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Summary. Working in the framework of reverse mathematis, we onsider representa-tions of reals as rapidly onverging Cauhy sequenes, deimal expansions, and two sortsof Dedekind uts. Converting single reals from one representation to another an alwaysbe arried out in RCA0. However, the onversion proess is not always uniform. Convertingin�nite sequenes of reals in some representations to other representations requires the useof WKL0 or ACA0.Early in the study of omputable analysis, several authors noted thatmany representations of omputable reals ould be omputably onvertedto other representations on a real by real basis [8℄, [7℄, [5℄. Mostowski [4℄observed that onverting ertain sequenes of omputable reals between rep-resentations was not a omputable proess. A more reent development ofrepresentations of sequenes of reals from the viewpoint of omputable anal-ysis in the TTE (Type-2 Theory of E�etivity) framework appears in Chap-ter 4 of [11℄. Beause of the signi�ane of sequenes of reals in omputableanalysis (see [6℄ and [11℄) and reverse mathematis (see [9℄), this is morethan an idle uriosity.We will analyze representations of reals using the tehniques of reversemathematis. The subsystems used in this paper are RCA0, WKL0, and
ACA0. The systems di�er in the available set omprehension axioms. RCA0inludes the reursive omprehension axiom, whih essentially asserts theexistene of relatively omputable sets. WKL0 appends a weak version ofKönig's lemma that says that in�nite 0-1 trees have in�nite paths. ACA0adds a omprehension sheme for arithmetially de�nable sets. Simpson's2000 Mathematis Subjet Classi�ation: 03B30, 03F35, 03F60.Key words and phrases: real, analysis, Cauhy sequene, Dedekind ut, deimal ex-pansion, reverse mathematis, WKL, ACA.[303℄ © Instytut Matematyzny PAN, 2007



304 J. L. Hirst
book [9℄ is an exellent resoure for omplete details about these subsys-tems.Setion 1 introdues the various representations onsidered here and no-tions of equality between reals. Setion 2 inludes onversion results that anbe proved in RCA0, inluding onversions for single reals. Setion 3 presentsequivalene results showing the neessity of using stronger axiom systems forsome onversions. That setion ends with a table summarizing the results ofSetions 2 and 3. Setion 4 presents related results on sequenes of irrationalnumbers and hange of basis for expansions.1. Representations of reals. We will onsider four ways of represent-ing reals and enoding these representations in RCA0. The �rst is the usualrapidly onverging Cauhy sequene used in reverse mathematis. A funtion
̺ : N → Q is a rapidly onverging Cauhy sequene if ̺ satis�es

∀k ∀i |̺(k) − ̺(k + i)| ≤ 2−k.For our purposes, a deimal expansion is a speial sort of rapidly onvergingCauhy sequene in whih δ(j) gives the �rst j deimal plaes of the deimalrepresentation of the real. Thus, δ : N → Q is a deimal expansion if δ(0) isan integer or the speial digit −0, and
∀k ∃j ∈ {0, . . . , 9} (δ(k + 1) − δ(k) = sign(δ(0)) · j · 10−k−1).In this de�nition, deimal expansions terminating in either repeating nines orrepeating zeros are allowed. We will treat these speial ases in our disussionof equality. To make the signs work orretly, we must distinguish between−0and 0 as a digit. For example, the �rst digit of an element of the interval

(−1, 0) will be −0. The �rst digit in a representation of 0 ould be either −0or 0.The remaining two representations are forms of Dedekind uts. Sine
RCA0 proves that the omplement of any given subset of Q exists, we anenode a ut by speifying just the elements of the lower set. To be preise,a set λ ⊆ Q is a (lower) Dedekind ut if ∅ ( λ ( Q and

∀s ∈ Q ∀s′ ∈ Q ((s ∈ λ ∧ s′ /∈ λ) → s < s′).This de�nition is exatly like that in Setion IV of Dedekind [1℄ in that utsrepresenting a rational number may or may not ontain the rational. Manymodern analysis texts speify the loation of the rational in this ase. We anappend this requirement to the de�nition as follows. A set σ ⊂ Q is an openut if it is a Dedekind ut and ∀s ∈ σ ∃s′ ∈ σ (s < s′). This ompletes ourlist of representations of reals: rapidly onverging Cauhy sequenes, deimalexpansions, Dedekind uts, and open uts.In reverse mathematis, equality of sets is de�ned extensionally fromequality on natural numbers. Similarly, equality of representations of reals
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requires de�nition. For example, following Simpson [9℄, if ̺ and τ are rapidlyonverging Cauhy sequenes, then we say that ̺ and τ are equal (and write
̺ = τ) if

