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PROBABILITY THEORY AND STOCHASTIC PROCESSES

Euler's Approximations of Weak Solutions of Re�etingSDEs with Disontinuous Coe�ientsbyAlina SEMRAUPresented by Jerzy ZABCZYK
Summary. We study onvergene in law for the Euler and Euler�Peano shemes forstohasti di�erential equations re�eting on the boundary of a general onvex domain.We assume that the oe�ients are measurable and ontinuous almost everywhere withrespet to the Lebesgue measure. The proofs are based on new estimates of Krylov's typefor the approximations onsidered.1. Introdution. Consider a d-dimensional stohasti di�erential equa-tion (SDE) on a onvex domain D with re�eting boundary ondition(1.1) Xt = X0 +

t\
0

σ(Xs) dWs +

t\
0

b(Xs) ds + Kt, t ∈ R
+.Here X0 = x0 ∈ D = D∪∂D, X is a re�eting proess on D, K is a boundedvariation proess with variation |K| inreasing only when Xt ∈ ∂D, W is a

d-dimensional standard Wiener proess and σ : D → R
d⊗R

d and b : D → R
dare measurable funtions ontinuous almost everywhere with respet to theLebesgue measure, i.e.(1.2) l(Dσσ∗) = 0, l(Db) = 0,where Dσσ∗ , Db are the sets of disontinuity points of σσ∗ and b respetively.We assume that σ and b satisfy two additional onditions:

‖σσ∗(x)‖ + |b(x)|2 ≤ L(1 + |x|2), x ∈ R
d,(1.3)

(σσ∗(y)x, x) ≥ λ|x|2, x, y ∈ R
d,(1.4)for some onstants L, λ > 0.2000 Mathematis Subjet Classi�ation: 60H20, 60H99, 60F17.Key words and phrases: stohasti di�erential equation, re�eting boundary ondition,Skorokhod problem. [171℄ © Instytut Matematyzny PAN, 2007



172 A. Semrau
In this paper we investigate two approximations of X, disrete {Xn} andontinuous {Xn}, de�ned to be the solutions of the SDEs with re�etingboundary onditions of the form(1.5) Xn

t = X0 +

t\
0

σ(Xn
s−) dW ̺n

s +

t\
0

b(Xn
s−) d̺n

s + Kn
t , t ∈ R

+,and(1.6) Xn
t = X0 +

t\
0

σ(Xn,̺n

s− ) dWs +

t\
0

b(Xn,̺n

s− ) ds + Kn
t , t ∈ R

+,
respetively, where ̺n

t = max{k/n : k ∈ N ∪ {0}, k/n ≤ t} and W ̺n

t is thedisretization of W , i.e. W ̺n

t = Wk/n for t ∈ [k/n, (k + 1)/n), k ∈ N ∪ {0},
n ∈ N. Sine in the ase D = R

d the proesses {Xn}, {Xn} are the lassialEuler and Euler�Peano approximations to the equation without re�etingboundary, we all them the Euler and Euler�Peano approximations to (1.1).Suh approximations have been onsidered before when the oe�ients σ, b of(1.1) are ontinuous and the SDE (1.1) has the pathwise uniqueness property(see e.g. Sªomi«ski (1994, 2001)). In this paper we omit the assumption ofthe ontinuity of σ, b. We give two new theorems onerning onvergene inlaw of {Xn} and {Xn} to a solution of (1.1) in whih the oe�ients satisfythe onditions (1.2)�(1.4) and under the assumption that (1.1) has a uniqueweak solution.Conditions ensuring weak uniqueness for (1.1) in the ase of disontinuousoe�ients σ, b were onsidered in Strook and Varadhan (1971) and Shmidt(1989). In the latter paper it is shown that if d = 1 and b ≡ 0, then (1.1) hasa weak solution on D = [r1, r2] for every starting point x0 ∈ D i� the set Mof all x ∈ D suh that TD∩Ux
σ−2(y) dy = ∞ for every open neighbourhood

