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Summary. Existence of a mild solution to a semilinear Cauchy problem with an almost
sectorial operator is studied. Under additional regularity assumptions on the nonlinearity
and initial data we also prove the existence of a classical solution to this problem. An
example of a parabolic problem in Hölder spaces illustrates the abstract result.

1. Introduction. The aim of this paper is to study existence and reg-
ularity of solutions to the general semilinear Cauchy problem

(1.1) ut + Au = f(t, u), u(0) = u0,

in a Banach space X, where A : D(A) ⊂ X → X generates an inte-

grated semigroup of a special kind. More precisely, we will assume A to be a
closed linear operator whose spectrum σ(A) is contained in the sector Sω =
{z ∈ C \ {0} : |arg z| ≤ ω} ∪ {0} for some 0 < ω < π/2 and whose resolvent
̺(A) satisfies: for every ω < η < π there is a constant Cη > 0 such that

(1.2) ‖(λ − A)−1‖ ≤ Cη|λ|
γ for all λ ∈ C \ Sη and some γ ∈ (−1, 0).

Such operators will be called almost sectorial. It turns out that this definition
implies that 0 ∈ ̺(A) (see [P-S, Remark 2.2]).

The notion of “integrated semigroup” was introduced in 1983 by
W. Arendt [A1] and studied in a number of later references (e.g. [A2], [K-H],
[N-S], [P], [P-S], [T]). This theory is an extension of the classical theory of
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C0-semigroups. Properties of integrated semigroups are different from those
of C0-semigroups (a list of such properties can be found in [T]).

Below we will formulate certain existence theorems for the semilinear
problem (1.1) involving an almost sectorial operator. Such problems generate
semigroups with properties intermediate between those of C0 and integrated
semigroups. In the main body of the paper, under appropriate assumptions
on the nonlinear term f , we will show the existence of a local mild solution
to (1.1). This solution will have additional smoothness, in particular will be
a classical solution, for regular initial data u0.

Results of that kind were already reported in [P], [P-S] and [A-C-L].
In the interesting paper [P-S] the McIntosh functional calculus for almost
sectorial operators was built, and local and global solvability of the non-
homogeneous linear Cauchy problem with an almost sectorial operator was
studied. An extension of the existence theory to semilinear equations was
reported later in [P]. Our assumptions and results overlap with those of [P].
However, our definition of the mild solution (following [A-C-L]) is differ-
ent; in Theorem 2 we study additionally existence of classical solutions; we
also discuss in detail an example of a semilinear parabolic Cauchy prob-
lem in Hölder spaces, which was our main motivation for writing this paper
(see [FR] for classical results concerning this example).

2. Linear semigroup. Let (X, ‖ · ‖) be a complex Banach space. It
was shown in [P-S] that even without assuming the domain D(A) to be
dense in X, the part of −A in the Banach space (D(A), ‖ ·‖) is the complete
generator of an analytic semigroup of growth order γ+1, {T (t) : t ∈ C\{0},
|arg t| < π/2 − ω}, which is given by

(2.1) T (t) =
1

2πi

\
Γθ

e−tz(z − A)−1 dz,

where Γθ = {re−iθ : r > 0} ∪ {reiθ : r > 0} with ω < θ < η < π is
oriented counter-clockwise. The T (t) defined by (2.1) have the semigroup
property T (t)T (s) = T (t+ s), t, s > 0, which is verified in the usual way by
calculating contour integrals and using the resolvent identity. It also follows
from (1.2) that

(2.2) ‖T (t)‖ ≤ Mt−(γ+1) for all t > 0,

where M > 0 is a constant.