∀k (|̺(k) − τ(k)| ≤ 2−k+1).Naïvely, we are saying that ̺ = τ if the sequenes onverge to the same real.Tehnially, we are abusing notation, sine we may write ̺ = τ (as reals)even when ̺ and τ are not equal as sets.Sine a deimal expansion is a speial sort of rapidly onverging Cauhysequene, equality of deimal expansions is de�ned as in the preeding para-graph. In RCA0 it is easy to prove that if ̺ and τ are deimal expansions,then ̺ = τ if and only if either ̺ and τ agree in every digit, or else (sub-jet to renaming ̺ and τ) there is a j suh that ̺(i) = τ(i) for i < j,
|̺(j)| = |τ(j)| + 10j , and ̺(k) = 0 and τ(k) = 9 for k > j. Of ourse,sine deimal expansions are rapidly onverging Cauhy sequenes, equalitybetween reals in these two representations is de�ned.Now we may turn to equality of uts. Two Dedekind uts are equal (asreals) if they di�er in at most one element. Sine open uts are Dedekinduts, this de�nition extends to omparisons between open uts or betweenopen uts and other Dedekind uts. RCA0 an prove that if two open utsare equal (as reals) then they must agree on all elements, and so are equalas sets also.Finally, suppose that λ is a Dedekind ut and ̺ is a rapidly onvergingCauhy sequene. We say that λ and ̺ are equal (as reals) if

∀k ∀s ∀s′ ((s ∈ λ ∧ s′ /∈ λ) → [s, s′] ∩ [̺(k) − 2−k, ̺(k) + 2−k] 6= ∅).Intuitively, a rapidly onverging Cauhy sequene an be viewed as speify-ing a real as a nested sequene of losed intervals, and similarly, a Dedekindut an be viewed as speifying a real as the intersetion of a set of losedintervals. If the intervals all overlap, then the two representations must or-respond to the same real. It is also worth noting that the formula
[s, s′] ∩ [̺(k) − 2−k, ̺(k) + 2−k] 6= ∅an be written as a omparison of rational endpoints,
¬(̺(k) + 2−k < s ∨ s′ < ̺(k) − 2−k),whih is a ∆0

0 formula. Thus the formula enoding λ = ̺ is Π0
1, as are theformulas enoding equality between rapidly onverging Cauhy sequenesand equality between uts.We have de�ned four representations of real numbers, and have de�nedequality between any possible pair of representations. With this terminology,we an disuss onversions between representations.
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2. Conversions in RCA0. In this setion, we will examine those situa-tions where it is possible to onvert a sequene of reals in one representationto a sequene in another representation while working within RCA0. By theend of the setion, we will be able to dispense with onversions of singlereals. Conversions that require stronger axiom systems will be presented inthe next setion. In the statement of the following theorems, the notation(RCA0) indiates that the result is provable in RCA0.Theorem 1 (RCA0). If 〈λi〉i∈N is a sequene of Dedekind uts, thenthere is a sequene 〈δi〉i∈N of deimal expansions suh that for eah i ∈ N,

