Relations between Elements $r^{2}-r$

by
Andrzej PRÓSZYŃSKI

Presented by Andrzej SCHINZEL

Summary. We prove that generating relations between the elements $[r]=r^{2}-r$ of a commutative ring are the following: $[r+s]=[r]+[s]+r s[2]$ and $[r s]=r^{2}[s]+s[r]$.

1. Introduction. Let R be a commutative ring with 1 . In [2], the author introduced the ideal $I(R)=I_{2}(R)$ generated by all elements of the form $r^{2}-r$, where $r \in R$, and proved that it is precisely the intersection of all maximal ideals of index 2 in R [2, Proposition 5.5]. This ideal is permanently used in all considerations concerning relations satisfied by mappings of higher degrees (see [2]-[5]). The motivation for this paper is also similar: the main result will be used in [1] to find generating relations for mappings of degree 5; however, it is fully independent of the theory of higher degree mappings. The result is the following

Theorem. Let $C(R)$ be the R-module generated by the elements $[r]$, $r \in R$, with relations

$$
\begin{align*}
{[r+s] } & =[r]+[s]+r s[2], & & r, s \in R, \tag{1}\\
{[r s] } & =r^{2}[s]+s[r], & & r, s \in R . \tag{2}
\end{align*}
$$

Then there exists an R-isomorphism $P: C(R) \rightarrow I(R)$ such that $P([r])=$ $r^{2}-r$ for $r \in R$.

First of all, observe that elements $r^{2}-r$ satisfy relations (1)-(2). Therefore there exists an R-epimorphism $P: C(R) \rightarrow I(R)$ defined by the above formula and we must prove that it is injective. Moreover, note some consequences of (1) and (2), pointed out in [5, Corollary 5.1.4]:

[^0]Lemma 1. For any $r, s \in R$ we have

$$
\begin{align*}
& \left(r^{2}-r\right)[s]=\left(s^{2}-s\right)[r] \tag{3}\\
& 2[r]=\left(r^{2}-r\right)[2], \quad[2 r]=\left(2 r^{2}-r\right)[2], \\
& {[r]=[1-r],[0]=[1]=0, \quad[2]=[-1]} \\
& \text { if } r^{2}-r=2 s \text { then }[r]=s[2], \\
& \text { if } s \text { is invertible then }\left[s^{-1}\right]=-s^{-3}[s] .
\end{align*}
$$

Proof. Relation (3) follows from the two symmetric versions of (2). The first equality in (4) is obtained from (3), and gives the other one using (1).
(5) The equalities $[0]=[1]=0$ follow from (2) for $r, s=0$ or 1 . Hence by (1) and (3) we obtain

$$
0=[1]=[r]+[1-r]+\left(r-r^{2}\right)[2]=[r]+[1-r]-2[r]=[1-r]-[r]
$$

This also gives $[2]=[-1]$.
(6) Using (1) and (5) we get

$$
\left[r-r^{2}\right]=r^{2}[1-r]+(1-r)[r]=\left(r^{2}-r+1\right)[r]=(2 s+1)[r]
$$

On the other hand, $\left[r-r^{2}\right]=[2(-s)]=\left(2 s^{2}+s\right)[2]$ by (4), and hence

$$
[r]=\left(2 s^{2}+s\right)[2]-2 s[r]=\left(2 s^{2}+s\right)[2]-s\left(r^{2}-r\right)[2]=s[2]
$$

because of (4).
(7) It follows from (5) and (2) that $0=[1]=\left[s s^{-1}\right]=s^{2}\left[s^{-1}\right]+s^{-1}[s]$ and so $\left[s^{-1}\right]=-s^{-3}[s]$.
2. The functor C and C-functions. Any unitary ring homomorphism $i: R \rightarrow R^{\prime}$ induces the module homomorphism $C(i): C(R) \rightarrow C\left(R^{\prime}\right)$ over i such that $C(i)([r])=[i(r)]$. Then C is obviously a functor. We prove that it commutes with localizations. First of all, define C-functions over R as functions $f: R \rightarrow M$, where M is an R-module, satisfying the conditions

$$
f(r+s)=f(r)+f(s)+r s f(2), \quad r, s \in R
$$

and consequently, the analogs of (3)-(7). Observe that $C(R)$ is a universal object with respect to C-functions over R; this means that any C-function can be uniquely expressed as a composition of the canonical C-function $c: R \rightarrow C(R), c(r)=[r]$, and an R-homomorphism defined on $C(R)$.

