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One More on the Lefshetz Fixed Point TheorembyLeh GÓRNIEWICZ and Mirosªaw �LOSARSKIPresented by Czesªaw BESSAGA
Summary. An abstrat version of the Lefshetz �xed point theorem is presented. Thenseveral generalizations of the lassial Lefshetz �xed point theorem are obtained.0. Introdution. In 1923 S. Lefshetz proved his famous theorem, nowknown as the Lefshetz �xed point theorem. Originally, the theorem wasformulated for ompat manifolds. Later, in 1928 H. Hopf gave a new prooffor self-mappings of polyhedra. In 1967, A. Granas extended the Lefshetz�xed point theorem to the ase of ompat maps of absolute neighbourhoodretrats. Until now, it has been proved for ompat absorbing ontrationand ondensing mappings (see [4℄, [6℄, [7℄, [9℄, [10℄, [11℄, [13℄, [21℄). In thepresent paper some further generalizations of this theorem are given.1. Preliminaries. We restrit our onsiderations to metri spaes. Fol-lowing K. Borsuk [2℄ we de�ne:Definition 1.1. A spae X is alled an absolute neighbourhood retrat(X ∈ ANR) provided for every spae Y and for every homeomorphism
h : X → Y suh that h(X) is a losed subset of Y there exists an openneighbourhood U of h(X) in Y and a ontinuous map (alled a retration)
r : U → h(X) suh that r(u) = u for every u ∈ h(X), i.e. h(X) is a retratof U ; X is alled an absolute retrat (X ∈ AR) provided the above holdstrue for U = Y , i.e. h(X) is a retrat of Y .In other words, X ∈ ANR (X ∈ AR) if and only if X has the neighbour-hood extension property (resp. extension property) (f. [2℄, [9℄).To understand better how large the lasses of ANR and AR are, we reall:2000 Mathematis Subjet Classi�ation: 55M20, 54H25, 55M15.Key words and phrases: Lefshetz number, �xed points, ANR, AR.[161℄ © Instytut Matematyzny PAN, 2007
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Proposition 1.2 ([2℄, [9℄).(1) X ∈ ANR if and only if there exists a normed spae E and an opensubset W of E suh that X is homeomorphi to a retrat of W ;(2) X ∈ AR if and only if there exists a normed spae E and a onvexsubset W of E suh that X is homeomorphi to a retrat of W .In partiular, any open subset in a normed spae or any �nite polyhedronis an ANR; respetively any onvex subset of an arbitrary normed spae isan AR. Note that any AR is ontratible and any ANR is loally ontratible.We shall onsider the ategory of pairs of metri spaes and ontinuousmappings. By a pair of spaes (X, X0) we understand a pair onsisting ofa metri spae X and a subset X0 ⊂ X. A pair of the form (X, ∅) willbe identi�ed with X. By a map f : (X, X0) → (Y, Y0) we understand aontinuous map from X to Y suh that f(X0) ⊂ Y0. We then write fX :

X → Y and fX0 : X0 → Y0 for the mappings indued by f .Let H be the �eh homology funtor with ompat arriers ([1℄, [7℄) andoe�ients in the �eld Q of rational numbers, from the ategory of all pairsof spaes and all maps between suh pairs, to the ategory of graded vetorspaes over and linear maps of degree zero. Thus
H(X, X0) = {Hq(X, X0)}is a graded vetor spae, Hq(X, X0) being the q-dimensional �eh homol-ogy spae with ompat arriers and rational oe�ients. For a map f :

(X, X0) → (Y, Y0), H(f) is the indued linear map f∗ = {f∗q}, where
f∗q : Hq(X, X0) → Hq(Y, Y0).A nonempty spae X is alled ayli provided:(i) Hq(X) = 0 for all q ≥ 1,(ii) H0(X) ≈ Q.Let u : E → E be an endomorphism of an arbitrary vetor spae. De�ne
N(u) = {x ∈ E : un(x) = 0 for some n}, where un is the nth iterate of u,and set Ẽ = E/N(u). As u(N(u)) ⊂ N(u), we have the indued endomor-phism ũ : Ẽ → Ẽ de�ned by ũ([x]) = [u(x)]. We all u admissible provided
dim Ẽ < ∞.Let u = {uq} : E → E be an endomorphism of degree zero of a gradedvetor spae E = {Eq}. We all u a Leray endomorphism if(i) all uq are admissible,(ii) almost all Ẽq are zero.For suh u, we de�ne the (generalized) Lefshetz number Λ(u) of u by putting