λi = δi.Proof. Suppose 〈λi〉i∈N is a sequene of Dedekind uts. We will indiatehow to ompute δi(j), the jth element of the ith deimal expansion.For j = 0, let z be the greatest integer in λi. Note that z exists beause
λi 6= Q and the omplement of λi is losed upward. If z ≥ 0, then δi(0) = z.If z < 0, then δi(0) = z + 1, where −1 + 1 is taken to be −0.Suppose δi(j) has been omputed. If δi(0) ≥ 0, let d be the greatestelement of K = {k · 10j+1 | k ∈ {0, . . . , 9}} suh that δi(j) + d ∈ λi, and set
δi(j + 1) = δi(j) + d. If δi(0) < 0, let d be the greatest element of K suhthat δi(j) − d /∈ λi, and set δi(j + 1) = δi(j) − d.The preeding omputation shows that the proof of the existene of
〈δi〉i∈N an be arried out in RCA0. The laim that λi = δi for all i ∈ Nfollows immediately from the de�nition of equality between Dedekind utsand rapidly onverging Cauhy sequenes.Sine every open ut is a Dedekind ut and every deimal expansion is arapidly onverging Cauhy sequene, Theorem 1 has the following orollary.Corollary 2 (RCA0). If 〈µi〉i∈N is a sequene of reals in a representa-tion in the following list , then for any representation appearing lower in thelist there is a sequene 〈τi〉i∈N in that representation suh that for all i ∈ N,
µi = τi:

• open uts,
• Dedekind uts,
• deimal expansions,
• rapidly onverging Cauhy sequenes.With one additional result, we an resolve the onversion problem for allsingle reals.Theorem 3 (RCA0). Suppose ̺ is a rapidly onverging Cauhy sequene.Then there is an open ut σ suh that ̺ = σ.Proof. Let ̺ be a rapidly onverging Cauhy sequene. Either ̺ repre-sents a rational or it does not. (This assertion is not uniform.) If ̺ repre-
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sents the rational r, then let λ = {q ∈ Q | q < r}. Otherwise, ̺ is notequal to any rational. Consequently, for any q ∈ Q, there is a k ∈ N suhthat ̺(k) + 2−k < q or ̺(k) − 2−k > q. The open ut λ is onstruted byexluding q when ̺(k) + 2−k < q and inluding q when ̺(k) − 2−k > q.Combining Theorem 3 and Corollary 2 for onstant sequenes yields thefollowing orollary showing that for single reals all onversions an be arriedout in RCA0. The omputability-theoreti analog of this result was observedby Robinson [8℄, Myhill [5℄, and Rie [7℄.Corollary 4 (RCA0). If µ is a single real in any of the four represen-tations, then there is a real τ in eah of the other representations suh that
µ = τ .Proof. Theorem 3 allows onversions from the bottom of the list in Corol-lary 2 to the top.In the next setion we will see that the nonuniformity in the proof ofTheorem 3 is unavoidable. Consequently, proving the analog of Corollary 4for sequenes of reals requires stronger axiom systems than RCA0.3. Conversions requiring WKL0 and ACA0. In this setion we willshow that onversions between some representations of reals require axiomsbeyond RCA0. Our work will be simpli�ed by the following tehnial lemma.This lemma extends a onservation result due to Kohlenbah [3, Proposi-tion 3.1℄.Lemma 5 (RCA0). The following are equivalent :

(1) WKL0.
(2) If 〈fi〉i∈N and 〈gi〉i∈N are sequenes of funtions with pairwise dis-joint ranges , that is, suh that ∀i ∀n ∀m (fi(n) 6= gi(m)), thenthere is a sequene 〈Xi〉i∈N of sets suh that for eah i, ∀n (fi(n) ∈

Xi ∧ gi(n) /∈ Xi).
(3) If 〈Ti〉i∈N is a sequene of in�nite 0-1 trees, then there is a sequene

〈Xi〉i∈N suh that for eah i, Xi is an in�nite path through Ti.Proof. Sine the existene of a separating set for a single pair of funtionsimplies WKL0 [9, Lemma IV.4.4℄, as does the existene of an in�nite paththrough a single in�nite 0-1 tree, it su�es to show that (2) and (3) followfrom WKL0.Suppose 〈fi〉i∈N and 〈gi〉i∈N are sequenes of funtions with pairwise dis-joint ranges, as in (2). Fix a bijetion between N × N and N, and identifyeah ordered pair with its integer ode. De�ne funtions f and g by setting
f(i, n) = (fi(n), i) and g(i, n) = (gi(n), i). Sine we are viewing ordered pairsas being interhangeable with their integer odes, we may think of f and g
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as funtions from N to N. Note that if f(i, n) = g(j, m), then j = i and
fi(n) = gj(m) = gi(m), ontraditing the laim that the ranges of fi and giare disjoint. Thus f and g have disjoint ranges. WKL0 su�es to prove theexistene of a separating set X for f and g [9, Lemma IV.4.4℄. For eah i,let Xi = {m | (m, i) ∈ X}. Then for all n, (fi(n), i) ∈ X so fi(n) ∈ Xi, and
(gi(n), i) /∈ X so gi(n) /∈ Xi. Thus WKL0 proves (2) as desired.Now we will use WKL0 to prove (3). Let 〈Ti〉i∈N be a sequene of in�nite
0-1 trees. Form a tree T of �nite sequenes of natural numbers as follows.For j ∈ N, if for eah i < j we are given a sequene σi in Ti of length j − i,then form the sequene

