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Logarithmi Sobolev Inequalities and Conentrationof Measure for Convex Funtions and Polynomial ChaosesbyRadosªaw ADAMCZAKPresented by Stanisªaw KWAPIE�
Summary. We prove logarithmi Sobolev inequalities and onentration results for on-vex funtions and a lass of produt random vetors. The results are used to derive tailand moment inequalities for haos variables (in the spirit of Talagrand and Arones�Giné).We also show that the same proof may be used for haoses generated by log-onave ran-dom variables, reovering results by �ohowski, and present an appliation to exponentialintegrability of Rademaher haos.1. Introdution. The paper is onerned with onentration propertiesof random vetors. We start with the followingDefinition 1. A real random variable ξ is said to have the onentrationproperty of order α > 0 with onstants K,C if there exists a ∈ R suh thatfor all t ≥ 0,(1) P(|ξ − a| ≥ t) ≤ Ce−tα/K .It is easy to see that the onentration property implies that ξ has a�nite moment and there exist onstants C ′,K ′, depending on α,C,K only,suh that for all t ≥ 0,(2) P(|ξ − Eξ| ≥ t) ≤ C ′e−tα/K′

.Moreover, by the Chebyshev inequality, the ondition (2) is equivalent tothe following moment estimates, valid for all p ≥ 1:(3) ‖ξ − Eξ‖p ≤ K ′′p1/α.2000 Mathematis Subjet Classi�ation: Primary 60E15; Seondary 60B11.Key words and phrases: log-Sobolev inequalities, onentration of measure, polynomialhaos. [221℄



222 R. Adamzak
More preisely, if (2) holds then so does (3) with K ′′ depending only on
α,C ′,K ′, whereas (3) implies (2) with C ′,K ′ depending only on K ′′, α.In what follows we restrit our attention to random variables of the form
ξ = f(X), where X is a random vetor in R

n and the funtion f belongs to
F , a spei�ed lass of real, Borel measurable funtions on R

n (e.g. 1-Lipshitzfuntions or 1-Lipshitz (homogeneous) onvex funtions).Definition 2. We say that a random vetor X in R
n has the onentra-tion property of order α with onstants C,K with respet to a lass F of real,Borel measurable funtions on R

n if for every f ∈ F the random variable
f ◦X has the onentration property of order α with onstants C,K.The above de�nition seems justi�ed as there are quite a few examples ofpairs (X,F) satisfying it. For instane, it is by now lassial that if X is astandard Gaussian random vetor in R

n then it has the onentration prop-erty of order 2 with onstants 1, 2 with respet to the lass of 1-Lipshitzfuntions. Also random vetors in R
n with independent uniformly boundedomponents have the onentration property of order 2 with onstants in-dependent of the dimension with F being the lass of 1-Lipshitz onvexfuntions [19℄. The latter example an be extended to arbitrary random ve-tors with bounded support, but the onstants will then also depend on themixing oe�ients assoiated with the random vetor [17℄.We now brie�y desribe one of the most e�ient tools for proving theonentration property (espeially for produt distributions), whih has beendeveloped over the past several years, namely the entropy method.Definition 3. Let ξ be a nonnegative random variable and Φ : R+ → Ra onvex funtion suh that Φ′′ > 0 and 1/Φ′′ is onave. De�ne the Φ-entropyof ξ by the formula(4) EntΦ ξ = EΦ(ξ) − Φ(Eξ).The most important examples are Φ(x) = x2 and Φ(x) = x log x. Inthese ases EntΦ beomes respetively the variane and the usual entropyof a random variable (whih will be denoted simply by Ent). The notion isimportant from the onentration of measure point of view sine we haveTheorem 1 (Herbst argument, see [11℄, [12℄). Let X ∈ R

n be a randomvariable and F a lass of funtions suh that λf ∈ F for all f ∈ F and
λ ≥ 0. Assume furthermore that for all f ∈ F ,(5) Ent ef(X) ≤ CE|∇f(X)|2ef(X),and the right-hand side is �nite. Then for all f ∈ F with |∇f | ≤ 1 and t ≥ 0,

P(f(X) ≥ Ef(X) + t) ≤ e−t2/4C .
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A ruial property of EntΦ is the tensorization, whih is desribed in thefollowingTheorem 2 (see [4℄, [10℄). Consider a produt probability spae (Ω,µ),where Ω =

⊗n
i=1Ωi and µ =

⊗n
i=1 µi. Then for every nonnegative randomvariable ξ we have

EntΦ ξ ≤
n∑

i=1

E EntΦ,µi ξ,where EntΦ,µi ξ denotes the value of the funtional EntΦ at the funtion ξ,onsidered as a funtion on Ωi, with the other oordinates �xed.Thus if a random vetor X ∈ R
n satis�es the inequality (5) for all

f ∈ F , then so does the random vetor X1 ⊕ · · · ⊕ Xd ∈ (Rn)d, where
Xi are independent opies of X, for all funtions f : (Rn)d → R suh that
f(x1, . . . , xi−1, ·, xi+1, . . . , xd) ∈ F for all i and x1, . . . , xn ∈ R