Typical examples of almost sectorial operators are elliptic differential
operators considered on spaces of smooth functions (e.g. Hölder continuous
ones). Since this example is important in the theory of parabolic equations
we recall it for completeness of presentation.
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Example 1. Let Ω ⊂ R
n be a bounded domain with C4m boundary. In

the space X = Cµ(Ω) of Hölder continuous functions (µ ∈ (0, 1)) consider
the elliptic differential operator

Av(x) =
∑

|β|≤2m

aβ(x)Dβv(x),

with the domain D(A) = {v ∈ C2m+µ(Ω) : Dβu = 0 on ∂Ω, |β| ≤ m − 1},
where Dβ =

∏n
j=1(−i∂/∂xj)

βj , with β a multiindex. The coefficients aβ :

Ω → C are assumed to satisfy the following conditions:

(i) aβ ∈ Cµ(Ω) for |β| ≤ 2m,
(2.3) (ii) aβ(x) ∈ R for |β| = 2m and all ∈ Ω,

(iii) ∃M>0 ∀ξ∈Rn ∀x∈Ω M−1|ξ|2m ≤
∑

|β|=2m

aβ(x)ξβ ≤ M |ξ|2m.

For sufficiently large ν > 0 the operator A + ν is almost sectorial with
parameter γ = µ/2m−1. Note that in particular the minus Laplace operator
satisfies the above conditions.

Observation 1. It is easy to see that, for v0 ∈ D(A) and t > 0,

(2.4)
d

dt
T (t)v0 =

1

2πi

\
Γθ

e−tz(−z)(z−A)−1v0 dz =−T (t)Av0 =−AT (t)v0,

since the operator A is closed and

A(z − A)−1 = (z − A)−1A = z(z − A)−1 − I.

As a consequence of (2.4), for each v0 ∈ D(A) the function T (t)v0 is contin-
uous for t ≥ 0. Indeed, integrating (2.4) over (h, t), h > 0, we find that

T (t)v0 − T (h)v0 = −

t\
h

T (s)Av0 ds,

which shows the existence of the limit of T (h)v0 as h → 0+, thanks to the
estimate

∥∥∥
t\
h

T (s)Av0 ds
∥∥∥ ≤ M

t\
h

s−(γ+1)‖Av0‖ ds(2.5)

= M‖Av0‖
t−γ − h−γ

−γ
≤ M‖Av0‖

t−γ

−γ
.

Moreover, by the resolvent identity,

(z − A)−1(1 + A)−1 = (z + 1)−1((z − A)−1 + (1 + A)−1), −1, z ∈ ̺(A),
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hence for v0 ∈ D(A) we have the equality

T (t)v0 =
1

2πi

\
Γθ

e−tz(z − A)−1v0 dz(2.6)

=
1

2πi

\
Γθ

(1 + z)−1e−tz(z − A)−1(1 + A)v0 dz,

and consequently,

(2.7) T (t)v0 − v0 =
1

2πi

\
Γθ

(1 + z)−1(e−tz − 1)(z − A)−1(1 + A)v0 dz,

v0 ∈ D(A),

where the last integral is easily shown to converge to 0 as t → 0+. Therefore,
for v0 ∈ D(A), we have

T (t)v0 → v0 as t → 0+.

The above observation will be important when we define a classical so-
lution to the semilinear Cauchy problem (1.1).

Consider next the linear non-homogeneous Cauchy problem

(2.8) wt + Aw = g(t), w(0) = w0,

with g : (0, T ) → X and w0 ∈ X. When g ∈ L1((0, T ); X) and A is an
almost sectorial operator, the mild solution to (2.8) is given by the Cauchy
formula:

(2.9) w(t) = T (t)w0 +

t\
0

T (t − s)g(s) ds, 0 < t < T,

where, unlike the case of C0-semigroups, the mild solution need not be con-
tinuous at t = 0. Recall here that the classification of semigroups according
to their convergence to the identity operator as t → 0+ has been described
in the classical monograph [H-P, p. 320].

By a classical solution to (2.8) we understand a function

w ∈ C([0, T ]; X) ∩ C1((0, T ); X),

which, for 0 < t < T , takes values in D(A) and satisfies equation (2.8)
in X. The following result on classical solvability of the problem (2.8) was
formulated in [P-S, Theorem 4.1].

Proposition 1. If A is almost sectorial and g ∈ L∞((0, T ); X) satisfies

g(t) ∈ D(A) for all 0 < t < T and is Hölder continuous with exponent

θ > γ + 1, that is,

‖g(t) − g(s)‖ ≤ K|t − s|θ for all 0 < t, s < T,

then for every w0 ∈ Ω the mild solution of (2.8) is its unique classical

solution.
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Here Ω is the continuity set of the semigroup T (t):

(2.10) Ω = {x ∈ X : lim
t→0+

T (t)x = x}.