σ = (σ0(0), (σ0(1), σ1(0)), . . . , (σ0(j − 1), . . . , σj−1(0))).By identifying the inner �nite sequenes with their integer odes, σ an beviewed as a sequene of j natural numbers. Let T be the tree of all suhsequenes. Sine eah Ti is a 0-1 tree, σ(n) an take at most 2n+1 possiblevalues, so T is a bounded tree. WKL0 su�es to prove the existene of anin�nite path through T [9, Lemma IV.1.4℄. Given a path X = (p0, p1, p2, . . .)through T , for eah i the sequene Xi = (pi(i), pi+1(i), pi+2(i), . . .) is a paththrough Ti. This ompletes the proof of (3)from WKL0.Now we an turn to the theorems on onverting representations. The nextthree theorems will enable us to ompletely analyze all possible onversions.Theorem 6 (RCA0). The following are equivalent :
(1) WKL0.
(2) If 〈̺i〉i∈N is a sequene of rapidly onverging Cauhy sequenes thenthere is a sequene 〈δi〉i∈N of deimal expansions suh that for eah

i ∈ N, ̺i = δi.Proof. To prove that (1) implies (2), assume WKL0 and let 〈̺i〉i∈N be asequene of rapidly onverging Cauhy sequenes. For eah ̺i, onstrut atree Ti as follows. Put a sequene δ in Ti if δ is an initial segment of a deimalexpansion and for eah j < lh(δ), ̺i(j) − 2−j+1 ≤ δ(j) ≤ ̺i(j) + 2−j+1. Foreah k, eah initial segment of the sequene onsisting of the �rst k digits ofthe deimal expansion of ̺i(k) satis�es these onditions, so Ti is an in�nitetree. If δi is an in�nite path through Ti, then from the de�nition of equalityfor rapidly onverging Cauhy sequenes, ̺i = δi. RCA0 su�es to prove thatthe sequene 〈Ti〉i∈N exists, and by Lemma 5, WKL0 proves the sequene
〈δi〉i∈N exists.To prove the reversal, it su�es to use RCA0 and (2) to separate theranges of disjoint funtions [9, Lemma IV.4.4℄. The omputable analysisounterexample orresponding to this impliation appears as part of Theo-rem 4 of [4℄. Suppose f and g are injetions suh that ∀n ∀m (f(n) 6= g(m)).De�ne a sequene of rapidly onverging Cauhy sequenes as follows. For
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eah i and j, let

̺i(j) =







1 if ∀k < j (f(k) 6= i ∧ g(k) 6= i),
1 + 2−k if k < j ∧ f(k) = i,
1 − 2−k if k < j ∧ g(k) = i.By the reursive omprehension axiom, 〈̺i〉i∈N exists. Apply (2) to obtain asequene 〈δi〉i∈N of deimal expansions suh that for all i ∈ N, ̺i = δi. Notethat if f(k) = i then δi(0) = 1, and if g(k) = i then δi(0) = 0. Thus thefuntion χ(i) = δi(0) is the harateristi funtion for a separating set forthe ranges of f and g.Theorem 7 (RCA0). The following are equivalent :

(1) WKL0.
(2) If 〈δi〉i∈N is a sequene of deimal expansions then there is a sequene