Λ(u) =
∑

q

(−1)qtr(ũq),
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where tr is the ordinary trae (f. [7℄ or [9℄). The following important prop-erty of the Leray endomorphism is a onsequene of the well-known formula
tr(u ◦ v) = tr(v ◦ u) for the trae.Proposition 1.3. Assume that , in the ategory of graded vetor spaes,the following diagram ommutes:

E′ -u

E′′

6
u′′

E′′

Z
Z

Z
Z}

v

-E′

6
u′

u

Then, if u′ or u′′ is a Leray endomorphism, so is the other ; and , in thatase, Λ(u′) = Λ(u′′).An endomorphism u : E → E of a graded vetor spae E is alled weaklynilpotent if for every q ≥ 0 and every x ∈ Eq, there exists an integer n suhthat un
q (x) = 0. Sine, for a weakly nilpotent endomorphism u : E → E, wehave N(u) = E, we get:Proposition 1.4. If u : E → E is a weakly nilpotent endomorphism,then Λ(u) = 0.Let f : (X, X0) → (X, X0) be suh that f∗ : H(X, X0) → H(X, X0)is a Leray endomorphism. Then we de�ne the Lefshetz number Λ(f) of fby putting Λ(f) = Λ(f∗). Clearly, if f and g are homotopi, then Λ(f) isde�ned if Λ(g) is; and, in this ase, Λ(f) = Λ(g).Observe that if X is an ayli spae, or, in partiular, ontratible, thenfor every f : X → X the endomorphism f∗ : H(X) → H(X) is a Lerayendomorphism and Λ(f∗) = 1.Consequently, if X ∈ AR, or in partiular if X is a onvex subset ina normed spae, then for every ontinuous map f : X → X the Lefshetznumber Λ(f) = Λ(f∗) is 1.We have the following lemma (see [3℄, [5℄, [7℄).Lemma 1.5. Let f : (X, X0) → (X, X0) be a map of pairs. If two ofthe endomorphisms f∗ : H(X, X0) → H(X, X0), (fX)∗ : H(X) → H(X),

(fX0)∗ : H(X0) → H(X0) are Leray endomorphisms, then so is the third ; inthat ase,
Λ(f) = Λ(fX) − Λ(fX0).We shall also use the following proposition:Proposition 1.6. Assume that for a mapping f : X → X the Lefshetznumber Λ(f) is de�ned and let p be a prime number. Then Λ(fp) is de�nedand Λ(f) ≡ Λ(fp) mod p.For the proof see [12℄ or [9℄.
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2. Lefshetz mappings. It is onvenient to introdue the followingnotion.Definition 2.1. A ontinuous map f : X → X is alled a Lefshetz mapprovided the generalized Lefshetz number Λ(f) is de�ned and Λ(f) 6= 0implies that the set Fix(f) = {x ∈ X : f(x) = x} is nonempty.In 1969, A. Granas [8℄ (see also [4℄, [14℄) proved:Theorem 2.2. Let X ∈ ANR and let f : X → X be a ontinuous andompat map (i.e., f(X) is a ompat set). Then f is a Lefshetz map.We shall need the Kuratowski measure of nonompatness (see [11℄, [7℄).Let X be a omplete metri spae and A be a bounded subset of X. We let
γ(A) = inf{r > 0 : there exists a �nite overing of Aby subsets of diameter at most r}.Then γ(A) is alled the measure of nonompatness of A.For a map f : X → X, a ompat subset A ⊂ X is alled an attratorprovided for any open neighbourhood U of A in X and for every x ∈ Xthere exists n = nx suh that fn(x) ∈ U . In what follows we shall denotethe family of mappings X → X with ompat attrator by CA(X).Note that if f : X → X has a ompat attrator A, then Fix(f) ⊂ A.Definition 2.3. Let X be a omplete metri spae and k ∈ [0, 1). A on-tinuous mapping f : X → X is alled a ondensing (resp. k-set ontra-tion) map provided that if A ⊂ X and γ(A) 6= 0, then γ(f(A)) < γ(A)

