Fat P-sets in the Space ω^*

by

Ryszard FRANKIEWICZ, Magdalena GRZECH and Paweł ZBIERSKI

Presented by Czesław RYLL-NARDZEWSKI

Summary. We prove that—consistently—in the space ω^* there are no P-sets with the κ-cc and any two fat P-sets with the $\kappa^+\text{-cc}$ are coabsolute.

1. Introduction. A closed subset $A \subseteq X$ of a topological space X is said to be a P-set if the inclusion $A \subseteq \text{int}\bigcap R$ holds for any countable family R of open neighborhoods of A. A point $x \in X$ is a P-point if the one-element set $\{x\}$ is a P-set. Here, we consider the case of $X = \omega^* = \beta[\omega] \setminus \omega$, the remainder of the Stone–Čech compactification of ω ($= \text{the nonnegative integers with the discrete topology}$). Hence, we may assume that the family R mentioned above consists of open-closed neighborhoods of A. The existence of P-points follows e.g. from the continuum hypothesis (see [6]), but it is not provable in set theory. In fact, Shelah constructed a model in which $\kappa = \omega_2$ and there are no P-points (see [7]).

Let κ be a cardinal. We say that a set A has the κ-cc (the κ (anti-)chain condition) if every disjoint family of relatively open subsets of A has power less than κ. In [3] a construction is presented of a model in which $\kappa = \omega_2$ and there are no P-sets with the ω_1-cc in the remainder ω^* (see also [4] for all the references). In this paper we strengthen this theorem by describing a model in which $\kappa = \omega_2$ and there are no P-sets with the κ-cc. Moreover, in the constructed model any two fat (see below for the definition) P-sets with the $\kappa^+\text{-cc}$ are alike in the sense that they are coabsolute (i.e. their Gleason spaces are homeomorphic).

The case of non-fat sets requires a different forcing and will be considered elsewhere.

2000 Mathematics Subject Classification: Primary 03E35; Secondary 03E40, 03E65.

Key words and phrases: ω^*, Gregorieff forcing, P-set, fat, κ-cc.

Research partially supported by KBN grant 5 P03A 037 20.
2. Basic facts and definitions. If A, B are subsets of ω then $A \subseteq \ast B$ means $A \setminus B$ is finite. Closed subsets of ω^* can be identified with filters on ω. Indeed, any closed set in ω^* can be written as
\[
\bigcap \{ \overline{A} \setminus \omega : A \in F \}
\]
where F is a filter on ω (\overline{A} is the closure of $A \subseteq \omega$ in $\beta[\omega]$), and vice versa. P-filters (filters corresponding to P-sets) are then characterized by the following condition:

For every family $\{ A_i : i \in \omega \} \subseteq F$ there is an $A \in F$ such that $A \subseteq \ast A_i$ for all $i \in \omega$.

Equivalently, P-ideals I (ideals dual to P-filters) have the following property:

For every $\{ B_i : i \in \omega \} \subseteq I$ there is a $B \in I$ such that $B_i \subseteq \ast B$ for all $i \in \omega$.

An ideal I (and its dual filter F) is called fat if it satisfies the following condition:

If $\{ B_i : i \in \omega \} \subseteq I$ is such that $\lim_i \min B_i = \infty$, then there is an infinite $Z \subseteq \omega$ such that $\bigcup_{i \in Z} B_i \in I$.

In [5] it is proved that every P-set having the c-cc is fat.

For the rest of this section let us fix a fat P-filter F and its dual I.

The filter F determines a forcing $\mathbb{P} = \mathbb{P}(F)$ in the following way: Let T consist of all trees $t = (t, \leq_t)$, which are suborderings of (ω, \leq) whose domains t are infinite elements of I. Fix a tree t_0 order isomorphic to the Cantor tree \mathcal{B} (i.e. a full binary tree of height ω). Moreover we can assume that $\min t_0 = 0$. So, \mathcal{B} can be treated as the set of all finite zero-one sequences. Moreover we can assume that if $h : \{0, 1\}^{<\omega} \rightarrow (t_0, \leq t_0)$ is the required isomorphism then the following condition holds:

If x_1, x_2 are different elements of \mathcal{B}, $\text{length}(x_1 \cap x_2) = l$ and $x_1(l) < x_2(l)$ then $h(x_1|_{\{0,1,\ldots,l\}}) < h(x_2|_{\{0,1,\ldots,l\}})$.