〈λi〉i∈N of Dedekind uts suh that for eah i ∈ N, δi = λi.Proof. To prove that (1) implies (2), assume WKL0 and let 〈δi〉i∈N bea sequene of deimal expansions. Fix an enumeration of Q. Note that thesign of a deimal expansion δi an be determined from δi(0). For eah δkde�ne a pair of funtions fk and gk as follows. If δk is greater than 0 orequal to 0, let fk(m) = q, where q is the �rst element of Q that is not in
[fk(m)]∪[gk(m)] (the ranges of fk and gk on values less than m) that satis�es
q < δk(m). Let gk(m) = q where q is the �rst element of Q that is not in
[fk(m + 1)] ∪ [gk(m)] that satis�es q > δk(m) + 10−m. If δk is less than 0or equal to −0, let fk(m) = q where q is the �rst element of Q that is notin [fk(m)] ∪ [gk(m)] that satis�es q < δk(m) − 10−m. Let gk(m) = q where
q is the �rst element of Q that is not in [fk(m + 1)] ∪ [gk(m)] that satis�es
q > δk(m). RCA0 su�es to prove the existene of the sequenes 〈fk〉k∈N and
〈gk〉k∈N. By Lemma 5, WKL0 proves the existene of a sequene 〈λi〉i∈N suhthat for eah k, λk ontains the range of fk and is disjoint from the rangeof gk.We will show that λk is a Dedekind ut and δk = λk. Suppose that δk(0)is greater than 0 or equal to 0. If q ∈ Q and q < δk, then for some m,
q < δk(m). Sine δk is an inreasing funtion, for some n > m, fk(n) = q,so q ∈ λk. If q ∈ Q and q > δk, then for some m, q > δk(m) + 10−m. Sine
δk(j) + 10−j is a dereasing funtion in j, for some n > m, gk(n) = q andso q /∈ λk. Thus λk is a Dedekind ut equal to δk. Sine λk is a separatingset, if δk is a rational then δk may or may not be an element of λk. Thus,we have not shown that λk is an open ut. The proof that λk is the desiredDedekind ut when δk(0) is negative or −0 is similar.It remains to show that (2) implies WKL0. As in the preeding theorem,we will use (2) to separate the ranges of disjoint funtions. Let f and g beinjetions suh that for all m and n, f(m) 6= g(n). For the following, let [d]n



310 J. L. Hirst
denote a string of n opies of the digit d. De�ne a sequene 〈δi〉i∈N of deimalexpansions by setting

δk(n) =











.[1]t[2]n−t if t < n ∧ g(t) = k,

.[1]t[0]n−t if t < n ∧ f(t) = k,

.[1]n otherwise.Let 〈λi〉i∈N be a sequene of Dedekind uts suh that for eah i ∈ N, δi = λi.Then the set S = {i | 1

9
∈ λi} ontains every element of the range of f andno elements of the range of g.Theorem 8 (RCA0). The following are equivalent :

(1) ACA0.
(2) If 〈λi〉i∈N is a sequene of Dedekind uts, then there is a sequene

〈σi〉i∈N of open uts suh that for eah i ∈ N, λi = σi.Proof. First, assume (1) and let 〈λi〉i∈N be a sequene of Dedekind uts.For eah i ∈ N, if ∃q ∈ λi ∀q′ ∈ λi (q′ ≤ q), then let σi = λi−{q}. Otherwise,let σi = λi. ACA0 proves that the sequene 〈σi〉i∈N exists, and the omissionof maxima guarantees that eah σi is an open ut.To prove the onverse, we will use (2) to �nd the range of an injetion[9, Lemma III.1.3℄. Let f : N+ → N be an injetion. De�ne the sequene
〈λi〉i∈N of Dedekind uts by putting q ∈ Q in λi if and only if q ≤ 0 or

q > 0 ∧ (∃t < 1/q)
(

f(t) = i
)

.

RCA0 su�es to prove that the sequene 〈λ〉i∈N exists and that eah λi isa Dedekind ut. (Indeed, eah λi is a losed lower Dedekind ut for somerational.) By (2), there is a sequene 〈σi〉i∈N of open uts satisfying σi =
λi for eah i ∈ N. Sine ∃t (f(t) = k) if and only if 0 ∈ σk, reursiveomprehension proves that the range of f exists.The remaining analysis of the onversions of the representations of se-quenes of reals onsists of two easy orollaries to the preeding theorems.Corollary 9 (RCA0). The following are equivalent :

(1) WKL0.
(2) If 〈̺i〉i∈N is a sequene of rapidly onverging Cauhy sequenes, thenthere is a sequene 〈λi〉i∈N of Dedekind uts suh that for all i ∈ N,

̺i = λi.Proof. To prove that (1) implies (2), onatenate Theorems 6 and 7.Sine every deimal expansion is a rapidly onverging Cauhy sequene, (2)above implies (2) of Theorem 7, so WKL0 follows by Theorem 7.Corollary 10 (RCA0). The following are equivalent :
(1) ACA0.