Example. The analog of (6) shows that any C-function f over the ring \mathbb{Z} of integers is of the form $f(r)=\frac{r^{2}-r}{2} a$, where $a=f(2)$. Since $I(\mathbb{Z})=(2)$ is a free \mathbb{Z}-module, it follows from the universal property that the element a can be chosen arbitrarily.

Let S be a multiplicatively closed set in R and let $i: R \rightarrow R_{S}$ and $i: M \rightarrow M_{S}$ be the canonical homomorphisms.

Lemma 2. For any C-function $f: R \rightarrow M$ there exists a unique C function $f_{S}: R_{S} \rightarrow M_{S}$ satisfying the condition $f_{S}(i(r))=i(f(r))$ for $r \in R$. It is given by the formula

$$
f_{S}\binom{r}{s}=\frac{f(r)}{s}-\left(\frac{r}{s}\right)^{2} \frac{f(s)}{s}
$$

Proof. The condition means that $f_{S}\left(\frac{r}{1}\right)=\frac{f(r)}{1}$ for $r \in R$. Let $s \in S$. If f_{S} is a C-function then

$$
\begin{aligned}
\frac{f(r)}{1} & =f_{S}\left(\frac{r}{1}\right)=f_{S}\left(\left(\frac{r}{s}\right)\left(\frac{s}{1}\right)\right) \\
& =\left(\frac{r}{s}\right)^{2} f_{S}\left(\frac{s}{1}\right)+\left(\frac{s}{1}\right) f_{S}\left(\frac{r}{s}\right) \\
& =\left(\frac{r}{s}\right)^{2} \frac{f(s)}{1}+\left(\frac{s}{1}\right) f_{S}\left(\frac{r}{s}\right)
\end{aligned}
$$

which gives the required formula. This proves the uniqueness of f_{S}.
To prove that f_{S} is properly defined, it suffices to check that the right hand side of the formula remains the same if we replace r by $r t$ and s by $s t$ for any $t \in S$. By (2^{\prime}), we compute that, in fact,

$$
\begin{aligned}
\frac{f(r t)}{s t}-\left(\frac{r t}{s t}\right)^{2} \frac{f(s t)}{s t} & =\frac{r^{2} f(t)+t f(r)}{s t}-\left(\frac{r}{s}\right)^{2} \frac{s^{2} f(t)+t f(s)}{s t} \\
& =\frac{f(r)}{s}-\left(\frac{r}{s}\right)^{2} \frac{f(s)}{s}
\end{aligned}
$$

It remains to prove $\left(1^{\prime}\right)$ and $\left(2^{\prime}\right)$ for f_{S}. Let $\frac{a}{s}$ and $\frac{b}{s}$ be arbitrary elements of R_{S}. Then

$$
\begin{aligned}
& f_{S}\left(\frac{a}{s}+\frac{b}{s}\right)=f_{S}\left(\frac{a+b}{s}\right)=\frac{f(a+b)}{s}-\left(\frac{a+b}{s}\right)^{2} \frac{f(s)}{s} \\
&=\frac{f(a)}{s}+\frac{f(b)}{s}+\frac{a b f(2)}{s}-\left(\left(\frac{a}{s}\right)^{2}+\left(\frac{b}{s}\right)^{2}+\frac{2 a b}{s^{2}}\right) \frac{f(s)}{s} \\
&=\left(\frac{f(a)}{s}-\left(\frac{a}{s}\right)^{2} \frac{f(s)}{s}\right)+\left(\frac{f(b)}{s}-\left(\frac{b}{s}\right)^{2} \frac{f(s)}{s}\right)+\frac{a b f(2)}{s}-\frac{a b}{s^{2}} \frac{2 f(s)}{s} \\
&=f_{S}\left(\frac{a}{s}\right)+f_{S}\left(\frac{b}{s}\right)+\frac{a b f(2)}{s}-\frac{a b}{s^{2}} \frac{\left(s^{2}-s\right) f(2)}{s} \\
&=f_{S}\left(\frac{a}{s}\right)+f_{S}\left(\frac{b}{s}\right)+\frac{a}{s} \frac{b}{s} \frac{f(2)}{1}=f_{S}\left(\frac{a}{s}\right)+f_{S}\left(\frac{b}{s}\right)+\frac{a}{s} \frac{b}{s} f_{S}\left(\frac{2}{1}\right)
\end{aligned}
$$