Ux of x is ontained in the set N of zeros of σ. Therefore, if σ is merelybounded and measurable, some additional assumptions on boundedness of
(σσ∗)−1 are indispensable. Shmidt also proved that in the above situationthe solution of (1.1) is unique if N ⊆ M . In the multidimensional ase, fromStrook and Varadhan (1971) we know that a su�ient ondition for theuniqueness of a weak solution of (1.1) is that σσ∗ is bounded, ontinuousand uniformly ellipti, b is bounded measurable and ∂D is regular. Underthese assumptions the uniqueness an be shown with the use of the Girsanovtheorem.In Yan (2002) a similar problem is onsidered. In the ase of nonre�etingSDEs Yan shows that the onvergene of the Euler�Peano sheme to thesolution of (1.1) holds as long as a weak solution exists and is unique. Heassumes that σ and b are ontinuous almost everywhere with respet tothe Lebesgue measure and have at most linear growth. However, sine he
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uses the loal time tehnique in his proofs, the main results are only one-dimensional. In our paper, the main tool is a version of the multidimensionalKrylov inequality.Let us now introdue some de�nitions and notations. D(R+, Rd) is thespae of all mappings x : R

+ → R
d whih are right ontinuous and admitleft-hand limits, with the Skorokhod topology J1. Proesses we onsider havetrajetories in D(R+, Rd). For a given proess X we write ∆Xt for Xt −Xt−and we denote by X̺n the disretization of X, i.e. X̺n

t = Xk/n for t ∈

[k/n, (k+1)/n), k ∈ N∪{0}, n ∈ N. If X = (X1, . . . , Xd) is a loal martingalethen [X]t stands for ∑d
i=1[X

i]t, where [X i] is the quadrati variation proessof X i, i = 1, . . . , d. If K = (K1, . . . , Kd) is a proess with loally �nitevariation then |K|t =
∑d

i=1 |K
i|t, where |Ki|t is the total variation of Kion [0, t]. Lp(Q), p ≥ 1, is the usual Lp-spae with the Lebesgue measure lon Q. R

d⊗R
d is the spae of d×d-matries with the norm ‖σ‖ = (trσσ∗)1/2and σ∗ is the matrix transpose to σ. We write Kd

R = {x ∈ R
d : |x| ≤ R},where | · | denotes the usual Eulidean norm on R

d. Finally, �→D� and �→P �denote onvergene in law and in probability respetively.2. The Euler sheme. Let D be a onvex domain in R
d. De�ne theset Nx of inward normal unit vetors at x ∈ ∂D by

Nx =
{
n ∈ R

d : |n| = 1,
∧

y∈D

〈y − x, n〉 ≥ 0
}

.

Let (Ω,F , P ) be a probability spae and (Ft)t∈R+ be a �ltration on (Ω,F , P )satisfying the usual onditions. Let Y be an (Ft)-adapted semimartingalewith initial value in D, i.e.
Yt = Y0 + Mt + At, t ∈ R

+,where Y0 ∈ D, M is an (Ft)-adapted loal martingale, A is an (Ft)-adaptedproess with bounded variation, M0 = A0 = 0. Reall that a pair (X, K) of
(Ft)-adapted proesses is alled a solution to the Skorokhod problem assoi-ated with Y if:(i) Xt = Yt + Kt, t ∈ R

+,(ii) X is D-valued,(iii) K is a proess with loally bounded variation suh that K0 = 0 and
Kt =

t\
0

ns d|K|s, |K|t =

t\
0

1{Xs∈∂D} d|K|s, t ∈ R
+,where ns ∈ NXs

if Xs ∈ ∂D.Reall also that the SDE (1.1) is said to have a weak solution if thereexists a �ltered probability spae (Ω,F , (F t), P ), an (F t)-adapted Wiener
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proess W and a pair of (F t)-adapted proesses (X, K) suh that (X, K) isa solution of the Skorokhod problem assoiated with

