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Closure Theorem for Partially Semialgebrai SetsbyStanisªaw �OJASIEWICZ and María-Angeles ZURROPresented by Józef SICIAK
Summary. In 1988 it was proved by the �rst author that the losure of a partiallysemialgebrai set is partially semialgebrai. The essential tool used in that proof was theregular separation property. Here we give another proof without using this tool, basedon the semianalyti L-one theorem (Theorem 2), a semianalyti analog of the Cartan�Remmert�Stein lemma with parameters.The authors began work on this joint paper in September 2002, but in Novem-ber 2002 a heart attak put an end to Stanisªaw �ojasiewiz's life. The seondauthor wishes to honour Professor Stanisªaw �ojasiewiz with this paper.1. Let M be an analyti manifold. If X is a �nite-dimensional real vetorspae of dimension n, then an analyti funtion f : M ×X → R is said to bean X-polynomial if for an open neighborhood U of any point of M , in some(and then any) linear oordinate system X → R

n
t the restrition fU×X is apolynomial in t with oe�ients analyti on U .A subset E ⊂ M ×X is said to be X-semialgebrai if every point a ∈ Mhas an open neighborhood U suh that EU is desribed in U × X by X-polynomials. This de�nition implies that �nite unions and �nite intersetionsof X-semialgebrai sets are X-semialgebrai.When Y is another �nite-dimensional real vetor spae, an analytimapping M × X → Y is said to be an X-polynomial mapping if in some(and then any) linear oordinate system in Y its omponents are X-poly-nomials.2000 Mathematis Subjet Classi�ation: Primary 32B20; Seondary 14P15, 32C25.Key words and phrases: semianalyti sets, losure theorem.Work supported by the European Community's Human Potential Programme underontrat HPRN-CT-2001-00271, RAAG. [325℄ © Instytut Matematyzny PAN, 2007
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If N is a real analyti manifold, Y a �nite-dimensional real vetor spae,

f : M → N an analyti mapping and g : M × X → Y an X-polynomialmapping, then the inverse image under the mapping (x, v) 7→ (f(x), g(x, v))of a Y -algebrai subset of N × Y is an X-semialgebrai subset of M × X.2. Let X be a topologial spae and let A be an algebra of ontinuousreal funtions on it. We say that a subset E of X is desribed by A if
E =

s⋃

i=1

r⋂

j=1

Eijwhere Eij is of the form {fij > 0} or {fij < 0} or {fij = 0} with fij ∈ A.Let S(A) be the lass of subsets of X whih are desribed by A. Note that
A[t] is an algebra of ontinuous real funtions on X ×R. Let π : X ×R → Xbe the natural projetion.The following fats have been proved in [2, pp. 105�110℄.Proposition 1. The onneted omponents theorem for S(A) implies:(1) The onneted omponents theorem for S(A[t]).(2) E ∈ S(A[t]) ⇒ π(E) ∈ S(A).Let AU be the ring of analyti funtions on a relatively ompat neigh-borhood U of a given point a ∈ M whih have analyti extensions ontoneighborhoods of U . Then, by the onneted omponents theorem, eah setin S(AU ) has a �nite number of onneted omponents. Hene, by indution,we obtain the following statement:(1) Eah set in S(AU [t1, . . . , tm]) has a �nite number of omponents.(2) If E ∈ S(AU [t1, . . . , tm]), then π(E) is semianalyti in M , where

π : M × R
k → M is the natural projetion for k = 1, . . . , m.As onsequenes, using linear oordinate systems, we obtain the followingonneted omponents theorem and generalized Tarski�Seidenberg theorem.Let X be a �nite-dimensional real vetor spae. We say a family F ofsubsets of M×X is loally X-�nite if every point of M has a neighborhood Usuh that the family of non-empty traes of the sets of F on U ×X is �nite.Observe that the union of any loally X-�nite family of X-semialgebraisubsets of M × X is X-semialgebrai.