by $\left(1^{\prime}\right)$ and the analogue of (4) for f, and

$$
\begin{aligned}
& f_{S}\left(\frac{a}{s} \frac{b}{s}\right)-\left(\frac{a}{s}\right)^{2} f_{S}\left(\frac{b}{s}\right)-\frac{b}{s} f_{S}\left(\frac{a}{s}\right) \\
&= f_{S}\left(\frac{a b}{s^{2}}\right)-\left(\frac{a}{s}\right)^{2} f_{S}\left(\frac{b}{s}\right)-\frac{b}{s} f_{S}\left(\frac{a}{s}\right) \\
&=\left(\frac{f(a b)}{s^{2}}-\left(\frac{a b}{s^{2}}\right)^{2} \frac{f\left(s^{2}\right)}{s^{2}}\right)-\left(\frac{a}{s}\right)^{2}\left(\frac{f(b)}{s}-\left(\frac{b}{s}\right)^{2} \frac{f(s)}{s}\right) \\
&-\frac{b}{s}\left(\frac{f(a)}{s}-\left(\frac{a}{s}\right)^{2} \frac{f(s)}{s}\right) \\
&=\left(\frac{f(a b)}{s^{2}}-\left(\frac{a}{s}\right)^{2} \frac{f(b)}{s}-\frac{b}{s} \frac{f(a)}{s}\right) \\
&-\left(\frac{a}{s}\right)^{2}\left(\left(\frac{b}{s}\right)^{2} \frac{f\left(s^{2}\right)}{s^{2}}-\left(\frac{b}{s}\right)^{2} \frac{f(s)}{s}-\frac{b}{s} \frac{f(s)}{s}\right) \\
&=\left(\frac{a^{2} f(b)+b f(a)}{s^{2}}-\frac{a^{2} f(b)}{s^{3}}-\frac{b f(a)}{s^{2}}\right) \\
&-\left(\frac{a}{s}\right)^{2} \frac{b}{s}\left(\frac{b}{s} \frac{f\left(s^{2}\right)-s f(s)}{s^{2}}-\frac{f(s)}{s}\right) \\
&= \frac{a^{2}\left(s^{2}-s\right) f(b)}{s^{4}}-\frac{a^{2} b}{s^{3}}\left(\frac{b}{s} \frac{s^{2} f(s)}{s^{2}}-\frac{f(s)}{s}\right) \\
&= \frac{a^{2}\left(b^{2}-b\right) f(s)}{s^{4}}-\frac{a^{2} b(b-1) f(s)}{s^{4}}=0
\end{aligned}
$$

by $\left(2^{\prime}\right)$ and the analogue of (3) for f. This completes the proof.
Now we are ready to prove
Proposition. There exists an R_{S}-isomorphism $C(R)_{S} \approx C\left(R_{S}\right)$ such that

$$
\frac{[r]}{s} \leftrightarrow \frac{1}{s}\left[\frac{r}{1}\right]
$$

Proof. Applying Lemma 2 to the canonical C-function $c: R \rightarrow C(R)$, $c(r)=[r]$, we obtain a C-function $c_{S}: R_{S} \rightarrow C(R)_{S}$ over R_{S},

$$
c_{S}\left(\frac{r}{s}\right)=\frac{[r]}{s}-\left(\frac{r}{s}\right)^{2} \frac{[s]}{s}
$$