We define the relation which partially orders the family T as follows: $(t, \leq_t) \leq (s, \leq_s)$ if and only if (s, \leq_s) is a subordering of (t, \leq_t) and each branch of (t, \leq_t) contains cofinally a (unique) branch of (s, \leq_s).

For any $t \in T$ and $n \in \omega$ let $t^{(n)} = t \setminus \{0, \ldots, n\}$ denote the subtree of t obtained from t by deleting the elements $0, \ldots, n$.

Now define $\mathbb{P} = \mathbb{P}(F)$ as the set of all pairs $p = (t^p, f^p)$, where $t^p \in T$ and $t^p \leq t_0^{(n)}$ for some n and a tree t_0, and $f^p : t^p \rightarrow \{0, 1\}$. The ordering on \mathbb{P} is defined as follows:

$p \leq q \equiv t^p \leq t^q$ and $f^p \supseteq f^q$.

Thus, the sets of branching points of the trees are exactly the same. (In fact, these points are precisely the branching points of the fixed tree \(t_0 \).) It follows that each branch of the tree \(t^p \) is uniquely coded by a branch of \(t_0 \) (and \(\mathcal{B} \)).

To see how \(\mathbb{P} \) works, suppose that \(G \subseteq \mathbb{P} \) is a generic filter. For any branch \(b \) of \(t_0 \) in \(V \) let \(b^p \) be the branch of \(t^p \) which almost contains \(b \) cofinally; put \(t^G = \bigcup_{p \in G} t^p \), \(f^G = \bigcup_{p \in G} f^p \) and \(b^G = \bigcup_{p \in G} b^p \). Clearly, \(t^G \) is a tree (but \(t^G \not\in I \)), \(f^G : t^G \rightarrow \{0, 1\} \) and \(b^G \) is a branch of \(t^G \) extending \(b \). Define

\[
X_b = \{ i \in \omega : i \in b^G \text{ and } f^G(i) = 1 \}.
\]

By assumption, the sets \(t^p \) belong to \(I \) and therefore the set \((\omega \setminus t^p) \cap A \) is infinite, for each \(A \in F \) and \(p \in \mathbb{P} \). It follows that the sets

\[
E_{n, \varepsilon}^{A,b} = \{ p \in \mathbb{P} : \exists i \geq n [i \in A \cap b^p \text{ and } f^p(i) = \varepsilon] \}
\]

are dense for each \(A \in F \), \(n \in \omega \), \(\varepsilon = 0, 1 \) and any branch \(b \) of \(t_0 \) (in \(V \)). Hence, \(X_b \) intersects infinitely each set \(A \in F \), and the complement \(b^G \setminus X_b \) has the same property. In [3], it is proved that the countable product \(\mathbb{P}^\omega(F) = \mathbb{P}(F) \times \mathbb{P}(F) \times \cdots \) is always \(\omega \)-proper and \(\omega^\omega \)-bounding (i.e. each function \(f : \omega \rightarrow \omega \) from \(V[G] \) is majorized by a function \(g : \omega \rightarrow \omega \) from \(V \)). Thus \(\omega_1 \) is not collapsed and since distinct branches \(b^G \) are almost disjoint we may say that the forcing \(\mathbb{P} \) adds uncountably many almost disjoint Gregorieff-like sets \(X_b \). In particular, the Suslin number of the set \(\bigcap \{ A \setminus \omega \setminus A \in F \} \) determined by \(F \) will be uncountable in \(V[G] \).

A similar notion of forcing is used in [3] to construct a model in which there are no closed ccc \(P \)-sets (in \(\omega^* \)). Since \(\omega_1 \) is not collapsed, to obtain an uncountable family of relatively open subsets of \(\bigcap F \) it is enough to add a new element \(X_b \) for every branch \(b^V \) of \(\mathcal{B}^V \) (i.e. every branch which belongs to the ground model). Since, starting with \(c = \omega_1 \), we iterate the forcing \(\mathbb{P}^\omega(F) \omega_2 \) times, in the resulting model we have \(c = \omega_2 \). So to ensure that each closed \(P \)-set is \(c \)-ccc we have to add new elements of the type \(X_b \) for \(\omega_2 \) (new) branches of \(\mathcal{B} \).