n, whih anbe used to obtain onentration inequalities. This method has led to on-entration results for 1-Lipshitz funtions of standard Gaussian vetors and
1-Lipshitz onvex funtions of uniformly bounded produt distributions (see[12, Chapter 5℄). In a slightly di�erent setting it was also used to obtain on-entration results for more general funtions of independent random variablesand also to some general moment inequalities for suh funtions [4℄. We alsomention that inequalities in the spirit of (5) with the left-hand side replaedby Var f(X) (the so-alled Poinaré inequalities) yield onentration prop-erty of order 1. There are also similar Lataªa�Oleszkiewiz inequalities whihimply onentration of order α ∈ (1, 2) (see [10℄).In this artile we will present two results onerning onentration. First,in Setion 2 we obtain some su�ient onditions for a real random variableto satisfy the logarithmi Sobolev inequality (5) for onvex funtions, whihyields some subgaussian deviation inequalities. Then in Setion 3 we willshow that the onentration property of a random vetor X with respet tothe lass of seminorms an be tensorized to obtain onentration inequalitiesfor X1 ⊗ · · · ⊗ Xd (where Xi's are independent opies of X), whih givessome new and helps to reover known inequalities for polynomial haoses.Finally, in the last setion we present an appliation of these inequalities,by presenting a new proof of exponential integrability for Rademaher haosproess.2. Logarithmi Sobolev inequalities andonentration of measure for onvex funtionsDefinition 4. For m > 0 and σ ≥ 0 let M(m,σ2) denote the lass ofprobability distributions µ on R for whih

υ+(A) ≤ σ2µ(A)
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for all sets A of the form A = [x,∞), x ≥ m, and

υ−(A) ≤ σ2µ(A)for all sets A of the form A = (−∞,−x], x ≥ m, where υ+ is the measure on
[m,∞) with density g(x) = xµ([x,∞)) and υ− is the measure on (−∞,−m]with density g(x) = −xµ((−∞, x]).Proposition 1. Let µ be a probability distribution on R. Then the fol-lowing onditions are equivalent :(i) µ ∈ M(m,σ2) for some m,σ,(ii) we have

µ([x+ C/x,∞)) ≤ αµ([x,∞)),

µ((−∞,−x− C/x]) ≤ αµ((−∞,−x]),for some C > 0, α < 1 and all x ≥ m,where the onstants in (ii) depend only on the onstants in (i) and vie versa.For instane if (i) holds, we an take C = 2σ2 and α = 1/2.Proof. Assume (i) holds. Then for x ≥ m we have
σ2µ([x,∞)) ≥

x+2σ2/x\
x

yµ([y,∞)) dy ≥ x
2σ2

x
µ([x+ 2σ2/x,∞))

= 2σ2µ([x+ 2σ2/x,∞)),whih learly implies the �rst inequality of (ii). The seond inequality followssimilarly.Suppose now that (ii) is satis�ed and for x ≥ m de�ne the sequene
a0 = x, an+1 = an +C/an. Then it is easy to see that an → ∞ and therefore

∞\
x

tµ([t,∞)) dt ≤
∞∑

n=0

an+1µ([an,∞))(an+1 − an) ≤ K1

∞∑

n=0

αnµ([a0,∞))

≤ K2µ([x,∞)).We an proeed analogously to obtain the ondition on the left tail.
Remark. It is also worth noting that for a real random variable X, theondition L(X)∈M(m,σ2) is equivalent to EX2

1{X≥t}≤(t2 +2σ2)P(X≥t)and EX2
1{X≤−t} ≤ (t2 + 2σ2)P(X ≤ −t) for all t ≥ m.

Example. Of ourse all measures with bounded support belong to
M(m, 0) for some m. Other examples of measures from M(m,σ2) are abso-lutely ontinuous distributions µ satisfying the inequalities

d

dt
logµ([t,∞)) ≤ − t

σ2
,

d

dt
logµ((−∞,−t]) ≤ − t

σ2
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for t ≥ m. In partiular, if µ has density of the form e−V (x) with V ′(x) ≥
x/σ2 and V ′(−x) ≤ −x/σ2 then µ ∈ M(1, σ2).Now we are ready to state the main result of this setion.Theorem 3. Let X1, . . . , Xn be independent random variables suh that
L(Xi) ∈ M(m,σ2) and let ϕ : R

n → R be a smooth onvex funtion. Then
Ent eϕ(X1,...,Xn) ≤ C(m,σ2)Eeϕ(X1,...,Xn)|∇ϕ(X1, . . . , Xn)|2.Hene for every 1-Lipshitz onvex funtion ϕ : R

n → R and all t ≥ 0,
P(ϕ(X1, . . . , Xn) ≥ Eϕ(X1, . . . , Xn) + t) ≤ e−t2/4C(m,σ2).Before we proeed to the proof of Theorem 3, we will need a few lemmas.Lemma 1. Let µ ∈ M(m,σ2). Then for all funtions f : R → R+ whihare noninreasing for x ≤ x0 and nondereasing for x ≥ x0, we have

∞\̃
m

f(x)xµ([x,∞)) dx ≤ 2σ2
\
R

f(x) dµ(x),

where m̃ = m ∨ (
√

2σ) + 2σ2/(m ∨ (
√

2σ)).Proof. First notie that by standard approximation arguments the in-equalities of De�nition 4 are also satis�ed for sets A = (x,∞), x ≥ m. Wehave
∞\̃
m

f(x)xµ([x,∞)) dx =

∞\̃
m

∞\
0

1{s≤f(x)}xµ([x,∞)) ds dx(6)
=

∞\
0

υ+({x ≥ m̃ : f(x) ≥ s}) ds.