The universal property yields an $R_{S^{-}}$-homomorphism $g: C\left(R_{S}\right) \rightarrow C(R)_{S}$ such that

$$
g\left(\left[\frac{r}{s}\right]\right)=\frac{[r]}{s}-\left(\frac{r}{s}\right)^{2} \frac{[s]}{s} .
$$

On the other hand, we have a homomorphism $C(i): C(R) \rightarrow C\left(R_{S}\right)$ over $i: R \rightarrow R_{S}$ defined by $C(i)([r])=\left[\frac{r}{1}\right]$, which gives an R_{S}-homomorphism $h: C(R)_{S} \rightarrow C\left(R_{S}\right)$ such that

$$
h\left(\frac{[r]}{s}\right)=\frac{1}{s}\left[\frac{r}{1}\right] .
$$

Observe that $h=g^{-1}$. In fact,

$$
g\left(h\left(\frac{[r]}{s}\right)\right)=\frac{1}{s} g\left(\left[\frac{r}{1}\right]\right)=\frac{1}{s}\left(\frac{[r]}{1}-\left(\frac{r}{1}\right)^{2} \frac{[1]}{1}\right)=\frac{[r]}{s}
$$

by (5). On the other hand, using (7) and (2) we compute that

$$
\begin{aligned}
h\left(g\left(\left[\frac{r}{s}\right]\right)\right) & =h\left(\frac{[r]}{s}-\left(\frac{r}{s}\right)^{2} \frac{[s]}{s}\right) \\
& =\frac{1}{s}\left[\frac{r}{1}\right]-\frac{r^{2}}{s^{3}}\left[\frac{s}{1}\right]=\frac{1}{s}\left[\frac{r}{1}\right]+\left(\frac{r}{1}\right)^{2}\left[\frac{1}{s}\right]=\left[\frac{r}{1} \frac{1}{s}\right]=\left[\frac{r}{s}\right] .
\end{aligned}
$$

Hence h is an isomorphism, as required.
Finally, note that also $I(R)_{S}=I\left(R_{S}\right)$, as follows, for example, from [2, Lemma 5.1].
3. Some lemmas about the kernel of P. Let us consider the kernel of the R-homomorphism $P: C(R) \rightarrow I(R), P([r])=r^{2}-r$ for $r \in R$. Our first observation is the following

Lemma 3. $I(R) \operatorname{Ker}(P)=0$.
Proof. Let $x=\sum_{i} a_{i}\left[r_{i}\right] \in \operatorname{Ker}(P)$, that is, $\sum_{i} a_{i}\left(r_{i}^{2}-r_{i}\right)=0$. Then by (3) we obtain $\left(r^{2}-r\right) x=\sum_{i} a_{i}\left(r^{2}-r\right)\left[r_{i}\right]=\sum_{i} a_{i}\left(r_{i}^{2}-r_{i}\right)[r]=0[r]=0$.

The next lemma plays a key role in our considerations.
Lemma 4. Let $x=\sum_{i} a_{i}\left[r_{i}\right] \in \operatorname{Ker}(P)$, where one of the r_{i} is 2. If all a_{i} belong to $I(R)^{k}$ for some $k \geq 0$ then $x=\sum_{i} b_{i}\left[r_{i}\right]$ where all b_{i} belong to $I(R)^{2 k+1}$.

Proof. By the assumption, $\sum_{i} a_{i} r_{i}^{2}=\sum_{i} a_{i} r_{i}$. Observe that

$$
\begin{aligned}
{\left[\sum_{i} a_{i} r_{i}^{2}\right] } & =\sum_{i}\left[a_{i} r_{i}^{2}\right]+c[2]=\sum_{i} a_{i}^{2}\left[r_{i}^{2}\right]+\sum_{i} r_{i}^{2}\left[a_{i}\right]+c[2] \\
& =\sum_{i} a_{i}^{2}\left(r_{i}^{2}+r_{i}\right)\left[r_{i}\right]+\sum_{i} r_{i}^{2}\left[a_{i}\right]+c[2], \\
{\left[\sum_{i} a_{i} r_{i}\right] } & =\sum_{i}\left[a_{i} r_{i}\right]+d[2]=\sum_{i} a_{i}\left[r_{i}\right]+\sum_{i} r_{i}^{2}\left[a_{i}\right]+d[2],
\end{aligned}
$$