Connected Components Theorem. All onneted omponents of an
X-semialgebrai set E ⊂ M × X are X-semialgebrai and their family isloally X-�nite. Any open-losed subset of E is X-semialgebrai.Now, let Y be a �nite-dimensional real vetor spae and let π : M×X×Y

→ M × X be the natural projetion.
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Tarski–Seidenberg Theorem. If E ⊂ M × X × Y is (X × Y )-semialgebrai, then π(E) is X-semialgebrai (in M × X).3. Let M be a real analyti manifold and let L be a �nite-dimensionalreal vetor spae. We say that a semianalyti set E ⊂ M × L is an L-oneif eah �ber Ex is a one, for x ∈ M . This is equivalent to saying that

cλ(E) = E for λ > 0, where cλ = idM ×λ idL : M × L → M × L.We have the following straightforward properties:(1) The losure of an L-one is an L-one.(2) Finite unions, intersetions and di�erenes of L-ones are L-ones.(3) The subset of points of dimension k of a semianalyti L-one is asemianalyti L-one.(4) The set of smooth points of dimension k of an L-one is a semianalyti
L-one.We de�ne an L-onial germ to be any set germ A at (a, 0) ∈ M × Lsatisfying cλ(A) = A for any λ ∈ R, λ > 0. Clearly, the germ at (a, 0), with

a ∈ M , of any L-one C in M × L is L-onial, and we have dim(a,0) C =
dimC(a,0). Observe that for L-ones C, D, we have

C ⊂ D ⇔ C(a,0) ⊂ D(a,0) for all a ∈ Mand also
C = D ⇔ C(a,0) = D(a,0) for all a ∈ M.Lemma 1. For any L-onial semianalyti germ A at (a, 0) ∈ M × Lthere is a semianalyti L-one C in U ×L, where U is an open neighborhoodof a suh that C(a,0) = A. If A is analyti, so is C.Proof. Let E be a semianalyti representative of A in a neighborhood

U × Ω of (a, 0). For any u ∈ U and v ∈ L with |v| = 1 there is a maximalsegment (0, r(u, v))v whih is ontained in Eu or disjoint from Eu (1). As Ais L-onial, we must have r = inf{r(u, v) : u ∈ W, |v| = 1} > 0, with a rel-atively ompat semianalyti neighborhood W ⊂ U of a. Then, if 0 < s < r,the set
D = E ∩ (W × {|x| < s}) ⊂ M × Lis a union of some segments u× (0, s)v or u× [0, s)v, with |v| = 1. It followsthat C =

⋃
λ>0 cλ(D) is a semianalyti L-one (2) suh that C(a,0) = A.We will need the following fat:Proposition 2. Any dereasing sequene Eν of analyti subsets of Mis loally stationary , i.e. eah point a ∈ M has a neighborhood U suh thatthe sequene Eν ∩ U is stationary.

(1) Sine Eu ∩ Rv is semianalyti.
(2) Its germ at any point is the germ of some cλ(D) (at this point).
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Proof. Sine at any point c ∈ M the ring Ac of analyti germs at cis noetherian, the sequene of germs (Eν)0 is stationary, i.e. for some p wehave (Eν)0 = (Ep)0 for all ν ≥ p. Taking a strati�ation at c ompatible with

Ep (3), i.e. suh that Ep ∩ U is the union of some of its leaves, and usinga sort of the identity priniple: if an open non-empty subset of a onnetedanalyti leaf Λ is ontained in Ep, then Λ ⊂ Ep, we get the result.We have the following real analog of the Cartan�Remmert�Stein lemmawith parameters.We say that a subset E of M × L is L-algebrai if eah a ∈ M has anopen neighborhood U suh that E is de�ned (by equalities) by polynomialsin x ∈ L with oe�ients analyti in U (it an always be de�ned by onefuntion).Theorem 1. Eah analyti L-one in M × L is L-algebrai.Proof. Fix any a ∈ M . Our L-one E is de�ned in some open neighbor-hood W = U × V of (a, 0) by an analyti funtion f =
∑