Representations of Reals in Reverse Mathematis 311
(2) If 〈δi〉i∈N is a sequene of deimal expansions, then there is a se-quene 〈σi〉i∈N of open uts suh that for all i ∈ N, δi = σi.
(3) If 〈̺i〉i∈N is a sequene of rapidly onverging Cauhy sequenes, thenthere is a sequene 〈σi〉i∈N of open uts suh that for all i ∈ N,

̺i = σi.Proof. Sine ACA0 implies WKL0, the proof of (3) from (1) follows froma onatenation of Theorems 6, 7, and 8. Sine every deimal expansion is arapidly onverging Cauhy sequene, (2) is a speial ase of (3). It remains toshow that (2) implies (1). By Theorem 1, RCA0 proves that every sequene ofDedekind uts an be onverted to a sequene of deimal expansions, so (2)above implies (2) of Theorem 8, and ACA0 follows by Theorem 8. (Theorem6 of [4℄ inludes a omputable analysis ounterexample orresponding to adiret proof of (1) from (2).)We summarize the results of the preeding two setions in the followingtable. Eah table entry orresponds to a onversion from a sequene of therow type to a sequene of the olumn type. Row and olumn labels are:
• ̺: rapidly onverging Cauhy sequene,
• δ: deimal expansion,
• λ: Dedekind ut,
• σ: open ut.The onversion results are either provable in RCA0 (as shown in �2), orequivalent to the designated subsystem (as shown in this setion).

from\to ̺ δ λ σ

̺ RCA0 WKL0 WKL0 ACA0

δ RCA0 RCA0 WKL0 ACA0

λ RCA0 RCA0 RCA0 ACA0

σ RCA0 RCA0 RCA0 RCA04. Related results. As noted in the reversal of Theorem 8, onversionsfrom Dedekind uts to open uts require ACA0, even for sequenes onsist-ing only of rationals. On the other hand, onversions of purely irrationalsequenes an be arried out in RCA0, as shown by the following theoremand orollary.Theorem 11 (RCA0). If 〈̺i〉i∈N is a sequene of rapidly onvergingCauhy sequenes eah of whih onverges to an irrational number , thenthere is a sequene 〈σi〉i∈N of open uts suh that for all i ∈ N, σi = ̺i.Proof. Given the sequene 〈̺i〉i∈N, determine if q ∈ Q is in σk as follows.Sine ̺k is irrational, ̺k 6= q. Find n so large that ̺k(n) − 2−n > q or
̺k(n) + 2−n < q. If the �rst inequality holds, inlude q in σk. If the seond
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holds then exlude q from σk. RCA0 su�es to prove that 〈σi〉i∈N exists, eah
σi is an open ut, and for eah i, σi = ̺i.Corollary 12 (RCA0). Any sequene of irrationals in any of the fourrepresentations an be onverted to a sequene in any other representation.Proof. Immediate from Corollary 2 and Theorem 11.In general, separating rationals and irrationals requires ACA0 as shownby the following theorem and orollary.Theorem 13 (RCA0). The following are equivalent :

(1) ACA0.
(2) If 〈σi〉i∈N is a sequene of open uts then the set {i ∈ N | σi ∈ Q}exists.Proof. First, assume (1) and suppose 〈σi〉i∈N is a sequene of open uts.Note that σi ∈ Q if and only if