(resp. γ(f(A)) ≤ kγ(A)).Of ourse, any ompat map is a k-set ontration map for eah k ∈ (0, 1),and a k-set ontration map is a ondensing map.Theorem 2.4 ([1℄, [7℄). Let U be an open subset of a Banah spae E,and f : U → U a ondensing map whih has a ompat attrator. Then f isa Lefshetz map.For some generalization of Theorem 2.4 see Theorem 3.9 (f. also [6℄, [7℄,[11℄).Definition 2.5. Let f : X → X be ontinuous and X0 a subset of X.We shall say that X0 absorbs ompat sets provided for any ompat set
K ⊂ X there exists a natural number n = nK suh that fn(K) ⊂ X0.It is easy to prove the following:Proposition 2.6. Assume that f : X → X is a ontinuous map and
X0 is an open subset of X whih absorbs points. If f(X0) ⊂ X0, then X0absorbs ompat sets.
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Now we are able to prove a general version of the Lefshetz �xed pointtheorem.Theorem 2.7 (General version of the Lefshetz �xed point theorem).Let f : (X, X0) → (X, X0) be ontinuous. Assume that :(1) fX0 : X0 → X0 is a Lefshetz map,(2) f∗ : H(X, X0) → H(X, X0) is a weakly nilpotent endomorphism.Then fX is a Lefshetz map.Proof. First, in view of Proposition 1.4, we have Λ(f) = 0. Consequently,by Lemma 1.5, Λ(fX) is de�ned and Λ(fX) = Λ(fX0).Now Λ(fX) 6= 0 implies Λ(fX0) 6= 0 and by assumption Fix(fX0) 6= ∅.Finally, sine Fix(fX0) ⊂ Fix(fX), our theorem is proved.Remark 2.8 ([5℄, [7℄). Observe that if X0 absorbs ompat sets or X0is open and absorbs points then 2.7(2) is automatially satis�ed.We refer to [1℄, [4℄, [5℄, [9℄, [10℄, [13℄, [14℄ for di�erent formulations of theLefshetz �xed point theorem.3. Consequenes and appliations of Theorem 2.7. In what followsall mappings are assumed to be ontinuous and all spaes onsidered aremetri.Following [5℄ we reall the notion of ompat absorbing ontrations.Definition 3.1. A mapping f : X → X is alled a ompat absorbingontration (written f ∈ CAC(X)) provided the following two onditions aresatis�ed:(1) there exists an open subset U of X suh that f(U) ⊂ U and f(U) isompat,(2) the set U in (1) absorbs points.First, we indiate how large the CAC lass is. Evidently, any ompatmap f : X → X is a CAC. In fat, the ompat set f(X) is an attratorof f and we an take U = X. More generally, a map f : X → X is alledeventually ompat (written f ∈ EC(X)) provided there exists a naturalnumber n suh that fn : X → X is ompat. Observe that fn(X) is then aompat attrator for f . We shall say that a map f : X → X is asymptotiallyompat provided that for eah x ∈ X the orbit {x, f(x), . . . , fn(x), . . .} isrelatively ompat and the ore

Cf =
∞⋂

n=1

fn(X)is nonempty ompat.
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As observed in [7℄ or [9℄, any asymptotially ompat map f : X → Xhas a ompat attrator A equal to Cf .Aording to the above we an summarize:Proposition 3.2.(1) Any ompat map has a ompat attrator.(2) Any eventually ompat map has a ompat attrator.(3) Any asymptotially ompat map has a ompat attrator.So the lass of mappings with ompat attrators is quite large.To explain the onnetion between mappings with ompat attratorsand CACs we need one more notion.A map f : X → X is alled loally ompat (LC) provided that for every

x ∈ X there exists an open neighbourhood Ux of x in X suh that f(Ux) isompat.We have:Proposition 3.3 ([5℄�[7℄). Any loally ompat map with a ompat at-trator is a CAC.The above an be illustrated in the following:
CA ∩ LC ⊂ CAC ⊂ CA.Let us mention the following �rst appliation of Theorem 2.7:Theorem 3.4 (f. [5℄). Let X ∈ ANR and f : X → X be a CAC. Then