Note that as a consequence of Observation 1 we have

(2.11) D(A) ⊂ Ω,

which gives a localization of the continuity set of the semigroup.
For completeness, we now recall some facts connected with the smoothing

action of the linear semigroup T (t), t > 0, taken from [P-S]. There, fractional
powers Aα, α ∈ C, of almost sectorial operators A were introduced. The
operators Aα are closed, injective and enjoy the characterization (limited
here to real α ∈ (0, 1); see [P-S, p. 52])

Aα = (1 + A)2
1

2πi

\
Γθ

zα

(1 + z)2
(z − A)−1 dz.

Also the domain D(Aα) = Xα is a Banach space endowed with the graph
norm

‖x‖Xα = ‖x‖ + ‖Aαx‖, x ∈ Xα.

Moreover ([P-S, p. 56]), for β > 0,

(2.12) ∃C=C(γ,β) ‖AβT (t)‖ ≤ Ct−(γ+1+β).

3. Semilinear problem. Consider now the solvability of the semilinear
Cauchy problem (1.1) with an almost sectorial operator A and u0 ∈ D(A):

ut + Au = f(t, u), u(0) = u0.

In Theorem 1 we will assume the nonlinear term f to be locally Lipschitz

continuous and polynomially bounded , more precisely f : [0,∞) × X → X
is continuous with respect to t and for some 1 ≤ ̺ < −γ/(γ + 1) (where
γ ∈ (−1,−1/2)),

(3.1) ∀t0>0 ∃L=L(t0) ‖f(t, x)−f(t, y)‖ ≤ L‖x−y‖(1 + ‖x‖̺−1 + ‖y‖̺−1),

and also

(3.2) ∀t0>0 ∃L′=L′(t0) ‖f(t, x)‖ ≤ L′(1 + ‖x‖̺),

whenever t ∈ [0, t0].
We will be interested in mild solutions of the problem (1.1), that is,

continuous solutions u : (0, T ] → X of the integral equation

(3.3) u(t) = T (t)u0 +

t\
0

T (t − s)f(s, u(s)) ds.

Temporarily, to avoid using the ineffective continuity set Ω of the semi-
group T (t) (see (2.10)), we follow [A-C-L] and search for mild solutions of
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the problem (1.1) having the same type of singularity at time t = 0 as the

linear semigroup. Therefore, for T > 0 and fixed δ > 0, we introduce the
metric space

(3.4) K(T, u0) = {v ∈ C((0, T ]; X) : sup
t∈(0,T ]

‖v(t) − T (t)u0‖ ≤ δ},

with the metric defined as

̺T (v1, v2) = sup
t∈(0,T ]

‖v1(t) − v2(t)‖ for v1, v2 ∈ K(T, u0).

Remark 1. As shown in Observation 1, for u0 ∈ D(A) the function
[0,∞) ∋ t 7→ T (t)u0 ∈ X is continuous. Therefore, for such u0, the unique
mild solution to (1.1) constructed in Proposition 2 or Theorem 1 below
belongs to C([0, τ ]; X) with some τ ≤ T . Indeed, we can take smaller δ = δ′

in (3.4) and obtain a unique mild solution in the metric space corresponding
to δ′, possibly on a shorter time interval. But these two solutions must
coincide on the common interval of existence, which proves their continuity
at t = 0.

With the above modified definition of mild solution the following simple
local existence result holds. It will be useful for initial data u0 ∈ D(A) in
the example closing this paper.

Proposition 2. Let A be an almost sectorial operator with γ ∈ (−1, 0)
and f be Lipschitz continuous on K(T, u0):

(3.5) ∃L>0 ∀0<t≤T ∀x,y∈X : ‖x−T (t)u0‖,‖y−T (t)u0‖≤δ

‖f(t, x) − f(t, y)‖ ≤ L‖x − y‖,

and bounded there:

(3.6) ∃N>0 ∀0<t≤T ∀x∈X:‖x−T (t)u0‖≤δ ‖f(t, x)‖ ≤ N.