Y t = X0 +

t\
0

σ(Xs) dW s +

t\
0

b(Xs) ds.If for any two weak solutions (X, K, W ), (Ω,F , (Ft), P ) and (X, K, W ),
(Ω,F , (F t), P ) with the same initial distribution, the laws of (X, K) and
(X, K) are the same then we say that weak uniqueness holds for (1.1).Let (F̺n

t ) denote the disretization of (Ft), i.e. F̺n

t = Fk/n for t ∈
[k/n, (k + 1)/n), k ∈ N ∪ {0}, n ∈ N. We say that the SDE (1.5) has astrong solution if there exists a pair (Xn, Kn) of (F

̺n

t )-adapted proessessuh that (Xn, Kn) is a solution of the Skorokhod problem assoiated with(2.1) Y n
t = X0 +

t\
0

σ(Xn
s−) dW ̺n

s +

t\
0

b(Xn
s−) d̺n

s .It is easy to prove that a solution Xn of (1.5) is given by the reurrentformula
Xn

0 = X0,

Xn
(k+1)/n = Π

(
Xn

k/n + b(Xn
k/n)

1

n
+ σ(Xn

k/n)(W(k+1)/n − Wk/n)

)

and Xn
t = Xn

k/n for t ∈ [k/n, (k + 1)/n), k ∈ N ∪ {0}, n ∈ N, where Π(x)is a projetion of x on D.We an now formulate our main result.Theorem 2.1. Let {(Xn, Kn)}n∈N be a sequene of solutions of (1.5)with oe�ients σ, b satisfying (1.2)�(1.4). If (1.1) has a unique weak solution
(X, K) then (Xn, Kn)→D(X, K).Proof. Our proof starts with the observation that {supt≤T |Xn

t |}n∈N and
{|Kn|T}n∈N are bounded in probability, i.e.

lim
R→∞

lim sup
n→∞

P (sup
t≤T

|Xn
t | ≥ R) = 0, T ∈ R

+,

lim
R→∞

lim sup
n→∞

P (|Kn|T ≥ R) = 0, T ∈ R
+.Sine the pair (Xn, Kn) is a solution of the Skorokhod problem assoiatedwith Y n given by the formula (2.1), due to Corollary 2.6 in Sªomi«ski (2001),for every p ∈ N and every q ∈ R

+,
sup
n∈N

E sup
t≤q

|Xn
t |

2p < ∞, sup
n∈N

E|Kn|pq < ∞,(2.2)whih in partiular implies boundedness in probability of our sequenes.
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Now we prove that {(Xn, Kn, W ̺n

)}n∈N is tight in D(R+, R3d). We usethe riterion given by Aldous (1978). Let {γn}n∈N be a sequene of (F̺n

t )stopping times and let {δn}n∈N be a sequene of positive onstants suh that
δn ↓ 0 and γn + δn ≤ q, n ∈ N, q ∈ R

+. By Corollary 1 in Sªomi«ski (1994),(1.3) and (2.2),
E|Xn

γn+δn
− Xn

γn
|2 ≤ C1E

([ ·\
0

σ(Xn
s−) dW ̺n

s

]γn+δn

γn

+
∣∣∣
γn+δn\

γn

b(Xn
s−) d̺n

s

∣∣∣
2

γn

)

≤ C2E
(γn+δn\

γn

trσσ∗(Xn
s−) d̺n

s +

γn+δn\
γn

|b(Xn
s−)|2 d̺n

s

)

≤ LC2(d + 1)E

γn+δn\
γn

(1 + sup
u≤s

|Xn
u|

2) ds

= LC3(d + 1)δn −−−→
n→∞

0.Using again Corollary 1 in Sªomi«ski (1994), (1.3) and (2.2) we obtain thesame estimate for E|Kn
γn+δn

− Kn
γn
|2, and onsequently, the onvergene

E|Kn
γn+δn

− Kn
γn
|2 −−−→

n→∞
0.Sine W ̺n

→D W , it follows that the sequene {(Xn, Kn, W ̺n

)}n∈N is tightinD(R+, R3d). Therefore, there exists a subsequene (n′) ⊂ (n) and proesses
X, K, W suh that(2.3) (Xn′