f is a Lefshetz map.Proof. We hoose an open subset U ⊂ X aording to De�nition 3.1.Then f(U) ⊂ U and f(U) ⊂ U is ompat. Therefore, in view of Theo-rem 2.2, the map f̃ : U → U , f̃(x) = f(x), is a Lefshetz map. Now ourlaim follows from Remark 2.8 and Theorem 2.7.Observe that Theorem 3.4 an be formulated in the following slightlymore general form:Theorem 3.5. Let f : X → X be a CAC. Assume that there exists anANR A ⊂ X suh that f(U) ⊂ A, where U is hosen aording to De�ni-tion 3.1. Then f is a Lefshetz map.Corollary 3.6. If X ∈ AR and f : X → X is a CAC , then Fix(f) 6= ∅.Problem 3.7. Can one replae CAC by CA in Theorem 3.4?Now, we reall the Lefshetz �xed point theorem for ondensing map-pings.Definition 3.8. A omplete, bounded metri spae (X, d) is alled aspeial ANR (written X ∈ ANRs) provided that there exists an open subset
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U of a Banah spae E and two ontinuous mappings r : U → X and
s : X → U suh that:(1) r ◦ s = idX ,(2) r and s are nonexpansive, i.e., γ(r(B)) ≤ γ(B) and γ(s(A)) ≤ γ(A)for all bounded sets A and B.We have the following:Theorem 3.9 ([6℄). Let X ∈ ANRs and let f : X → X be a ondensingmap. Then f is a Lefshetz map.Let f, h : (X, X0) → (X, X0) be two given mappings.Definition 3.10. We shall say that fX : X → X is a generalized om-pat absorbing ontration with respet to h (written fX ∈ GCACh(X))provided the following onditions are satis�ed:(1) fX0 : X0 → X0 is a Lefshetz map,(2) h∗ is an epimorphism or a monomorphism; moreover, if h∗ is an epi-morphism then for every ompat K ⊂ X there exists n = n(K) suhthat fn(h(K)) ⊂ X0, and if h∗ is a monomorphism then for everyompat K ⊂ X there exists n = n(K) suh that h(fn(K)) ⊂ X0and f(h−1(X0)) ⊂ h−1(X0).The following property is evident:Proposition 3.11. GCACId(X,X0)

(X) = CAC(X) provided that X0 isan open subset of X, X ∈ ANR and fX0 : X0 → X0 is a ompat map.Note that if X and X0 are onvex subsets of a normed spae, the on-ditions 3.10(2) and 3.10(3) are satis�ed automatially. The same holds trueif for example h is homotopi to the identity map of (X, X0). The followingexample shows that the lass GCACh(X) is larger than CAC(X).Example 3.12. Let fR : R → R be de�ned by the formula
fR(x) =





−2x − 3/2 for x ≤ −1,
1/2 for x ∈ (−1, 1),
2x − 3/2 for x ≥ 1.Let us onsider the map f : (R, (−1, 1)) → (R, (−1, 1)), f(x) = fR(x) forevery x ∈ R, and h : (R, (−1, 1)) → (R, (−1, 1)), h(x) = 0 for every x ∈ R.It is easy to see that fR ∈ GCACh(R) but fR /∈ CAC(R).Now we prove the following:Lemma 3.13. Let f : (X, X0) → (X, X0) be suh that fX ∈ GCACh(X)with respet to h : (X, X0) → (X, X0). Then f∗ : H(X, X0) → H(X, X0) isweakly nilpotent.
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Proof. Let h∗ be a monomorphism and let z ∈ H(X, X0). We have toprove that there exists n = n(z) suh that (f∗)

n(z) = 0. First observe that
(f∗)

n = (fn)∗. Sine we onsider homology with ompat arriers, we anassume that supp(z) ⊂ K, where K is a ompat subset of X. By assumptionthere exists n = n(K) suh that h(fn(K)) ⊂ X0; onsequently, in view ofour assumption f(h−1(X0)) ⊂ h−1(X0), we have h(fn+p(K)) ⊂ X0 for every
p ≥ 1. This implies that (h ◦ fn)∗(z) = 0. But