∞

i=0 hi, where hi isa form of degree i with oe�ients analyti in U . For any (x, v) ∈ U × V wehave the equivalene
f(x, v) = 0 ⇔ hi(x, v) = 0, i = 0, 1, 2, . . . .In fat, if f(x, v) = 0, then, as E is an L-one, we have 0 = f(x, tv) =∑

∞

i=0 hi(x, v)ti for t > 0 small enough, hene hi(x, v) = 0, i = 0, 1, . . . .The sequene of analyti sets Ek = {(x, v) ∈ U × V : hi(x, v) = 0, i =
1, . . . , k} is dereasing, hene by Proposition 2, it must be loally stationary,so, diminishing W , we have {f = 0} ∩W = Ek for some k. Thus the sets Eand Ek are equal in W , and so, being L-ones, they must be equal in U ×L.Proposition 3. For any semianalyti germ S at a point a ∈ M , thereexists the smallest analyti germ at a whih ontains S. Moreover , it has thesame dimension as S.Proof. Let A be the ring of germs of analyti funtions at a and I theideal of germs whih vanish on S. As A is noetherian, the ideal I is generatedby germs at a of some analyti funtions f1, . . . , fs in a neighborhood of a.Then the analyti germ

{f1 = · · · = fs = 0}ais as required. The seond part follows by taking a normal strati�ationompatible with a representative of S.Proposition 4. Any semianalyti L-one is ontained in an algebrai
L-one of the same dimension.

(3) E.g. a normal one (see [4℄).
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Proof. Let E be our semianalyti L-one. Let a ∈ M . By Proposition 3we take the smallest analyti germ S whih ontains E(a,0). It is L-onialsine also cλ(S) is suh a germ (in view of cλ(E(a,0)) = E(a,0)). By Lemma 1there is an analyti L-one C suh that C(a,0) = S. It has the same dimensionas E and it is algebrai, by Theorem 1.4. We will now need some other fats from semianalyti geometry. Forany subset E of a topologial spae X, we de�ne a dereasing sequeneof losed sets Vi = Vi(E), i = 1, 2, . . . , as follows. We de�ne by reursion

E0 = E and Ei+1 = Ei \ Ei, and we put Vi = Vi(E) = Ei. In partiular,
V0 = E and V0 ⊃ V1 ⊃ · · · .Lemma 2. If V2r = ∅, then E = (V0 \ V1) ∪ · · · ∪ (V2r−2 \ V2r−1).Proof. In fat, Ei = Ei \ Ei+1, and also

(Vi \ Vi+1) ∪ (Vi+1 \ Ei+1) = Ei \ Ei+1.Hene, for p even, we have
E2r−p = (V2r−p \ V2r−p+1) ∪ (V2r−p+2 \ V2r−p+3) ∪ · · · ∪ (V2r−2 \ V2r−1),and we get the result for p = 2r.Proposition 5. A set E ⊂ M is semianalyti if and only if the sets

Vi = Vi(E) are losed semianalyti and Vs = ∅ for some s. Then Vi+1 isnowhere dense in Vi, i = 0, 1, . . . , so dimVi ≤ dimE, and we have Vi = ∅for i > n = dimM . If 2r > n, then
(∗) E = (V0 \ V1) ∪ · · · ∪ (V2r−2 \ V2r−1).Observe that if E is a one, so are the Vi's.Proof. Indeed, by Lemma 2, the ondition is su�ient. Now suppose thatthe set E is semianalyti. Then the sets Vi are semianalyti, Vi+1 is nowheredense in Vi, i = 0, 1, . . . , and Vi = ∅ for i > n (see [4, II.5, II.7℄). ApplyingLemma 2 we get (∗). The last statement follows from the de�nition of V (E).Proposition 6. If E is semianalyti in M , then the set