The set A = {x ≥ m̃ : f(x) ≥ s} is either a half-line ontained in [m,∞) ora disjoint union of suh a half-line and an interval I with left end m̃. In theformer ase we have υ+(A) ≤ σ2µ(A) ≤ σ2µ({x ∈ R : f(x) ≥ s}).Now onsider the latter ase. Denote the right end of I by t. Let a =
m ∨ (

√
2σ). As t ≥ m̃ = a+ 2σ2/a ≥ a, we obtain
υ+(A) ≤ υ+([m̃,∞)) ≤ σ2µ([a,∞)) ≤ 2σ2µ([a, a+ 2σ2/a))

≤ 2σ2µ([a, t)) ≤ 2σ2µ({x ≤ t : f(x) ≥ s}),where the seond inequality follows from the assumption µ ∈ M(m,σ2), thethird from Proposition 1 and the last one from the observation that x0 ≥ tand thus f is noninreasing for x ≤ t. Now we an write
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2σ2

\
R

f(x) dµ(x) = 2σ2
\
R

∞\
0

1{s≤f(x)} ds dµ(x)

= 2σ2
∞\
0

µ({x ∈ R : f(x) ≥ s}) ds,whih together with (6) allows us to omplete the proof.Lemma 2. If X is a random variable suh that L(X) ∈ M(m,σ2) then
P(|X| ≥ t) ≤ C1(m,σ

2)e−t2/C2(m,σ2) for all t ≥ 0.Proof. Obviously it is su�ient to prove the inequality for t ≥ 4m. De�ne
g(x) =

T∞
x yP(X ≥ y) dy. Then for x ≥ m,

xg(x) ≤ xσ2
P(X ≥ x),and thus

∞\
z

xg(x) dx ≤ σ2g(z), z ≥ m.Let f(z) =
T∞
z xg(x) dx. Sine the funtion x 7→ xg(x) is ontinuous, we anrewrite the above inequality as

f ′(z) ≤ − 1

σ2
zf(z), z ≥ m,whih gives f(z) ≤ C exp(−z2/2σ2) with C depending only on m and σ2.Now, as g is noninreasing, for z ≥ m we have

g(2z) ≤ 1

z2
f(z) ≤ C

z2
e−z2/2σ2and similarly

P(X ≥ 4x) ≤ g(2x)

4x2
≤ C

4x4
e−x2/2σ2for x ≥ m.The lower tail an be dealt with analogously.Lemma 3. Let ϕ : R → R be a smooth onvex Lipshitz funtion and

X a random variable with L(X) ∈ M(m,σ2). Then there exists a onstant
C(m,σ2) suh that(7) ∞\

0

∞\
0

ϕ′(x)ϕ′(y)eϕ(y)
P(X ≤ x ∧ y)P(X ≥ x ∨ y) dx dy

≤ C(m,σ2)Eϕ′(X)2eϕ(X).Proof. Let us �rst notie that the left-hand side of (7) is equal to
∞\
0

y\
0

ϕ′(x)ϕ′(y)(eϕ(x) + eϕ(y))P(X ≤ x)P(X ≥ y) dx dy.
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Sine ϕ is onvex, there exists a point x0 (possibly 0 or in�nity) at whih ϕattains its minimum on [0,∞]. Moreover ϕ is noninreasing on (0, x0) andnondereasing on (x0,∞). Therefore for x, y ∈ (0, x0) with x ≤ y one has

ϕ′(x)ϕ′(y)(eϕ(x) + eϕ(y)) ≤ 2ϕ′(x)2eϕ(x).Thus for m̃ being the onstant de�ned in Lemma 1 we have
(8) x0∧m̃\

0

y\
0

ϕ′(x)ϕ′(y)(eϕ(x) + eϕ(y))P(X ≤ x)P(X ≥ y) dx dy

≤ 2

x0∧m̃\
0

ϕ′(x)2eϕ(x)
P(X ≤ x)

x0∧m̃\
x

P(X ≥ y) dy dx

≤ 2m̃E

x0∧m̃\
0

ϕ′(x)2eϕ(x)
1{X≤x} dx ≤ 2m̃2

Eϕ′(X)2eϕ(X),

where the last inequality follows from the fat that if x0 > 0, then ϕ′(x)2eϕ(x)