Then for sufficiently small positive τ0 ≤ T (see (3.9)) there is a mild solution

to (1.1) in K(τ0, u0).

Proof. We apply the Banach contraction principle in K(τ0, u0) to the
operator

F (v)(t) = T (t)u0 +

t\
0

T (t − s)f(s, v(s)) ds, t ≤ τ0.

If v ∈ K(τ0, u0), then

‖F (v)(t) − T (t)u0‖ ≤

t\
0

‖T (t − s)‖ ‖f(s, v(s))‖ ds(3.7)

≤ MN

t\
0

(t − s)−(γ+1) ds = MN
t−γ

−γ
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for t ≤ τ0. Since the right hand side tends to 0 as t goes to 0+, F maps
K(τ0, u0) into itself whenever

MN
τ−γ
0

−γ
≤ δ.

To finish the proof it suffices to use the estimate

‖F (v)(t) − F (w)(t)‖ ≤ M

t\
0

(t − s)−(γ+1)‖f(s, v(s)) − f(s, w(s))‖ ds(3.8)

≤ ML
t−γ

−γ
̺τ0

(v, w) for t ∈ [0, τ0],

which shows that F is contractive on K(τ0, u0) whenever τ0 > 0 is so small
that

ML
τ−γ
0

−γ
< 1.

To satisfy both conditions imposed on τ0 one can set

(3.9) τ0 = min

{(
−γ

2ML

)−1/γ

,

(
−γδ

MN

)−1/γ}
.

In further considerations the β function will frequently be used:

(3.10) β(a, b) =

1\
0

sa−1(1 − s)b−1 ds, a, b > 0.

Observation 2. The boundedness condition (3.6) need not be satisfied

for u0 ∈ D(A) \ D(A). If we replace (3.6) with the assumption

(3.11) ∃N>0 ∀0<t≤T ‖f(t, T (t)u0)‖ ≤ N(1 + ‖u0‖t
−(γ+1)),

then the first estimate in the proof of the proposition will read:

(3.12) ‖F (v)(t) − T (t)u0‖ ≤

t\
0

‖T (t − s)‖ ‖f(s, v(s))‖ ds

≤ M

t\
0

(t−s)−(γ+1)[‖f(s, v(s))−f(s, T (s)u0)‖+‖f(s, T (s)u0)‖] ds

≤ M(Lδ + N)
t−γ

−γ
+ MN‖u0‖

t\
0

(t − s)−(γ+1)s−(γ+1) ds

= M(Lδ + N)
t−γ

−γ
+ MN‖u0‖t

−2γ−1β(−γ,−γ).

The final expression can be made less than δ for small positive t (allowing
one to deduce the proposition) only when γ < −1/2. This observation shows
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that in further considerations the cases γ ∈ (−1,−1/2) and γ ∈ [−1/2, 0)
should be treated separately.

With assumption (3.11) replacing (3.6) the above proposition does also
extend to exponents γ ∈ [−1/2, 0) provided we modify the metric space
K(T, u0) by setting

Kθ(T, u0) = {v ∈ C((0, T ]; X) : sup
t∈(0,T ]

tθ‖v(t) − T (t)u0‖ ≤ δ},

with θ ∈ (2γ + 1, 1). In that case the estimate corresponding to (3.12) takes
the form

tθ‖F (v)(t) − T (t)u0‖ ≤ MLδt−γβ(1 − θ,−γ)

+ MN
tθ−γ

−γ
+ MN‖u0‖t

θ−2γ−1β(−γ,−γ),

which is sufficient to verify that F maps Kθ(τ0, u0) into itself for sufficiently
small τ0 > 0. Also, the estimate corresponding to (3.8) reads

tθ‖F (v)(t) − F (w)(t)‖ ≤ MLt−γβ(1 − θ,−γ) sup
s∈(0,τ0]

sθ‖v(s) − w(s)‖

whenever t ∈ [0, τ0]. The above two estimates show the existence of a fixed
point of the operator F in Kθ(τ0, u0) provided τ0 > 0 is sufficiently small.

We now prove the existence of a fixed point of the operator F in the
metric space K(τ1, u0) under weaker assumptions on the nonlinear term f .