{x ∈ M : dimx E = k}is semianalyti.Proof. In fat, it is su�ient to take a distinguished (or normal) strat-i�ation of an interval Q, ompatible with E (see [1℄). Then the points ofour set in Q are preisely those whih belong to losures (in Q) of leaves ofdimension k and do not belong to the losure of any leaf of dimension > k.
Remark 1. If a semianalyti set is of onstant dimension k, then so isits losure.
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5. We have the following semianalyti analog of the Cartan�Remmert�Stein lemma with parameters.Theorem 2. Any semianalyti L-one is L-semialgebrai.Proof. Let E be a semianalyti L-one in M×L. We proeed by indutionon the dimension k of E. By Proposition 5, we have

E = (F0 \ F1) ∪ · · · ∪ (Fp−1 \ Fp),where the Fi are losed semianalyti L-ones of dimension ≤ k. In view ofProposition 6 and Remark 1, for eah F = Fi we have
F = Sk ∪ · · · ∪ S0,with Si a losed semianalyti L-one of onstant dimension i.By Proposition 4, any L-one Si is ontained in an L-algebrai L-one

Ci of dimension i. Let S∗

i the set of non-smooth points of Si. It is a losedsemianalyti L-one of dimension < i < k, and it is L-semialgebrai by theindution hypothesis. Then Si\S∗

i is an analyti submanifold of dimension i;it is dense in Si (as the latter is of onstant dimension i). Next the set C∗

i ofpoints of Ci whih are not smooth of dimension i is a losed L-semialgebrai
L-one of dimension < i, and Ci \ C∗

i is an analyti submanifold.The set T = S∗

i ∪ C∗

i is losed semialgebrai of dimension < i. Then
Si \ T is losed in Ci \ T , but it is also open (in the latter set) as both areanalyti submanifolds of dimension i. Hene Si \T is a loally L-�nite unionof onneted omponents of Ci \ T , and so it is L-semialgebrai. Sine Si isthe losure of Si \ T , it must be L-semialgebrai. Consequently, so are the
Fi's and E.6. Let X, Y be �nite-dimensional real vetor spaes. Consider the hy-perplane H = X × Y × 1 ⊂ X × Y × R. Let F be a subset of X × Y , andput

c(F ) =
⋃

(x,y)∈F

{x} × R+(y, 1),

with R+ = (0,∞). Hene, c(F ) ∩ H = F × 1.
Remark 2. Let E ⊂ X × Y be a Y -one. Then

Ẽ = {(x, y, z, t) : (x, y) ∈ E, z = ty, t > 0} ⊂ X × Y × Y × Ris a (Y × R)-one, and c(E) = µ(Ẽ), where µ(x, y, z, t) = (x, z, t) for
(x, y, z, t) in X × Y × Y × R. Thus, by the Tarski�Seidenberg theorem, if Eis a Y -semialgebrai Y -one then c(E) is a Y -semialgebrai (Y × R)-one.
Remark 3. Let M = X × Y × R+ and onsider E ⊂ X × Y . Then

clM (c(E)) = c(clX×Y E).This yields the following equivalene:
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Proposition 7. Let E ⊂ X × Y be any Y -one. Then E is Y -semial-gebrai if and only if c(E) is semianalyti.Proof. Consider the (Y × R)-one Ẽ as in Remark 2. It is (Y × Y )-semialgebrai. By the Tarski�Seidenberg theorem µ(Ẽ) is Y -semialgebrai,hene c(E) is semianalyti. Conversely, sine c(E)∩H = E × 1, the set E issemianalyti. Hene, by Theorem 2, E is Y -semialgebrai.
Closure Theorem. The losure of any Y -semialgebrai subset of

X × Y is Y -semialgebrai.Proof. Let A be a Y -semialgebrai set. Put E = c(A). Then E is a Y -oneand it is Y -semialgebrai. By Proposition 7, the one c(E) is semianalyti.Thus c(E) is semianalyti (by the losure theorem for semianalyti sets, see[4, II.5, Cor. 5.2℄). The set E is a Y -one, and it is also Y -semialgebrai,in view of Remark 3 and Proposition 7. Remark 3 implies that c(A) is Y -semialgebrai. Hene so is A, sine A ≡ c(A) ∩ H.
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