≤ ϕ′(y)2eϕ(y) for y ≤ x ≤ x0.On the other hand, for x0 < x < y we have ϕ′(x)ϕ′(y)(eϕ(x) + eϕ(y)) ≤
2ϕ′(y)2eϕ(y). Obviously this is also the ase if x < x0 < y, so
(9) ∞\

x0∨m̃

y\
0

ϕ′(x)ϕ′(y)(eϕ(x) + eϕ(y))P(X ≤ x)P(X ≥ y) dx dy

≤ 2

∞\
x0∨m̃

ϕ′(y)2eϕ(y)yP(X ≥ y) dy ≤ 4σ2
Eϕ′(X)2eϕ(X),

by Lemma 1, sine L(X) ∈ M(m,σ2).So it remains to estimate the integral over the interval (x0 ∧ m̃, x0 ∨ m̃).Let us onsider two ases:(i) x0 < m̃. Then
(10) m̃\

x0

y\
0

ϕ′(x)ϕ′(y)(eϕ(x) + eϕ(y))P(X ≤ x)P(X ≥ y) dx dy

≤ 2

m̃\
x0

y\
x0

ϕ′(y)2eϕ(y)
P(X ≥ y) dx dy

≤ 2m̃E

m̃\
x0

ϕ′(y)2eϕ(y)
1{X≥y} dy ≤ 2m̃2

Eϕ′(X)2eϕ(X).
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(ii) x0 > m̃. We an obviously assume that m̃ ≥ 1. Then as before

(11) x0\̃
m

y\
0

ϕ′(x)ϕ′(y)(eϕ(x) + eϕ(y))P(X ≤ x)P(X ≥ y) dx dy

≤ 2

x0\̃
m

y\
0

ϕ′(x)2eϕ(x)
P(X ≤ x)P(X ≥ y) dx dy

= 2

x0\
0

x0\
x∨m̃

ϕ′(x)2eϕ(x)
P(X ≤ x)P(X ≥ y) dy dx

≤ 2

x0\
0

ϕ′(x)2eϕ(x)
P(X ≤ x)

∞\
m̃∨x

yP(X ≥ y) dy dx

≤ 2σ2
x0\
0

ϕ′(x)2eϕ(x)
P(X ≤ x)P(X ≥ x) dx

≤ 2σ2
m̃\
0

ϕ′(x)2eϕ(x)
P(X ≤ x) dx+ 2σ2

x0\̃
m

ϕ′(x)2eϕ(x)xP(X ≥ x) dx

≤ 2σ2(m̃+ 2σ2)Eϕ′(X)2eϕ(X).Bringing together (8)�(11) ompletes the proof.Lemma 4. Let ϕ : R → R be a smooth onvex Lipshitz funtion, nonin-reasing on (−∞, 0), and X be a random variable with L(X) ∈ M(m,σ2).Then \
{(x,y)∈R2 :xy≤0}

ϕ′(x)ϕ′(y)eϕ(y)
P(X ≤ x ∧ y)P(X ≥ x ∨ y) dx dy

≤ C(m,σ2)Eϕ′(X)2eϕ(X).Proof. Assume without loss of generality that m ≥ 1 and let m̃ be theonstant de�ned in Lemma 1. For x < 0 < y we have either ϕ′(x)ϕ′(y) ≤ 0,or ϕ′(x) ≤ ϕ′(y) < 0 and ϕ(x) ≥ ϕ(y), so
0\

−∞

∞\
0

ϕ′(x)ϕ′(y)eϕ(y)
P(X ≤ x)P(X ≥ y) dy dx

≤
0\

−∞

∞\
0

ϕ′(x)2eϕ(x)
P(X ≤ x)P(X ≥ y) dy dx

≤ C(m,σ2)

0\
−∞

ϕ′(x)2eϕ(x)
P(X ≤ x) dx,
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where the last inequality follows from the fat that by Lemma 2,

∞\
0

P(X ≥ y) dy = EX+ ≤ C(m,σ2).Also
∞\
0

0\
−∞

ϕ′(x)ϕ′(y)eϕ(y)
P(X ≤ y)P(X ≥ x) dy dx

≤
0\

−∞

∞\
0

ϕ′(y)2eϕ(y)
P(X ≤ y)P(X ≥ x) dx dy

≤ C(m,σ2)

0\
−∞

ϕ′(y)2eϕ(y)
P(X ≤ y) dy.Now

−m̃\
−∞

ϕ′(x)2eϕ(x)
P(X ≤ x) dx ≤

−m̃\
−∞

ϕ′(x)2eϕ(x)(−x)P(X ≤ x) dx

≤ 2σ2
Eϕ′(X)2eϕ(X)by Lemma 1, as L(X) ∈ M(m,σ2). Moreover,

0\
−m̃

ϕ′(x)2eϕ(x)
P(X ≤ x) dx = E

0\
−m̃

ϕ′(x)2eϕ(x)
1{X≤x} dx

≤ m̃Eϕ′(X)2eϕ(X).Proof of Theorem 3. We will follow Ledoux's approah for bounded vari-ables. Due to the tensorization property of entropy (Theorem 2), it is enoughto prove the theorem for n = 1. Also, by the standard approximation argu-ment, we an restrit our attention to onvex Lipshitz funtions only. Letnow Y be an independent opy of X. By Jensen's inequality we have
Ent eϕ(X) = Eϕ(X)eϕ(X) − Eeϕ(X) log Eeϕ(X)