Theorem 1. Let A be an almost sectorial operator with γ ∈ (−1,−1/2)
and let f satisfy the conditions (3.1), (3.2) with ̺ < −γ/(γ + 1). Then for

sufficiently small positive τ1 ≤ T there is a unique mild solution to (1.1) in

K(τ1, u0).

Proof. We apply the Banach contraction principle in K(τ1, u0) to the
operator

F (v)(t) = T (t)u0 +

t\
0

T (t − s)f(s, v(s)) ds, t ≤ τ1,

with sufficiently small τ1 > 0. Note that for v, w ∈ K(T, u0) we have the
estimate ‖v(t) − w(t)‖ ≤ 2δ, and

(3.13) ‖v(t)‖ ≤ δ + Mt−(γ+1)‖u0‖ when t ∈ (0, T ].

Thus for v ∈ K(τ1, u0), we have

(3.14) ‖F (v)(t) − T (t)u0‖ ≤ M

t\
0

‖T (t − s)‖ ‖f(s, v(s))‖ ds

≤ ML′
t\
0

(t − s)−(γ+1)[1 + (‖v(s) − T (s)u0‖ + ‖T (s)u0‖)
̺] ds
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≤ ML′ t−γ

−γ
(1 + c sup

s∈(0,t]
‖v(s) − T (s)u0‖

̺)

+ M1+̺L′c‖u0‖
̺t−(γ+1)̺−γβ(1 − (γ + 1)̺,−γ),

with the right hand side tending to 0 as t goes to 0+. Therefore F maps
K(τ1, u0) into itself whenever

ML′ τ−γ
1

−γ
(1 + cδ̺) + M2L′c‖u0‖

̺τ
−(γ+1)̺−γ
1 β(−(γ + 1)̺,−γ) ≤ δ,

where, to ensure the above inequality for small τ1 > 0, we have used the
condition ̺ < −γ/(γ + 1).

To finish the proof it suffices to show that F is contractive on K(τ1, u0)
when τ1 > 0 is sufficiently small. Indeed, for v, w ∈ K(τ1, u0),

(3.15) ‖F (v)(t) − F (w)(t)‖

≤ ML

t\
0

(t − s)−(γ+1)‖v(s) − w(s)‖(1 + ‖v(s)‖̺−1 + ‖w(s)‖̺−1) ds

≤ ̺t(v, w)

(
ML

t−γ

−γ
+ 2ML

t\
0

(t − s)−(γ+1)(δ + Mt−(γ+1)‖u0‖)
̺−1 ds

)

≤ ̺τ1
(v, w)ML

(
(1 + 2cδ̺−1)

τ−γ
1

−γ

+ 2c(M‖u0‖)
̺−1τ

−(γ+1)̺+1
1 β(1 − (γ + 1)(̺ − 1),−γ)

)

whenever 0 < t ≤ τ1. Since the expression in the last bracket tends to 0 as
τ1 goes to 0+, the claim follows. The solution obtained is unique.

Remark 2. As usual the local solution constructed above may be ex-
tended to a solution defined on a maximal interval of existence. We will not
formulate the corresponding result rigorously.

3.1. More regular solutions. We will use the theory of the linear non-
homogeneous equation (2.8) reported in Proposition 1 to find conditions
allowing the mild solutions of (1.1) constructed in Theorem 1 to be more
regular; in fact, to be classical solutions. The latter means that

u ∈ C([0, T ]; X) ∩ C1((0, T ); X),

u has values in D(A) for all t ∈ (0, T ) and satisfies (1.1) in X. Before
formulating the announced theorem we need some preparation.

Remark 3. As shown in (2.4), for v0 ∈ D(A) and t > 0,

T (t)Av0 = AT (t)v0.
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It follows that for fixed v0 ∈ D(A) the left hand side above is continuous
from (0, T ] into X with singularity at t = 0+ of order t−(γ+1). Thus, for
such v0, T (t)v0 is continuous from (0, T ] into D(A) with the same type of
singularity at t = 0+.

If we assume that v0 ∈ D(A) and Av0 ∈ Ω (the continuity set of the
semigroup T (t), see (2.10)), then

T (t)Av0 → Av0 as t → 0+.