where $c=\sum_{i<j} a_{i} a_{j} r_{i}^{2} r_{j}^{2}, d=\sum_{i<j} a_{i} a_{j} r_{i} r_{j}$. Since the above two elements are equal, we obtain

$$
\begin{aligned}
x & =\sum_{i} a_{i}\left[r_{i}\right]=\sum_{i} a_{i}^{2}\left(r_{i}^{2}+r_{i}\right)\left[r_{i}\right]+(c-d)[2] \\
& =\sum_{i} a_{i}^{2}\left(r_{i}^{2}+r_{i}\right)\left[r_{i}\right]+\sum_{i<j} a_{i} a_{j}\left(r_{i}^{2} r_{j}^{2}-r_{i} r_{j}\right)[2]
\end{aligned}
$$

This completes the proof, because $r_{i}^{2}+r_{i}$ and $r_{i}^{2} r_{j}^{2}-r_{i} r_{j}$ belong to $I(R)$.
The above lemma immediately yields the following
Corollary. Let $x=\sum_{i} a_{i}\left[r_{i}\right] \in \operatorname{Ker}(P)$ and let M denote the submodule of $C(R)$ generated by all $\left[r_{i}\right]$ and $[2]$. Then $x \in \bigcap_{k=0}^{\infty} I(R)^{k} M$.
4. Proof of the theorem: noetherian case. Suppose that R is noetherian. By the Proposition and the remark concluding Section 2 we can assume that R is, in fact, local and noetherian. Then we have the following two cases:

CASE 1: $I(R)=R$ (this means that the quotient field of R has more than two elements). Then Lemma 3 gives $\operatorname{Ker}(P)=0$.

CASE 2: $I(R)$ is the maximal ideal (this means that the quotient field of R has exactly two elements). Let $x \in \operatorname{Ker}(P)$. Define the submodule M as in the Corollary and observe that it is a finitely generated module over a local noetherian ring. Then the intersection in the Corollary is zero by the Krull intersection theorem, and consequently $x=0$. This proves that $\operatorname{Ker}(P)=0$.
5. Proof of the theorem: general case. Let $x=\sum_{i} a_{i}\left[r_{i}\right] \in \operatorname{Ker}(P)$. Define the subring S of R generated by all the elements a_{i} and r_{i}. Since S is a finitely generated ring, it is obviously noetherian, and hence the previous part of the proof shows that $P: C(S) \rightarrow I(S)$ is iso. Let $i: S \rightarrow R$ denote the injection. Then $x=(C(i))(y)$, where $y=\sum_{i} a_{i}\left[r_{i}\right] \in C(S)$. Since $P(y)=P(x)=0$ we conclude that $y=0$ and consequently $x=0$. This completes the proof.

References

[1] M. Maciejewski and A. Prószyński, Mappings of degree 5, part I, in preparation.
[2] A. Prószyński, Forms and mappings. I: Generalities, Fund. Math. 122 (1984), 219235.
[3] -, Forms and mappings. III: Regular m-applications, Comment. Math. 28 (1989), 305-330.
[4] -, Forms and mappings. IV: Degree 4, Bull. Polish Acad. Sci. Math. 37 (1989), 269-278.
[5] A. Prószyński, Mappings of higher degrees, WSP Bydgoszcz, 1987 (in Polish).
Andrzej Prószyński
Kazimierz Wielki University
85-072 Bydgoszcz, Poland
E-mail: apmat@ukw.edu.pl

Received May 26, 2007;
received in final form June 15, 2007

[^0]: 2000 Mathematics Subject Classification: 13C13, 13C05, 11E76.
 Key words and phrases: ideals of commutative rings, generators and relations, higher degree mappings.