∃q ∈ Q ∀q′ ∈ Q (q′ /∈ σi → q ≤ q′).Sine eah rational an be enoded by a natural number, this formula isarithmetial. Thus, the desired set exists by arithmetial omprehension.To prove that (2) implies (1), assume RCA0 and let f be an injetion.Inlude q in σi if and only if
• ∃k (q < −2−k ∧ ∀t ≤ k (f(t) 6= i)), or
• ∃t (f(t) = i ∧ q < −2−t/π).
RCA0 su�es to prove that 〈σi〉i∈N exists, that eah σi is an open ut, andthat σi = 0 if i /∈ Range(f) and σi is irrational otherwise. The omplementof {i ∈ N | σi ∈ Q} is the range of f , so an appliation of [9, Lemma III.1.3℄yields ACA0.Corollary 14 (RCA0). For any of the four representations of reals, thefollowing are equivalent.
(1) ACA0.
(2) If 〈τi〉i∈N is a sequene of reals in the spei�ed representation, thenthe set {i ∈ N | τi ∈ Q} exists.Proof. To prove that (1) implies (2), assume ACA0 and let 〈τi〉i∈N be asequene of reals. Apply results from Setion 3 to onvert 〈τi〉i∈N to openuts. An appliation of Theorem 13 yields the desired set.To prove the onverse, assume RCA0 and suppose (2) holds. By Corol-lary 2, RCA0 proves that (2) above implies (2) of Theorem 13. ACA0 followsfrom Theorem 13.In Theorems 3 and 5 of [4℄, Mostowski analyzed hange of basis for se-quenes of deimal expansions in a omputable analysis setting. Theorems 16
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and 17 give the reverse mathematial analogs of his results. The followingterminology is useful in the proofs. A base b expansion is de�ned in the samemanner as a deimal expansion, using b in plae of 10 and integers less than
b as digits. A base b expansion is terminating if there is some point afterwhih every digit is zero or every digit is b− 1. By the de�nition of equalitybetween rapidly onverging Cauhy sequenes, this means that a terminat-ing base b expansion is always equal to (but not neessarily the same as) anexpansion ending in zeros. The next lemma shows that termination may ormay not be onserved under hange of basis. For natural numbers a and b,we will use the notation a | b to denote �a divides b� and a ∤ b to denote �adoes not divide b.�Lemma 15 (RCA0). For all b and c, there is an n suh that c | bn if andonly if every real with a terminating base c expansion has a terminating base
b expansion. In partiular , if for all n we have c ∤ bn, then the base b expansionof 1/c is nonterminating.Proof. Suppose that for some t and n, tc = bn. Let σ be a terminatingbase c expansion. We may assume that σ terminates in zeros, so for some j,

σ = σ(0) + sign(σ(0))

j
∑

i=1

σi

ciwhere 0 ≤ σi ≤ c − 1 for eah i ≤ j. Sine
σi

ci
=

tiσi

tici
=

tiσi

bni
,we have

σ = σ(0) + sign(σ(0))

j
∑

i=1

tiσi

bni
,so σ an be expressed as a terminating base b expansion.To prove the onverse, suppose that for every value of n, c ∤ bn. Supposeby way of ontradition that 1/c has a terminating base b expansion. Thenwe may write

1

c
=

j
∑

i=1

βi

bi
=

t

bjfor some t ∈ N. Thus ct = bj , ontraditing our divisibility assumption.Thus, 1/c has no terminating base b expansion.Theorem 16 (RCA0). If c | bn for some n, then for every sequene 〈βi〉i∈Nof base b expansions there is a sequene 〈γi〉i∈N of base c expansions suh thatfor all i ∈ N, βi = γi.
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Proof. This argument is essentially a formalization of the proof of The-orem 3 of [4℄. Suppose c | bn. By Lemma 15, whenever γ = β where γ isa base c expansion and β is a base b expansion, if γ terminates then sodoes β.Consider a single base b expansion; all it β. As usual, let β(k) de-note the result of trunating β after the �rst k digits to the right of thedeimal point. Let (β(k))c denote the base c expansion of β(k). Supposeby way of ontradition that there is a j suh that for all k, (β(k))c and