0 = (h ◦ fn)∗(z) = (h∗ ◦ (fn)∗)(z) = h∗((f∗)
n(z)),so (f∗)

n(z) = 0.Now, assume that h∗ is an epimorphism and let z ∈ H(X, X0). Thereexists y ∈ H(X, X0) suh that h∗(y) = z and again we an assume that
supp(y) ⊂ K1, where K1 is a ompat subset of X. By assumption thereexists m = m(K1) suh that fm(h(K1)) ⊂ X0. This implies that (fm ◦
h)∗(y) = 0, and so

0 = (fm ◦ h)∗(y) = ((fm)∗ ◦ h∗)(y) = (f∗)
m(h∗(y)) = (f∗)

m(z).Now from Lemma 3.13 and Theorem 2.7 we dedue the following gener-alization of the Lefshetz �xed point theorem.Theorem 3.14. If fX ∈ GCACh(X), then f is a Lefshetz map.Corollary 3.15. If fX ∈ GCACh(X) and X is an ayli spae (inpartiular , if X ∈ AR), then Fix(fX) 6= ∅.Corollary 3.15 generalizes the Shauder �xed point theorem. Some otherrelated results will be presented below.Definition 3.16. A map f : X → X is alled an aylially ompat ab-sorbing ontration (written f ∈ ACAC(X)) provided there are two subsets
U and A of X suh that:(1) U is open and nonempty,(2) f(U) ⊂ U and the ontration fU : U → U is ompat,(3) A is an ayli set suh that f(U) ⊂ A and U ∩ A ∈ ANR,(4) there exists n = n(A) suh that fn(A) ⊂ U .First, we prove the following:Proposition 3.17. Let U be an open subset of X. If X is a losedonvex subset of a Banah spae and f : (X, U) → (X, U) is a map suh that
fX ∈ CAC(X), then fX ∈ ACAC(X).Proof. It is su�ient to observe that A = conv(f(U)) is a ompat ARas the losed onvex hull of a ompat set in a Banah spae (f. Mazur'slemma [1℄), and A satis�es the assumptions of De�nition 3.16.
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It is easy to see that there are aylially ompat absorbing ontrationswhih are not ompat absorbing ontrations.Example 3.18. Let U = (−2,−1) ∪ (−1, 0) and f : (R, U) → (R, U) bede�ned as follows:

f(x) =

{
x/3 − 1/6 for x < 0,
2x − 1/6 for x ≥ 0,and let A = (−4, 0). It is easy to see that fR ∈ ACAC(R) but fR /∈ CAC(R).We prove:Theorem 3.19. If fX ∈ ACAC(X), then Fix(fX) 6= ∅.Proof. By assumption there exists n = n(A) suh that (fX)n(A) ⊂ Uand (fX)n+k(A) ⊂ (fX)k(U) ⊂ A for all k ≥ 1, where U is hosen aordingto De�nition 3.16. We an assume that n+k = p is a prime number for some

k ≥ 1. We have the following ommutative diagram:
U ∩ A -i

A
6

f
p
2

A
Z

Z
Z

Z}
f

p
3

-U ∩ A

6
f

p
1

i

in whih fp
1 , fp

2 , fp
3 are the appropriate ontrations of fp

X .By assumption, fp
1 is a ompat map and U ∩ A ∈ ANR, so Λ(fp

1 ) isde�ned. By Proposition 1.3,
Λ(fp

1 ) = Λ(fp
2 ) = 1.Now, Proposition 1.6 yields

Λ(fp
1 ) ≡ Λ(f1) mod p,where f1 is the ontration of fX to U ∩A. By assumptions (see 3.16(2) and3.16(3)), f1 is a ompat map. Sine Λ(f1) 6= 0, we have Fix(f1) 6= ∅, and as

Fix(f1) ⊂ Fix(fX), the proof is omplete.Remark 3.20. Observe that the assertion of Theorem 3.19 is still trueif we assume only that U ∩A is a ompat AANR (in the sense of Noguhi,see [2℄ for details) instead of being an ANR.Remark 3.21. We note that all the results in this paper remain true if:(1) we assume that all spaes are Hausdor� topologial spaes and inplae of ANRs we onsider retrats of open sets in Klee admissiblespaes (for details see [1℄; f. also [7℄);(2) we onsider multivalued admissible mappings in plae of single-valuedones (f. [1℄ or [7℄).
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