Note that since the set \(t^G \) does not belong to the ground model its characteristic function is a new branch in the binary tree \(\mathcal{B} \).

3. Construction of the model. Let us fix a ground model \(V \) in which \(c = \omega_1 \), \(2^{\omega_1} = \omega_2 \) and the diamond principle holds:

There is a sequence \(\langle T_\alpha : \alpha < \omega_2 \text{ and } \text{cf}(\alpha) = \omega_1 \rangle \) such that for every \(Y \subseteq H(\omega_2) \) the set \(\{ \alpha < \omega_2 : \text{cf}(\alpha) = \omega_1 \text{ and } Y \cap H_\alpha = T_\alpha \} \) is stationary.

Here, \(H(\omega_2) \) denotes the family of all sets of hereditary power less than \(\omega_2 \); \(H(\omega_2) = \bigcup_{\alpha<\omega_2} H_\alpha \) is a standard decomposition into a continuously in-
creasing chain with \(\text{card}(H_\alpha) = \omega_1 \). (As \(V \) we can take for example the constructible universe.)

Define by induction a countable support iteration \(\langle P_\alpha : \alpha < \omega_2 \rangle \) as follows:

- \(P_\alpha = \text{Lim}_{\beta < \alpha} P_\beta \) (limit with countable supports) for limit \(\alpha \),
- \(P_{\alpha+1} = P_\alpha * P_\alpha(T_\alpha) \) if \(\text{cf}(\alpha) = \omega_1 \) and \(P_\alpha \models \text{"} T_\alpha \text{ is a fat } P\text{-filter} \),
- \(P_{\alpha+1} = P_\alpha * Q_\alpha \) in all remaining cases (\(Q_\alpha \) is a \(P_\alpha \)-name of an arbitrary forcing whose countable support iteration is proper and \(\omega^\omega \)-bounding).

We can assume that \(P_\alpha \subseteq H(\omega_2) \). In view of [7, Ch. V, Theorem 4.3] the forcing \(P_{\omega_2} \) is proper and \(\omega^\omega \)-bounding. Let \(G \) be a generic filter.

4. Main theorem. The model constructed in the previous section satisfies the following.

Theorem 1. In the model \(V[G] \) there are no \(P \)-sets with the \(c \)-cc.

Proof. Suppose the opposite and derive a contradiction. Thus, there is a fat \(P \)-filter \(F \in V[G] \). Clearly, we have

\[V[G] \models \text{"} c = (\omega_2)^V \text{" and } V[G][\alpha] \models \text{"} c = \omega_1 \text{"} \text{ for all } \alpha < \omega_2. \]

Set \(F_\alpha = F \cap V[G][\alpha] \). We claim that

The set \(C_1 = \{ \alpha < \omega_2 : F_\alpha \in V[G][\alpha] \} \) is an \(\omega_1 \)-cub

(i.e. unbounded and closed under limits of length \(\omega_1 \)). Choose a canonical name \(F \subseteq H(\omega_2) \) of \(F \) consisting of some pairs \(\langle x, p \rangle \) (in fact, canonical names for pairs, which are elements of \(H(\omega_2) \)), where \(x \) is a \(P_{\omega_2} \)-name of a subset of \(\omega \) and \(p \in P_{\omega_2} \). Denote by \(F(x) \) the set \(\{ p : \langle x, p \rangle \in F \} \). Since card \(F(x) \) is at most \(\omega_1 \), the set

\[C_2 = \{ \alpha < \omega_2 : \forall x \left[x \in \left(V(P_\alpha) \right) \rightarrow F(x) \subseteq P_\alpha \right] \} \]

is easily seen to be an \(\omega_1 \)-cub. Plainly, the set \(F_\alpha = F \cap \left(V(P_\alpha) \times P_\alpha \right) \) is a \(P_\alpha \)-name and we have

whence \(F_\alpha \in V[G][\alpha] \) for all \(\alpha \in C_2 \).