, Kn′

, W ̺n
′

) −→
D

(X, K, W )in D(R+, R3d), where W is a Wiener proess with respet to the natural�ltration FX,K,W . By the standard argument, in order to �nish the proof itis su�ient to show that (X, K) is a solution of the SDE
Xt = X0 +

t\
0

σ(Xs) dW s +

t\
0

b(Xs) ds + Kt, t ∈ R
+.(2.4)

Now we prove an inequality of Krylov's type for {Xn}n∈N, whih is ourruial tool.Lemma 2.2. Let τR
n = inf{t : |Xn

t | > R}, R ∈ R
+, n ∈ N. Then for allbounded measurable funtions f : D → R

+ suh that l(Df ) = 0,
lim sup

n→∞
E

T∧τR
n\

0

f(Xn
s−) ds ≤ C‖f‖Ld(Kd

R
∩D),(2.5)where C is a onstant depending only on d, T, R and λ.
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Proof. For every n ∈ N set

Ŷ n
t = X0 +

t\
0

σ(Xn
s−) dWs +

t\
0

b(Xn
s−) dsand let (X̂n, K̂n) be a solution of the Skorokhod problem assoiated with Ŷ n.In view of Corollary 2.6 in Sªomi«ski (2001), for every p ∈ N and every

q ∈ R
+,

sup
n∈N

E|K̂n|pq < ∞.(2.6)Let ωW (δ, g) denote the modulus of ontinuity of W . By Shwarz's inequality,Lemma A.4 in Sªomi«ski (2001), (1.3) and (2.2),
E sup

t≤q
|Ŷ n

t − Y n
t |

2 = E sup
t≤q

|σ(Xn
̺n

t
−)(Wt − W̺n

t
) + b(Xn

̺n
t
−)(t − ̺n

t )|2

≤ 2

{
d(E sup

t≤q
‖σσ∗(Xn

t−)‖2)1/2(E{ωW (1/n, q)}4)1/2

+

(
1

n

)2

E sup
t≤q

|b(Xn
t−)|2

}

≤ C1

{
lnn

n
(E sup

t≤q
(1 + |Xn

t−|
4))1/2 +

(
1

n

)2

E sup
t≤q

(1 + |Xn
t−|

2)

}

≤ C2
lnn

n
.Applying Lemma 2.2 in Tanaka (1979) we onlude that

sup
t≤q

|X̂n
t − Xn

t |
2 ≤ sup

t≤q
|Ŷ n

t − Y n
t |

2 + 4 sup
t≤q

|Ŷ n
t − Y n

t |(|K̂
n|q − |Kn|q).Hene and by Shwarz's inequality,

E sup
t≤q

|X̂n
t − Xn

t |
2 ≤ C3{E sup

t≤q
|Ŷ n

t − Y n
t |

2

+ (E sup
t≤q

|Ŷ n
t − Y n

t |
2)1/2(E|K̂n|2q + E|Kn|2q)

1/2}.Using now (2.2), (2.6) and the above estimate of E supt≤q |Ŷ
n
t −Y n

t |
2 we get

E sup
t≤q

|X̂n
t − Xn

t |
2 ≤ C4

(
lnn

n

)1/2

.(2.7)By the assumption made at the beginning of the proof, X̂n is of the form
X̂n

t = X0 + Ân
t + M̂n

t + K̂n
t ,where Ân

t =
Tt
0 b(Xn

s−) ds and M̂n
t =

Tt
0 σ(Xn

s−) dWs. For every n ∈ N let
τ̂R′

n = inf{t : |X̂n
t | > R′}, where R′ ∈ R

+ and R′ > R. Aording to (2.7),
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we have

lim
n→∞

P (τR
n > τ̂R′

n ) = 0.It is easy to note that E|Ân|T∧τ̂R′

n

< ∞ for every n ∈ N. From (2.6) we alsoobtain E|K̂n|T∧τ̂R′

n

< ∞ for every n ∈ N. Moreover, by (1.4), the matrix Qde�ned as
Qt =

(
(σσ∗)ij(Xn

t−) dt

trσσ∗(Xn
t−) dt

)

i,j=1,...,dis uniformly ellipti. All the assumptions of Theorem 6(i) in Melnikov (1983)are satis�ed, so there exists a onstant C5 depending only on d, T, R and λsuh that
E