≤ 1

2
E(ϕ(X) − ϕ(Y ))(eϕ(X) − eϕ(Y ))

= E(ϕ(X) − ϕ(Y ))(eϕ(X) − eϕ(Y ))1{X≤Y }

= E

\
R

\
R

ϕ′(x)ϕ′(y)eϕ(y)
1{X≤x≤Y }1{X≤y≤Y } dx dy

=
\
R

\
R

ϕ′(x)ϕ′(y)eϕ(y)
P(X ≤ x ∧ y)P(X ≥ x ∨ y) dx dy.Sine L(−X) ∈ M(m,σ2), we an assume that the minimal value of ϕ isattained at some point of the right half-axis (possibly at ∞). Splitting now
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the double integral into four integrals depending on the signs of x and y andusing Lemmas 3 and 4 we obtain the desired inequality. Note that we anuse Lemma 3 to handle the integration over (−∞, 0)2 again by hange ofvariables and the fat that L(−X) ∈ M(m,σ2). The tail inequality followsfrom the entropy estimates by Theorem 1.
Remark. One would obviously like to haraterize all real random vari-ables X suh that the random vetors (X1, . . . , Xn) (where Xi's are indepen-dent opies of X) have the onentration property of order 2 for 1-Lipshitzonvex funtions with onstants independent of the dimension n. Eah suhvariable must of ourse have the onentration property of order 2 itself. This,however, is not su�ient, as onentration with respet to onvex funtionsimplies hyperontrativity (see [5℄), whih is equivalent to some regularityof the tail. In partiular, it follows that EX2

1{X≥t} ≤ Ct2P(X ≥ t) for tlarge. This ondition is weaker than L(X) ∈ M(m,σ2) for some m,σ buthyperontrativity is also weaker than the onentration property of order 2,uniformly over the dimension n.We would also like to point out that all Borel probability measures µ onthe real line, whih satisfy the logarithmi Sobolev inequality for all smooth(not neessarily log-onvex) funtions, belong to M(m,σ2) for some m,σ.Thus ⋃
m,σ M(m,σ2) is stritly larger than the lass of all measures sat-isfying the logarithmi Sobolev inequality for all smooth funtions. Morepreisely, we have the followingProposition 2. Let µ be a Borel probability measure on R for whihthere exists C <∞ suh that for all smooth funtions,

Ent f(X)2 ≤ CE|f ′(X)|2,where X is a random variable with the law µ. Then there exist onstants
m,σ <∞ suh that µ ∈ M(m,σ2).Proof. From the Bobkov�Götze riterion (see [2℄) it follows that if n isthe density of the absolutely ontinuous part of µ and M is a median of µ,than for some onstant K and all x ≥M ,

µ([x,∞)) log
1

µ([x,∞))

x\
M

1

n(t)
dt < K.Thus (sine µ has the onentration property of order 2) from Hölder's in-equality we get (using the above inequality for x+ 1/x instead of x)

D

K
x2µ([x+ 1/x,∞)) ≤ 1Tx+1/x

M (1/n(t)) dt
≤ µ([x, x+ 1/x))

(
Tx+1/x
x 1 dt)2

= x2µ([x, x+ 1/x))
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for some D > 0 and x large enough, whih implies µ([x + 1/x,∞)) ≤
αµ([x,∞)) with α = (K/D)/(K/D + 1). Sine a similar ondition on theleft tail an be proven analogously, the laim follows by Proposition 1.3. Conentration for seminorms on the tensor produt andrandom haoses3.1. A tensorization inequality for seminormsTheorem 4. Consider a random vetor X ∈ R

n for whih there exists aonstant K suh that for every seminorm ϕ : R
n → R+ we have Eϕ(X) <∞and for every p ≥ 1,

‖ϕ(X) − Eϕ(X)‖p ≤ K
√
p sup
|α|=1

ϕ(α).

Then if X1, . . . , Xd are independent opies of X and ψ :
⊗d

i=1 R
n → R+ aseminorm, we have

∥∥∥ψ
( d⊗

i=1

Xi

)
− Eψ

( d⊗

i=1

Xi

)∥∥∥
p

≤ Kd

∑

I⊆{1,...,d}, I 6=∅

p#I/2
E sup

|αk|≤1, k∈I
ψ

( d⊗

i=1

Xi,I,(αk)k∈I

)
,

where
Xi,I,(αk)k∈I

=

{
Xi if i /∈ I,

αi if i ∈ I,

Kd is a onstant depending only on K and d, and |α| denotes the Eulideannorm of the vetor α.Proof. We use indution on d. For d = 1, the statement of the theorem isjust its hypothesis. Assume that the statement is true for fewer than d ≥ 2opies of X. Using onditionally the indution assumption for d1 = 1 andthe funtion
ϕ1(x) = ψ(X1 ⊗ · · · ⊗Xd−1 ⊗ x),we obtain