In addition we may assert that the \(F_\alpha \)'s are fat \(P \)-filters, because they are so on an \(\omega_1 \)-cub subset of \(C_1 \). Indeed, if \(R = \{ A_i : i \in \omega \} \subseteq F_\alpha \), then there is an \(A \in F \) such that \(A \subseteq^* A_i \) for all \(i \in \omega \). There is a \(\beta < \omega_2 \) such that \(A \in V[G][\beta] \) (cf. [7, Ch. V, 4.4]). Since there are at most \(c = \omega_1 \) countable subfamilies \(R \) of \(F_\alpha \) in \(V[G][\alpha] \), there must be an ordinal \(\alpha^* \in C_1 \) such that in \(V[G][\alpha^*] \) we can find some lower bounds \(A \in F \) for all such \(R \)'s. Now define inductively \(\alpha_0 = \alpha, \alpha_{\xi+1} = \alpha_\xi^* \) and \(\alpha_\lambda = \sup_{\xi < \lambda} \alpha_\xi \) for limit \(\lambda \).

If \(\beta = \sup_{\xi < \omega_1} \alpha_\xi \), then \(\beta \in C_1 \) and \(F_\beta \subseteq V[G][\beta] \) is a \(P \)-filter. Obviously,
the set
\[C_1' = \{ \beta < \omega_2 : F_\beta \text{ is a } P\text{-filter} \} \]
is ω_1-closed, which proves that C_1' is an ω_1-cub.

In a similar way we show that F_β is fat on an ω_1-cub subset $\subseteq C_1$, which
proves the claim.

A standard reasoning also shows that the set
\[C_3 = \{ \alpha < \omega_2 : F \cap H_\alpha = F_\alpha \} \]
is an ω_1-cub. Hence, $C = C_1 \cap C_3$ is also an ω_1-cub. By the diamond principle
applied to $Y = F \subseteq H(\omega_2)$ there is an $\alpha < \omega_2$, with $\text{cf}(\alpha) = \omega_1$
such that T_α is a \mathbb{P}_α-name of the fat P-filter F_α. By the definition of the iteration we
force with $\mathbb{P}^{\omega}(F_\alpha)$ at stage α, i.e. $\mathbb{P}_{\alpha+1} = \mathbb{P}_\alpha \ast P^{\omega}(F_\alpha)$.

To finish the proof fix a $p \in \mathbb{P}_{\omega_2}$. Then the αth term $p(\alpha)$ can be written
as $p(\alpha) = \langle p_n(\alpha) : n \in \omega \rangle$. Let b be a branch in the binary tree B (in $V[G|\alpha]$)
and denote by $b^{G}_{n,\alpha}$ the corresponding branch in $t^{G}_{n,\alpha} = \bigcup_{p \in G} t^{p}_{n,\alpha}$,
where $p|_{\alpha} \vdash "p(\alpha) = \langle t^{p}_{n,\alpha}, f^{p}_{n,\alpha} \rangle"$. Define
\[X^{\alpha}_{n,\alpha}(b) = \{ k \in b^{G}_{n,\alpha} : f^{G}_{n,\alpha}(k) = 1 \} \]

Note that for any $\xi > \alpha$ with $\text{cf}(\xi) = \omega_1$, $t^{G}_{m,\xi} = \bigcup_{p \in G} t^{p}_{m,\xi}$ determines a
new branch in the binary tree and thus a new branch $b^{m,\xi}_{n,\alpha}$ in the tree $t^{G}_{n,\alpha}$. Indeed, we can identify the set $t^{G}_{n,\alpha}$ with its characteristic function. Such a function is just a (new) branch in the binary tree, say b. Let $b^{m,\xi}_{n,\alpha}$ be the corresponding branch of the tree $t^{G}_{n,\alpha}$. (Of course, this branch does not belong to the model $V[G|\alpha]$.) Define
\[X^{m,\xi}_{n,\alpha} = \{ k \in b^{m,\xi}_{n,\alpha} : f^{G}_{m,\alpha}(k) = 1 \} \]
(Note that the sets $X^{m,\xi}_{n,\alpha}$ for $\alpha \leq \xi$ and $m \in \omega$ form a family of c almost
disjoint Gregorieff-like sets centered with F_α.)