T∧τ̂R
′

n\
0

f(X̂n
s ) d〈M̂n〉s ≤ C5‖f‖Ld(Kd

R′
∩D).On the other hand,

E

T∧τ̂R
′

n\
0

f(X̂n
s ) ds ≤ (dλ)−1E

T∧τ̂R
′

n\
0

f(X̂n
s )trσσ∗(Xn

s−) ds

= (dλ)−1E

T∧τ̂R
′

n\
0

f(X̂n
s ) d〈M̂n〉s,so for all measurable funtions f : D → R

+ and for every n ∈ N,
E

T∧τ̂R
′

n\
0

f(X̂n
s ) ds ≤ C‖f‖Ld(Kd

R′
∩D),(2.8)where C is a onstant depending only on d, T , R′ and λ.We are now able to show that

lim sup
n→∞

E

T∧τR
n\

0

f(X̂n
s ) ds ≤ C‖f‖Ld(Kd

R
∩D).(2.9)

Indeed, from the property of τ̂R′

n and (2.8),
lim sup

n→∞
E

T∧τR
n\

0

f(X̂n
s ) ds ≤ lim sup

n→∞
E

T∧τ̂R
′

n\
0

f(X̂n
s ) ds1(τR

n ≤τ̂R′

n )

+ lim sup
n→∞

E

T∧τR
n\

0

f(X̂n
s ) ds1(τR

n >τ̂R′

n )
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≤ lim sup

n→∞
E

T∧τ̂R
′

n\
0

f(X̂n
s ) ds + C6 lim sup

n→∞
P (τR

n > τ̂R′

n ) ≤ C‖f‖Ld(Kd

R′
∩D).Letting R′ ↓ R yields (2.9).Next, we show that for every ontinuous funtion f : D → R

+,
lim sup

n→∞
E

∣∣∣
T∧τR

n\
0

f(X̂n
s−) ds −

T∧τR
n\

0

f(Xn
s−) ds

∣∣∣ = 0.(2.10)
Let M := supx∈Kd

R
∩D |f(x)| < ∞. Sine f is uniformly ontinuous on Kd

R∩D,for every ε > 0 there exists δ > 0 suh that |f(x)−f(x′)| < ε if x, x′ ∈ Kd
R∩Dand |x − x′| < δ. Therefore, by Chebyshev's inequality,

E
∣∣∣
T∧τR

n\
0

(f(X̂n
s−) − f(Xn

s−)) ds
∣∣∣

≤ E

T∧τR
n\

0

|f(X̂n
s−) − f(Xn

s−)|1
(|X̂n

s−
−Xn

s−
|<δ)

ds

+ E

T∧τR
n\

0

(f(X̂n
s−) − f(Xn

s−))1
(|X̂n

s−
−Xn

s−
|≥δ)

ds

≤ εT + 2MT P ( sup
s≤T∧τR

n

|X̂n
s− − Xn

s−| ≥ δ)

≤ εT + 2MTδ−2 E sup
t≤T∧τR

n

|X̂n
t − Xn

t |
2.Using (2.7) and letting ε → 0 we obtain (2.10). Hene, by (2.9), it followsthat the inequality (2.5) is true for every ontinuous funtion f : D → R

+.Now let f be an arbitrary nonnegative bounded funtion suh that l(Df )
= 0. Sine f is Riemann integrable, for every ε > 0 there exists a ontinuousfuntion f+

ε suh that f ≤ f+
ε and\

Kd

R
∩D

(f+
ε (x) − f(x)) dx < ε.