EXd

∣∣∣ψ
( d⊗

i=1

Xi

)
− EXd

ψ
( d⊗

i=1

Xi

)∣∣∣
p
≤ Kppp/2 sup

|α|≤1
ψ

( d−1⊗

i=1

Xi ⊗ α
)p
.Now notie that the funtion ϕ2(x) = sup|α|≤1 ψ(x ⊗ α) is a seminorm on

⊗d−1
i=1 R

d and thus we an apply the indution assumption and the triangleinequality in Lp, whih together with the Fubini Theorem gives
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(12) E

∣∣∣ψ
( d⊗

i=1

Xi

)
− EXd

ψ
( d⊗

i=1

Xi

)∣∣∣
p

≤ K̃p
d−1

∑

I⊆{1,...,d}, d∈I

pp#I/2
(
E sup

|αk|≤1, k∈I
ψ

( d⊗

i=1

Xi,I,(αk)k∈I

))p
,

where K̃d−1 depends only on Kd−1 and d.Now we would like to estimate E|EXd
ψ(

⊗d
i=1Xi) − Eψ(

⊗d
i=1Xi)|p. Tothis end onsider ϕ3 :

⊗d−1
i=1 R

n → R+ de�ned as ϕ3(x) = Eψ(x⊗Xd). It iseasy to see that ϕ3 is a seminorm and thus, by the indution assumption,
(13) E

∣∣∣ϕ3

( d−1⊗

i=1

Xi

)
− Eϕ3

( d−1⊗

i=1

Xi

)∣∣∣
p

≤ K̃p
d−1

∑

I⊆{1,...,d−1}, I 6=∅

pp#I/2
(
E sup

|αk|≤1, k∈I
ϕ3

( d−1⊗

i=1

Xi,I,(αk)k∈I

))p
.

Now it is enough to note that for eah I ⊆ {1, . . . , d− 1},
E sup

|αk|≤1, k∈I
ϕ3

( d−1⊗

i=1

Xi,I,(αk)k∈I

)
≤ E sup

|αk|≤1, k∈I
ψ

( d⊗

i=1

Xi,I,(αk)k∈I

)
,whih together with (12) and (13) ompletes the proof.Notie that by Theorem 3 for all produt random vetors X ∈ R

n with1-dimensional marginals in M(m,σ2) and all seminorms ϕ : R
n → R+ wehave ‖(ϕ(X)−Eϕ(X))+‖p ≤ K

√
p sup|α|≤1 ϕ(α), with K depending only on

m and σ2. Thus the same proof, with formal hanges only, givesTheorem 5. Let X1, . . . , Xn ∈ R
n be independent random vetors withindependent omponents and all 1-dimensional marginals in M(m,σ2).Then for every seminorm ψ :

⊗d
i=1 R

n → R+ we have
∥∥∥
(
ψ

( d⊗

i=1

Xi

)
− Eψ

( d⊗

i=1

Xi

))
+

∥∥∥
p

≤ Kd

∑

I⊆{1,...,d}, I 6=∅

p#I/2
E sup

|αk|≤1, k∈I
ψ

( d⊗

i=1

Xi,I,(αk)k∈I

)
,

where Kd depends only on m,σ2 and d.By the Chebyshev inequality we an obtain from the above theorems aorollary onerning the tail behaviour of ψ(
⊗d

i=1Xi). We give it only forTheorem 4; for Theorem 5 it is analogous but deals with the upper tail only.
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Corollary 1. Under the assumption of Theorem 4 there exist onstants

Kd, depending only on K and d, suh that for all t ≥ 1,
P

(∣∣∣ψ
( d⊗

i=1

Xi

)
− Eψ

( d⊗

i=1

Xi

)∣∣∣

≥ Kd

∑

I⊆{1,...,d}, I 6=∅

t#I/2
E sup

|αk|≤1, k∈I
ψ

( d⊗

i=1

Xi,I,(αk)k∈I

))
≤ e−t.

3.2. Chaos random variables. The above theorems an be rewritten interms of deoupled polynomial haoses. Below we present suh a versionas a orollary (atually equivalent to Theorem 4), so that the reader ouldompare it with existing results on haos random variables.Let X(1), . . . , X(d) be independent opies of X = (X1, . . . , Xn) ∈ R
n andonsider a homogeneous deoupled haos of order d, i.e. a random variable ofthe form(14) Z = sup

t∈T

∣∣∣
n∑

i1,...,id=1

ti1...idX
(1)
i1

· · ·X(d)
id

∣∣∣,

where T is a ountable, bounded set of funtions t : {1, . . . , n}d → R.Let us introdueDefinition 5. For I ⊆ {1, . . . , d} let
‖T ‖I = E sup

t∈T
sup

|α(k)|≤1, k∈I

∣∣∣
n∑

i1,...,id=1

ti1...id

∏

k∈I

α
(k)
ik

∏

k/∈I

X
(k)
ik

∣∣∣,

where the seond supremum is taken over all (α(k))k∈I ∈ (Rn)#I , and |α(k)|stands for the Eulidean norm of the vetor α(k).Corollary 2. Let X = (X1, . . . , Xn) have the onentration propertywith onstants C,K with respet to 1-Lipshitz seminorms on R
n. Then forany integer d ≥ 1, there exists a onstant Kd, depending only on d and C,K,suh that for any homogeneous haos Z (as de�ned in (14)) and any p ≥ 1,(15) ‖Z − EZ‖p ≤ Kd

∑

I⊆{1,...,d}, I 6=∅

p#I/2‖T ‖I .