Actually, what we will use is

Lemma 1. Assume that $\langle \xi_i : i \in \omega \rangle \in V$ is a sequence of ordinals greater
then or equal to α, of cofinality ω_1. Let $\langle n_i : i \in \omega \rangle \in V[G|\alpha]$ and $\langle m_i : i \in \omega \rangle \in V[G[\sup \xi_i]]$ be sequences of natural numbers (the first one is injective).
Suppose that a sequence $\langle b_i : i \in \omega \rangle$ of branches of the binary tree B
and a function $g : \omega \to \omega$ belong to $V[G|\alpha]$. Denote by X_i the set $X^{\alpha}_{n_i,\alpha}(b_i)$
if $\xi_i = \alpha$, and $X^{m_i,\xi}_{n_i,\alpha}$ otherwise. Then the set
\[\bigcap_{i \in \omega} [(\omega \setminus X_i) \cup [0, g(i))] \text{ is in the ideal } I_\alpha \text{ (dual to } F_\alpha). \]

Proof. The proof consists of two cases:

Case 1. Suppose that $\xi_i = \alpha$ for all $i \in \omega$. It is enough to show that the
assertion of the lemma holds for V and the forcing $\mathbb{P}^{\omega}(F_\alpha)$. So suppose that
F is a fat P-filter in V. For a given $p = \langle (t_n, f_n) : n \in \omega \rangle$ there is a set B and integers $k_i \in \omega$ such that

$$t_{n_i} \setminus [0, k_i) \subseteq B$$

for all $i \in \omega$.

We may assume that $g(i) < k_i < k_{i+1}$ and $y_i = [k_i, k_{i+1}) \setminus B \neq \emptyset$ for all i. Extend each t_{n_i} by adding to the branch b_i all elements of y_i and put $f_{n_i}(k) = 1$ for $k \in y_i$. Then q obtained in this way forces that

$$[(\omega \setminus X_i) \cup [0, g(i))] \cap y_i = \emptyset,$$

and hence

$$\bigcap_{i \in \omega} [(\omega \setminus X_i) \cup [0, g(i))] \cap \bigcup_{i \in \omega} y_i = \emptyset.$$

But $\bigcup_{i \in \omega} y_i = [k_{m_0}, \infty) \setminus B$ and thus

$$q \models \ " \bigcap_{i \in \omega} (\omega \setminus X_i) \cup [0, g(i)) \subseteq \ B",$$

which proves the first case.

Case 2. Suppose that there are $\xi_i > \alpha$. Without losing generality we can treat $V[G|\alpha]$ as a ground model. Define y_i as above. Then first of all, for all $i \in \{j : \xi_j = \alpha\}$, extend conditions (t_{n_i}, f_{n_i}) by adding new elements to the trees $t_{n_i, \alpha}$, in the way described above.

Let $\xi_i > \alpha$. By definition, $t_{n_i} \leq t_{0}(m)$ for some $m \in \omega$. (In fact, $t_{n_i} \leq t_{0}(m)(\xi_i, n_i)$, since the choice of the tree t_0 depends on an ideal $I(\xi_i, n_i)$ considered at stage ξ_i and for the index n_i. We can assume that if $I(\xi_1, n_1) \subseteq I(\xi_2, n_2)$ for some $\xi_1 < \xi_2$ or $\xi_1 = \xi_2$ and $n_1 < n_2$, then $t_0(\xi_1, n_1) \subseteq t_0(\xi_2, n_2)$.) We choose a finite sequence of pairwise comparable conditions $p = p_0 \geq p_1 \geq \cdots \geq p_k$ which forces all properties listed below. To simplify notation we will write h_i, x_i, y_i etc. instead of their canonical names.

For a fixed isomorphism $h_i : B \rightarrow t_0$ denote by c_l the images $h_i(x_l)$, where x_l is a sequence of length l and range $\{1\}$. Put

$$c_i = c_{l_0}$$

where $l_0 = \{l : c_l \in t_{n_i}\}$.

Thus c_i is the least branching point of t_{n_i} which belongs to the branch $u_i = \bigcup_{l \in \omega} h_i(x_l)$.

