in the form M = Σ(F,R) for a suitable ring R, then the group ofprojetive automorphisms of M is Γ (R).Let K,L ∈ C.Definition 4.1. A map φ : K → L is alled a t-projetivity if it is aomposition of double tangeny and parallel perspetivities.Definition 4.2. The von Staudt group of the irle K is the set of allt-projetivities of K. It will be denoted by ΓK .Definition 4.3. An automorphism ϕ ∈ Aut(L) is alled projetive if

ϕ|K is a t-projetivity for any K ∈ C.Theorem 4.1. Let K ∈ C.
(1) ΓK ≈ PGL2(F).
(2) If φ ∈ ΓK is an involution, then:

(a) there exist L,M ∈ C suh that φ = SL,M |K ,
(b) there exists N ∈ C suh that

φ = [N
p
→ K] ◦ [K

t
→ N ].

(3) If φ ∈ ΓK is not an involution, then there exist L,M ∈ C suh that
φ = [M

p
→ K] ◦ [L

t
→M ] ◦ [K

t
→ L].Proof. We an assume that K := E = P(F) sine a parallel perspetivityestablishes the isomorphism of ΓE and ΓK for any K ∈ C.

(2a) From the analyti desription presented in Theorem 2.1(a) it followsthat any produt [M
p
→ E]◦[L

t
→M ]◦[E

p
→ L] = [M

p
→ E]◦SL,M |L◦[E

p
→ L]is an involution of PGL2(F) for any non-tangent irles L,M . In partiularif E is a �xed irle of SL,M , then SL,M |E is an involution of PGL2(F)(in this ase the matrix of SL,M has oe�ients in F). From this we obtain

ΓE ⊆ PGL2(F). Let x, x′, y, y′ ∈ E and x 6= y, x′ 6= y′. We will show thatthere exist irles L,M suh that SL,M (x) = x′ and SL,M (y) = y′. From thisthe assertion follows sine any involution of PGL2(F) is determined by anytwo pairs of interhanging points. Suppose �rst x 6= x′ and y 6= y′. Let z beany point suh that z 6= x, z ‖ x and write L := (x′, E, z)◦, N = (z, y, y′)◦,
z′ = x′N , M = (x,E, z′)◦, P = (z, L, z′)◦. By Proposition 1.1, the irle Pis also tangent to M . Hene SL,M �xes the irles E,P and SL,M (x) = x′,
SL,M (z) = z′. By Proposition 1.2(2), SL,M (N) = N , hene SL,M (y) = y′. Inthe ase y = y′ the proof is analogous, we take N := (z, E, y)◦. If additionally
x = x′, it is enough to onsider an arbitrary double tangeny symmetry SE,Qwhere Q ∈ 〈x, y〉 and Q 6= E.
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(b) To dedue (b) from (a) we an use any automorphism �xing thegenerators. Let Q be the irle suh that SQ(L) = E, by 1.3(1). We have

[SQ(M)
p
→ E] ◦ [E

t
→ SQ(M)] = SL,M |E .(1) and (3) follow from the above sine any element of PGL2(F) is theomposition of two involutions.Corollary 4.1. An automorphism ϕ ∈ Aut(L) is projetive i� [ϕ(E)

p
→ E] ◦ ϕ|E ∈ PGL2(F).Proof. �⇒� This follows diretly from Theorem 4.1(1).�⇐� By Theorem 4.1(1), ϕ|E is a t-projetivity and we have ϕ|K =

[ϕ(E)
p
→ ϕ(K)] ◦ ϕ|E ◦ [K

p
→ E], hene ϕ|K is a t-projetivity.Theorem 4.2. Γ̃ (R) is the group of all projetive automorphisms of asymmetri Laguerre plane L.Proof. Write x1 := x11 + x12ε, x2 := x21 + x22ε, a := a1 + a2ε, . . . . By(1.1), (1.5) any automorphism ϕ ∈ M(F,R) maps

[x11 + x12ε, x21 + x22ε] 7→ [xσ
11 + λxσ

12ε, x
σ
21 + λxσ

22ε]

[

a b

c d

]

where σ ∈ Aut F, λ ∈ F∗. An easy omputation shows that [ϕ(E)
p
→ E]◦ϕ|Eis the map

[x11, x21] 7→ [xσ
11, x

σ
21]

[

a1 b1

c1 d1

]

.

From this and Corollary 4.1 we obtain: ϕ is projetive ⇔ [ϕ(E)
p
→ E]◦ϕ|E ∈

PGL2(F) ⇔ σ = id ⇔ ϕ ∈ Γ̃ (R).
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