Sine for f+
ε the inequality (2.5) is true,

lim sup
n→∞

E

T∧τR
n\

0

f(Xn
s−) ds ≤ lim sup

n→∞
E

T∧τR
n\

0

f+
ε (Xn

s−) ds

≤ C‖f+
ε ‖Ld(Kd

R
∩D) ≤ C‖f‖Ld(Kd

R
∩D) + C7ε

1/d.Letting ε → 0 ompletes the proof of the lemma.
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The remaining part of the proof onsists in a modi�ation of the proofof Theorem 2.2 from Rozkosz and Sªomi«ski (1997). For every n ∈ N let

τR
n = inf{t ∈ R

+ : |Xn
t | ≥ R or |Xn

t−| ≥ R} and τR = inf{t ∈ R
+ : |Xt| ≥ Ror |Xt−| ≥ R}, R ∈ R

+. In view of (2.3) and Proposition VI.2.12 from Jaodand Shiryaev (2003), there exists a sequene {Rk}k∈N with Rk ↑ ∞ suh thatfor every k ∈ N,(2.11) (τRk

n′ , Xn′,τ
Rk

n′ , Kn′,τ
Rk

n′ , W ̺n
′

,τ
Rk

n′ ) −→
D

(τRk , XτRk , KτRk , W τRk )in R ×D(R+, R3d).Using molli�ation we an onstrut sequenes {bi}i∈N and {σi}i∈N ofontinuous funtions σi : D → R
d ⊗ R

d, bi : D → R
d suh that ‖σiσ

∗
i (x)‖ +

|bi(x)|2 ≤ K(1 + |x|2), x ∈ R
d, and σk,j

i → σk,j and bl
i → bl in Ld(K),

k, j, l = 1, . . . , d, for every ompat subset K ⊂ D. By (2.3) and Theo-rem 2.6 of Jakubowski, Mémin and Pages (1989), it follows that for every
i ∈ N, k ∈ N,
(2.12)

(
τRk

n′ , Xn′,τ
Rk

n′ ,

·∧τ
Rk

n′\
0

σi(X
n′

s−) dW ̺n
′

s
s ,

·∧τ
Rk

n′\
0

bi(X
n′

s−) d̺n′

s , Kn′,τ
Rk

n′

)

−→
D

(
τRk , XτRk ,

·∧τRk\
0

σi(Xs) dW s,

·∧τRk\
0

bi(Xs) ds, KτRk )

in R ×D(R+, R4d).On the other hand, by Lemma 2.2 and the Lebesgue dominated onver-gene theorem, for every k ∈ N and every T ∈ R
+,

lim
i→∞

lim sup
n′→∞

E
[ .\
0

(σi − σ)(Xn′

s−) dW ̺n
′

s

]

T∧τ
Rk

n′

= lim
i→∞

lim sup
n′→∞

E

T∧τ
Rk

n′\
0

tr(σi − σ)(σi − σ)∗(Xn′

s−) d̺n′

s

≤ lim
i→∞

lim sup
n′→∞

E

T∧τ
Rk

n′\
0

‖(σi − σ)(σi − σ)∗(Xn′

s−)‖2 ds

≤ C lim
i→∞

∥∥‖(σi − σ)(σi − σ)∗‖2
∥∥

Ld(Kd

Rk
∩D)

= 0.Similarly,
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lim
i→∞

lim sup
n′→∞

E
∣∣∣

.\
0

(bi − b)(Xn′

s−) d̺n′

s

∣∣∣
T∧τ

Rk

n′

≤ d1/2 lim
i→∞

lim sup
n′→∞

E

T∧τ
Rk

n′\
0

|(bi − b)(Xn′

s−)| ds

≤ d1/2C lim
i→∞

‖ |bi − b| ‖Ld(Kd

Rk
∩D) = 0.Boundedness in probability of {supt≤T |Xn

t |}n∈N implies that for every T in
R

+ we have limk→∞ lim supn′→∞ P (τRk

n′ ≤ T ) = 0. Hene, for every ε > 0,
(2.13) lim

i→∞
lim sup
n′→∞

P
(
sup
t≤T

∣∣∣
t\
0

σi(X
n′

s−) dW ̺n
′

s −
t\
0

σ(Xn′

s−) dW ̺n
′

s

∣∣∣ ≥ ε
)