We extend t_{n_i} as follows: For all $r \in y_i$ and $r < c_i$ we put $r \leq t_{n_i} c$. There exists the least $l_i \in \omega$ such that

$$y_i \setminus \{0, 1, \ldots, c_i\} \subset [c_i, c_{l_i}) \cap \omega.$$

Thus we add all elements of y_i to the branch corresponding to u_i and put $f_{n_i}(r) = 1$ for each of them. Moreover extend the condition $p(\xi_i)(m_i) = (t_{m_i, \xi_i}, f_{m_i, \xi_i})$ in such a way that

$$p|_{\xi_i} \models \ "\{0, 1, \ldots, l_i\} \subset t_{m_i, \xi_i},"$$
The condition \(p_k \) obtained in this way forces the same as the \(q \) defined in Case 1. So Lemma 1 is proved.

Now, we can finish the proof of Theorem 1. From the \(\epsilon \)-cc assumption it follows that for every \(i \in \omega \) there is an \(\eta_i < \omega_2 \) such that \(\omega \setminus X^{m_i, \xi}_{n_i, \alpha} \in F \) for all \(\xi \geq \eta_i \) with \(\text{cf}(\xi) = \omega_1 \) and \(m_i \in \omega \). Let \(\omega_2 > \xi_i > \eta_j \) with \(\text{cf}(\xi_i) = \omega_1 \) and \(m_i \in \omega \).

Since \(F \) is a \(P \)-set, there is an \(A \in F \) and a function \(g : \omega \to \omega \) such that
\[
A \setminus [0, g(i)) \subseteq \omega \setminus X^{m_i, \xi_i}_{n_i, \alpha} \quad \text{for each} \ i \in \omega,
\]
which implies \(\bigcap_{i \in \omega} (\omega \setminus X^{m_i, \xi_i}_{n_i, \alpha}) \cup [0, g(i)) \in F_\alpha \). Since \(P_{\omega_2} \) is bounding we may assume that \(g \in V \). This contradicts Lemma 1 and the proof is finished. ■

5. Structure of a fat \(P \)-set.\ The coabsoluteness assertion follows easily from the following theorem, which clarifies the structure of any fat \(P \)-set.

Theorem 2. In the model \(V^{P_{\omega_2}}[G] \) every fat \(P \)-set \(F \) has a \(\pi \)-base tree of height \(\omega \), each vertex of which splits into \(\epsilon \) elements.

Proof. Let \(F \) denote also the corresponding filter. Keeping the notation from the preceding proof we use the sets \(X_i^\gamma \) to construct a dense tree in the factor algebra \(P(\omega)/F \). Fix an enumeration of the branches of the binary tree \(\{b_\gamma : \gamma < \omega_2\} \). Denote by \(X^i_\gamma \) the set \(X^{m_i, \xi_i}_{n_i, \alpha} \) if \(b_\gamma \) is the characteristic function of the tree \(t^{G}_{n_i, \alpha}(\xi_i > \alpha) \), and the set \(X^{\alpha}_{n_i, \alpha}(b_\gamma) \) if \(b_\gamma \) belongs to the model \(V[G|\alpha] \). Notice first that for a given positive element \(a = [A] > \emptyset \) from \(P(\omega)/F \), there is an \(i \in \omega \) such that
\[
a \cdot x^i_\gamma > \emptyset \quad \text{for} \ \epsilon \text{-many} \ \gamma,
\]
where \(x^i_\gamma = [X^i_\gamma] \) denotes the equivalence class mod \(F \) of elements determined by the branch \(b_\gamma \) in the tree \(t^{G}_{\gamma, \alpha} \).

Indeed, suppose the opposite, i.e. for each \(i \in \omega \) there is a \(\beta_i \) such that
\[
A \cap X^i_\gamma \in I \quad \text{for every} \ \gamma \geq \beta_i.
\]
Let \(\gamma > \sup_{j \in \omega} \beta_j \) with \(\text{cf}(\gamma) = \omega_1 \). We then have
\[
A \setminus B_i \subseteq \omega \setminus X^i_\gamma \quad \text{for all} \ i \in \omega,
\]
where the \(B_i \)'s belong to \(I \). Since \(I \) is a \(P \)-ideal there is a set \(B \in I \) such that \(B_i \subseteq \star B \) for all \(i \in \omega \) and hence
\[
A \setminus B \subseteq \bigcap_{i \in \omega} (\omega \setminus X^i_\gamma) \cup [0, g(i)),
\]
where \(g \) may be assumed to be in \(V \), as the forcing is bounding. Now, Lemma 1 implies that \(A \setminus B \) and hence \(A \) are in \(I \), which contradicts the positivity of \(a = [A] \).
Clearly, deleting “small” sets (i.e. those from \(I \)) and renumbering we may assume that we are given a matrix