Corollary 3. There exist onstants Kd suh that for all t ≥ 1,
P

(
|Z − EZ| ≥ Kd

∑

I⊆{1,...,d}, I 6=∅

t#I/2‖T ‖I

)
≤ e−t.
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Remark. Usually one is interested in the �undeoupled� haos, i.e. arandom variable of the form

Z = sup
t∈T

∣∣∣
n∑

i1,...,id=1

ti1...idXi1 · · ·Xid

∣∣∣,where X1, . . . , Xn are independent random variables and for all t ∈ T thenumber ti1...id is invariant under permutations of oordinates and nonzeroonly if the oordinates are pairwise distint. The analogues of the abovetheorems for suh haoses generated by Gaussian variables were obtained byBorell [3℄ and Arones and Giné [1℄. The Rademaher ase was onsideredby Talagrand [18℄ (haos of order 2) and Bouheron, Bousquet, Lugosi andMassart [4℄ (haos of arbitrary order d). It is easy to see that eah deoupledhaos an be represented as an undeoupled one, but the aforementionedresults do not reover the lower tail inequalities (exept for the ase d = 2).Also the methods are quite di�erent and do not allow treating both Gaussianand Rademaher variables in a uni�ed way.3.2.1. Chaoses generated by symmetri random variables with log-onavetails. Now we would like to point out that the proof of Theorem 4 an beatually used in a slightly di�erent setting, namely for haoses generatedby independent random variables with logarithmially onave tails. Suhvariables have been investigated by Lataªa [7℄ and �ohowski [14℄.Definition 6. Let N = (X
(k)
i )k≤d, i≤n be a matrix of independent sym-metri random variables with logarithmially onave tails, i.e. random vari-ables suh that the funtions

N (k)
i (t) = − log P(|X(k)

i | ≥ t), t ≥ 0,are onvex. Furthermore assume (as a matter of normalization) that
inf{t : N (k)

i (t) ≥ 1} = 1,and de�ne modi�ed funtions Ñ (k)
i by the formula

Ñ (k)
i (t) =

{
t2 for |t| ≤ 1.

N (k)
i (|t|) for |t| ≥ 1.Let now T be a ountable set of funtions t : {1, . . . , n}d → R and Z arandom variable de�ned by (14). Moment estimates for Z will be expressedin terms of the following quantities:Definition 7. For I ⊆ {1, . . . , d} and p ≥ 1 de�ne

‖T ‖N ,I,p = E sup
t∈T

sup
α(k)∈Ak,p, k∈I

∣∣∣
n∑

i1,...,id=1

ti1...id

∏

k∈I

α
(k)
ik

∏

k/∈I

X
(k)
ik

∣∣∣,
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where

Ak,p =
{
α ∈ R

n :
n∑

i=1

Ñ (k)
i (αi) ≤ p

}
.The following result was proved for d = 1 by Lataªa [7℄ and for arbitrary

d by �ohowski [14℄.Theorem 6 (Lataªa, �ohowski). There exist onstants Kd (dependingonly on d) suh that for all p ≥ 1,
1

Kd

∑

I⊆{1,...,d}

‖T ‖N ,I,p ≤ ‖Z‖p ≤ Kd

∑

I⊆{1,...,d}

‖T ‖N ,I,p.

Proposition 3. The onlusion of Theorem 6 for d = 1 implies thatonlusion for arbitrary d.Proof. When we rewrite the inequalities of Theorem 6 in the languageof seminorms, the proof beomes analogous to the proof of Theorem 4. Onehas simply to notie that the fators p#I/2 do not appear, as the dependeneon p is inorporated in the sets Ak,p whih replae the unit Eulidean ballin the supremum.As for the lower estimate, the proof is even simpler but we present it herefor the sake of ompleteness (written in the �haos language�). Obviously
‖Z‖p ≥ ‖Z‖1 = ‖T ‖N ,∅,p. Moreover for any nonempty set I ⊆ {1, . . . , d},say with r ∈ I, we have by the indution hypothesis

‖Z‖p ≥ 1

K1

∥∥∥ sup
t∈T

sup
α(r)∈Ar,p

∣∣∣
n∑

i1,...,id=1

ti1...id

∏

k 6=r

X
(k)
ik
α

(r)
ir

∣∣∣
∥∥∥

p

≥ 1

K1Kd−1
‖T ‖N ,I,p.Using the Chebyshev inequality and the Paley�Zygmund inequality to-gether with the hyperontrative properties of haoses (see [15℄) we obtainCorollary 4. There exist onstants Kd suh that for all t ≥ 1,

P

(
Z ≥ Kd

∑

I⊆{1,...,d}

‖T ‖N ,I,t

)
≤ e−t,

P

(
Z ≥ 1

Kd

∑

I⊆{1,...,d}

‖T ‖N ,I,t

)
≥ e−t ∧ c.