= 0and(2.14) lim
i→∞

lim sup
n′→∞

P
(
sup
t≤T

∣∣∣
t\
0

bi(X
n′

s−) d̺n′

s −
t\
0

b(Xn′

s−) d̺n′

s

∣∣∣ ≥ ε
)

= 0.

Now we show that Krylov's inequality is also true for X. First assumethat f is ontinuous. By (2.11) and Theorem 2.6 of Jakubowski, Mémin andPages (1989),
·∧τ

Rk

n′\
0

f(Xn′

s−) ds−→
D

·∧τRk\
0

f(Xs) ds in D(R+, Rd).

Therefore, by Lemma 2.2 and Fatou's lemma, for every k ∈ N and T ∈ R
+,

E

T∧τRk\
0

f(Xs) ds ≤ lim inf
n′→∞

E

T∧τ
Rk

n′\
0

f(Xn′

s−) ds ≤ C‖f‖Ld(Kd

R
∩D).The proof of this inequality for all nonnegative measurable funtions f isnow standard (see e.g. Krylov (1982)).By the above, in muh the same way as for Xn′ and W ̺n

′

, we show thatfor every T ∈ R
+,

lim
i→∞

E
〈 .\

0

(σi − σ)(Xs) dW s

〉

T∧τRk

= 0

and
lim
i→∞

E
∣∣∣
.\
0

(bi − b)(X) ds
∣∣∣
T∧τRk

= 0.
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Sine τRk ↑ ∞ P -a.s., for every ε > 0,

lim
i→∞

P
(
sup
t≤T

∣∣∣
t\
0

σi(Xs) dW s −
t\
0

σ(Xs) dW s

∣∣∣ ≥ ε
)

= 0(2.15)and
lim
i→∞

P
(
sup
t≤T

∣∣∣
t\
0

bi(Xs) ds −
t\
0

b(Xs) ds
∣∣∣ ≥ ε

)
= 0.(2.16)By (2.12)�(2.16) and Theorem 3.2 from Billingsley (1999),

(
Xn′

,

.\
0

σ(Xn′

s−) dW ̺n
′

s
s ,

.\
0

b(Xn′

s−) d̺n′

s , Kn′

)

−→
D

(
X,

.\
0

σ(Xs) dW s,

.\
0

b(Xs) ds, K
)

in D(R+, R4d). Finally, by the ontinuous mapping theorem, (X, K) is asolution of the SDE (2.4), whih ompletes the proof.3. The Euler�Peano sheme. Let us now onsider a ontinuous ap-proximation {Xn} of X de�ned as the solutions of the SDEs (1.6). For thatapproximation one an obtain a similar result to that for {Xn}. We desribeit in the following theorem.Theorem 3.1. Let {(Xn, Kn)}n∈N be a sequene of solutions of (1.6)with oe�ients σ, b satisfying (1.2)�(1.4). If (1.1) has a unique weak solution
(X, K) then (Xn, Kn) →D (X, K).The proof of this theorem is quite similar to that of Theorem 2.1 beauseLemma 2.2 holds true with Xn replaed by Xn,̺n .The result given in Theorem 3.1 is quite satisfatory from the theoreti-al standpoint. However, if we are interested in numerial simulation thereappears a problem�not always an one give a simple simulating sheme ofa solution of (1.6). In the ase D = R

d−1 × R
+ an e�ient method of suhsimulation was given by Lépingle (1995).Aknowledgements. I would like to thank Professor Leszek Sªomi«skifor suggesting the problem and for many stimulating onversations.
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