\[
M = \{ x^i_\gamma : i \in \omega \text{ and } \gamma < c \}
\]

such that every element \(x^i_\gamma \) is positive in \(P(\omega)/F \) and each positive element \(a > 0 \) intersects \(c \) elements \(x^i_\gamma \) in some row \(i \) (depending on \(a \)). Obviously, each row in \(M \) is an antichain. Finally, note that any positive \(a > 0 \) splits into \(c \) elements. To see this, we check that the filter

\[
F_a = \{ X \subseteq \omega : [a] \subseteq [X] \} = \{ X \subseteq \omega : A \setminus X \in I \}
\]

is a fat \(P \)-filter, as \(F \) is, and then apply Theorem 1 to convince ourselves that the algebra \(P(\omega)/F_a \) has an antichain of power \(c \).

Now, define a tree \(T \) as follows. Extend, if necessary, the first row \(\{ x^0_\gamma : \gamma < c \} \) to a maximal antichain \(T_0 = \{ y^0_\beta : \beta < c \} \).

Assume that the levels \(T_0, \ldots, T_{n-1} \) are already defined so that each \(T_i = \{ y^i_\beta : \beta < c \} \) is a maximal antichain. Extend each of the antichains \(\{ y^{n-1}_\beta \cap x^n_\gamma : \gamma < c \} \setminus \{ 0 \} \) to a maximal \(T^3_n \). By the remark above we may assert that \(T^3_n \) always has \(c \) elements. Let \(T_n = \bigcup_{\beta < c} T^3_n \). Clearly, in the resulting tree \(T = \bigcup_{n \in \omega} T_n \) each vertex splits into \(c \) elements and every positive \(a > 0 \) intersects \(c \) elements of some level \(T_n \). Hence, to each \(a > 0 \) we may assign an element \(y_a \in T \) such that \(a \cdot y_a > 0 \) and \(y_a \neq y_b \) whenever \(a \neq b \), as in [1]. Replace any such \(y_a \) by \(a \cdot y_a \) if \(y_a - a > 0 \), and the same for all \(y \leq y_a \). Clearly, the tree \(T \) so modified becomes additionally a \(\pi \)-base. ■

6. Final remarks. From Theorem 2 it follows immediately that for any two fat \(P \)-filters \(F_1 \) and \(F_2 \) in \(V[G] \) the Boolean algebras \(P(\omega)/F_1 \) and \(P(\omega)/F_2 \) have order isomorphic dense subsets. This, in turn, implies that the completions of \(P(\omega)/F_1 \) and \(P(\omega)/F_2 \) are Boolean isomorphic, or, equivalently, the Gleasons \(G(F_1) \) and \(G(F_2) \) are homeomorphic.

Finally, let us comment on other consistent configurations of \(P \)-sets. For example, we can construct a model with \(c > \omega_1 \) in which there are no \(P \)-points and there are two fat \(P \)-sets, one with the \(\omega_1 \)-cc and the other with the \(\omega_2 \)-cc. In connection with Theorem 2 we note that it is consistent to have two fat \(P \)-sets having the \(c^+ \)-cc with distinct Gleasons. The proof is more difficult and will be published elsewhere.

References

Ryszard Frankiewicz
Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8
00-956 Warsaw, Poland
E-mail: rf@impan.gov.pl

Magdalena Grzech
Institute of Mathematics
Cracow University of Technology
Warszawska 24
31-155 Kraków, Poland
E-mail: smgrzech@cyf-kr.edu.pl

Pawel Zbierski
Institute of Mathematics
Warsaw University
Banacha 2
02-097 Warsaw, Poland

Received January 25, 2005;
received in final form June 23, 2005 (7433)