Remark. The bound of Theorem 6 is also valid in the ase of unde-oupled haoses due to the deoupling results by de la Peña and Montgo-mery-Smith [16℄, whih say that tails and moments of the deoupled andundeoupled haos with the same oe�ients are equivalent.
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Remark. All estimates presented so far are expressed in terms of ex-peted values of empirial proesses, whih themselves are in general trouble-some and di�ult to estimate. One would obviously want to obtain momentestimates in terms of deterministi quantities at least in the real-valued ase(i.e. when T is a singleton). This has been done by Lataªa in [7℄ for d = 2and log-onave random variables, and reently in [8℄ for arbitrary d andGaussian haoses.4. An appliation. Finally, we would like to argue that estimates in thespirit of Setion 3, although nondeterministi, may be of some use. We willdemonstrate it by presenting a sketh of a new (at least to the author's bestknowledge) proof of exponential integrability of a generalized Rademaherhaos proess for general d, whih we believe is simpler than the preed-ing ones. The general result and the proof for d ≤ 2 may be found in themonograph by Ledoux and Talagrand [13℄.Let us �rst reall the general setting. We deal with a Banah spae B forwhih there exists a ountable set D of linear funtionals from the unit ballof B′ suh that for eah x ∈ B we have ‖x‖ = supf∈D |f(x)|. A B-valuedrandom variable X is a homogeneous Rademaher haos of order d if thereis a sequene (xi1...id)i1,...,id∈N ∈ B (xi1...id invariant under permutation ofoordinates and nonzero only if i1, . . . , id are pairwise distint) suh thatfor every f ∈ D the multiple series ∑

i1,...,id
f(xi1...id)εi1 · · · εid onvergesalmost surely and (

∑
i1,...,id

f(xi1...id)εi1 · · · εid)f∈D has the same distributionas (f(X))f∈D.Theorem 7. Let X be a homogeneous Rademaher haos of order d.Then
Eeα‖X‖2/d

<∞ for all α ∈ R.Before we proeed to the proof, we needLemma 5. There exist onstants Ld (depending only on d) with the prop-erty that for every α > 0 there exists a onstant ε(α) suh that for ev-ery homogeneous Rademaher haos X of order d and every M satisfying
P(‖X‖ > M) < ε(α) we have

P(‖X‖ > LdMtd/2) < e−αt for all t ≥ 1.Proof. Rademaher variables are log-onave, so we an apply Corollary 4for �nite sums. It is easy to see that(16) Ak,p = Ap =
{
(αi) :

∑
α2

i ≤ p, |αi| ≤ 1
}
.Due to onvergene, using standard arguments one an extend the tail esti-mates to the general Rademaher haos X. Therefore, set
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φ(t) =

∑

I⊆{1,...,d}

‖T ‖N ,I,t,where T = {(f(xi1...id)) : f ∈ D}. From (16) it follows that(17) φ(xt) ≤ td/2φ(x)for all x ≥ 0 and t ≥ 1. As φ is inreasing, by the last inequality it is ontin-uous. If φ(x) ≤ KdM for every x (Kd being the onstant from Corollary 4),we have, for t ≥ 1,
P(‖X‖ ≥MK2

dt
d/2) ≤ inf

x
P(‖X‖ ≥ Kdφ(x)) ≤ inf

x
e−x = 0.Otherwise KdM = φ(x) for some x. Thus

ε ≥ P(‖X‖ ≥M) = P(‖X‖ ≥ φ(x)/Kd) ≥ c ∧ e−x,whih for ε small enough yields x ≥ − log ε. Moreover (17) gives KdMtd/2 ≥
φ(tx) for t ≥ 1 and thus for ε < e−α,

P(‖X‖ ≥ K2
dMtd/2) ≤ P(‖X‖ ≥ Kdφ(tx)) ≤ e−tx ≤ et log ε ≤ e−αt.Proof of Theorem 7 (sketh). We will proeed by indution on d. Let

Sn =
∑

i1,...,id≥n xi1···idεi1 . . . εid . Then ‖Sn‖ is a reversed submartingale with
E‖Sn‖ ≤ E‖X‖ and thus it onverges to some random variable, whih by thezero-one law must be almost surely onstant. Thus there exists M suh thatfor all ε > 0 we have P(‖Sn‖ ≥ M) < ε for n large enough. By Lemma 5,for every β > 0 there is n suh that for all t ≥ 1,

P(‖Sn‖ ≥ LdMtd/2) < e−βtor equivalently
P(α‖Sn‖2/d ≥ t) ≤ exp

(
− βt

α(LdM)2/d

)

for t≥ (LdM)2/dα, whih learly implies Eeα‖Sn‖2/d
<∞ for α<β/(LdM)2/d.Sine X−Sn is a �nite sum of haoses of orders lower than d (when d > 1) ora bounded random variable (for d = 1), its integrability properties allow us touse Hölder's inequality and obtain Eeα‖X‖2/d

<∞ also for α < β/(LdM)d/2.This allows us to �nish the proof as β an be hosen arbitrarily large.Aknowledgements. The author would like to express his gratitude toProf. Rafaª Lataªa for introduing him to the subjet and all the inspiringonversations.
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