(β(k) + b−k)c disagree somewhere in the �rst j digits. In this ase thereare two base c expansions γ0 and γ1 suh that β = γ0 = γ1 and γ0 and
γ1 disagree somewhere in the �rst j digits. This implies that γ0 and γ1must be terminating. Let γ denote the element of {γ0, γ1} that terminatesin zeros. Sine β = γ and γ terminates, β must terminate also, and wemay assume that β ends in zeros. Choose m so large that m > j andfor all k > m, β(k) = β(m) and γ(k) = γ(m). Choose p > m suhthat for all k > p, b−k < c−m−1. Thus when k > p, (β(k))c = γ(m),
(β(k) + b−k)c < γ(m) + c−m−1, and (β(k))c must agree with (β(k) + b−k)con the �rst j digits, ontraditing our assumption. Thus for every j there isa k suh that (β(k))c and (β(k) + b−k)c agree on the �rst j digits. Further-more, for any m greater than suh k, (β(m))c and (β(k))c agree on the �rst
j digits.Now we an present the algorithm for onverting 〈βi〉i∈N to 〈γi〉i∈N. Forany i and j, �nd a k so large that (βi(k))c and (βi(k) + b−k)c agree on the�rst j digits. Let γi(j) onsist of those j digits. RCA0 su�es to prove that
〈γi〉i∈N exists and is a sequene of base c expansions, and that βi = γi forall i ∈ N.Theorem 17 (RCA0). If for all n we have c ∤ bn, then the following areequivalent :

(1) WKL0.
(2) For every sequene 〈βi〉i∈N of base b expansions there is a sequene

〈γi〉i∈N of base c expansions suh that for all i ∈ N, βi = γi.Proof. Suppose that for all n, c does not divide bn. Sine base b expan-sions are rapidly onverging Cauhy sequenes, and 10 an be replaed by cin the proof of Theorem 6, the statement that (1) implies (2) an be provedby adapting the proof of Theorem 6.The proof of the onverse is essentially a formalization of the onstrutionin Theorem 5 of [4℄. By Lemma 15, let β be the nonterminating base bexpansion of 1/c. Sine β does not terminate, after any given point in theexpansion a digit greater than 0 must our and a digit less than b− 1 mustour. For any k, let nk > k be the �rst loation to the right of the kth
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deimal plae in β that has a value less than b − 1 and de�ne

β↑
k(j) =







β(j) for j < nk,
b − 1 for j = nk,
0 for j > nk.Note that β↑

k > 1/c. Similarly, when nk > k is the �rst loation to the rightof the kth deimal plae in β that has a value greater than 0, de�ne
β↓

k(j) =

{

β(j) for j < nk,
0 for j ≥ nk.Note that β↓

k < 1/c. Let f and g be funtions with disjoint ranges, and de�ne
〈βi〉i∈N by

βi(j) =











β↑
t (j) if t ≤ j and f(t) = i,

β↓
t (j) if t ≤ j and g(t) = i,

β(j) otherwise.Apply (2) to �nd a sequene 〈γi〉i∈N of base c expansions suh that βi = γifor all i ∈ N. The set S = {i | γi(1) ≥ 1/c} is a separating set for the rangesof f and g.We lose by observing that many of the reversals of the results on se-quenes an be onverted to arguments in onstrutive analysis for negativestatements about single reals. As an example, onsider the proof of (2)⇒(1)in Theorem 17. To inrease the onreteness of the disussion, suppose b = 2and c = 10. Thus β is the base 2 expansion of 1/10, that is, β = .0001100in standard base 2 notation. Let P denote a formal theory that is assumedto be onsistent and that has proofs that an be Gödel numbered. (A rea-sonable hoie would be Peano arithmeti.) Let S denote a statement whosestatus is ompletely open. That is, S might or might not be provable in Pand ¬S might or might not be provable in P . (At the moment, S ould bethe Goldbah onjeture.) De�ne β0 by setting
β0(j) =











β↑
t (j) if some t ≤ j enodes a proof of S in P ,

β↓
t (j) if some t ≤ j enodes a proof of ¬S in P ,

β(j) otherwise.
β0 is a onstrutive base 2 expansion. Note that if γ = β0 and γ is a base 10expansion, then γ(1) ≥ 1/10 implies there is no proof of the negation of S in
P and γ(1) < 1/10 implies there is no proof of S in P . Sine we lak su�ientinformation about the provability of S to determine the value of γ(1), thereis no onstrutive base 10 expansion that is equal to β0. A onstrutivistmight summarize by saying that some base 2 expansions annot be onvertedto base 10 expansions. For more on onstrutive representations of reals,see [10℄.
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