These two properties together show that for v0 belonging to the set

(3.16) {v ∈ D(A) : Av ∈ Ω},

the function [0, T ] ∋ t 7→ T (t)v0 ∈ D(A) is continuous. Note also that, due
to the localization of Ω given in (2.11), the set (3.16) contains D(A2).

Our next task will be to discuss solvability of the problem (1.1) in the
space D(A) of smooth functions. For u0 ∈ D(A) and δ′ > 0 set

K̃(τ2, u0) = {v ∈ C((0, τ2]; D(A)) : sup
t∈(0,τ2]

‖v(t) − T (t)u0‖D(A) ≤ δ′}.

Proposition 3. Let A be an almost sectorial operator with γ ∈
(−1,−1/2), u0 ∈ D(A) and let f satisfy the condition

(3.17) ∃
L̃>0

∀0<t≤T ∀x,y∈D(A) (‖x−T (t)u0‖D(A), ‖y−T (t)u0‖D(A) ≤ δ′)

⇒ ‖f(t, x) − f(t, y)‖D(A) ≤ L̃‖x − y‖D(A),

and also

∃
Ñ>0

∀0<t≤T ‖f(t, T (t)u0)‖D(A) ≤ Ñ(1 + ‖u0‖D(A)t
−(γ+1)).

Then, for sufficiently small positive τ2 ≤ T , there is a unique mild solution

to (1.1) in K̃(τ2, u0).

The proof of this proposition, analogous to the proof of the extension of
Proposition 2 reported in Observation 2, will be omitted. Regular solutions
constructed in this proposition will be called D(A)-smooth solutions.

We are now able to formulate the main result of this section. See Theo-
rem 1.6 of [PA, Chapter 6] for a similar result concerning C0-semigroups.

Theorem 2. Suppose that −1 < γ < −1/2, u0 ∈ D(A) with Au0 ∈ Ω
and u is the mild solution corresponding to u0, existing on [0, τ1]. Suppose

the nonlinearity f satisfies the condition

(3.18) ∃L=L(N) ∀x,y∈X, ‖x‖,‖y‖≤N ∀t,s∈[0,T ]

‖f(t, x) − f(s, y)‖ ≤ L(|t − s|θ + ‖x − y‖)

with an exponent θ > γ + 1, and the assumptions of Proposition 3. Then u
is in fact the unique classical solution of (1.1), possibly on a shorter time

interval.
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Proof. According to Proposition 1, it suffices to show that f(t, u(t)) ∈
D(A) for t ∈ (0, τ3) (with some τ3 ≤ τ1), and that the mild solution u is in

Cβ((0, τ1); X) with some β > γ + 1.

Note first that under our extra assumptions on the initial data u0, by
Proposition 3, there is a unique D(A)-smooth solution corresponding to u0.
Evidently, by uniqueness, the mild and D(A)-smooth solutions coincide on
the common interval of existence [0, min{τ1, τ2}]. This proves the first prop-
erty with τ3 = min{τ1, τ2}.

Now we show that thanks to assumption (3.18) the mild solution u be-
longs to Cβ((0, τ1); X) with some β > γ +1. Note that when u0 ∈ D(A), the
function T (t)u0 is continuous for t ≥ 0 and the corresponding mild solution
u is bounded in X for t ∈ [0, τ1]. For small positive h0 and t ∈ (0, τ1 − h0],
0 < h < h0, we will estimate the difference

(3.19) u(t + h) − u(t)

= T (t + h)u0−T (t)u0 +

t+h\
0

T (t+h−s)f(s, u(s)) ds−

t\
0

T (t−s)f(s, u(s)) ds

= T (t)[T (h)u0 − u0] +

t\
0

T (t − s)[f(s + h, u(s + h)) − f(s, u(s))] ds

+

h\
0

T (t + h − s)f(s, u(s)) ds.

Thanks to (3.18), for N so large that ‖u(t)‖ ≤ N for t ∈ [0, τ1],

(3.20)

t\
0

‖T (t − s)‖ ‖f(s + h, u(s + h)) − f(s, u(s))‖ ds

≤ ML(N)

t\
0

(t − s)−(γ+1)(|h|θ + ‖u(s + h) − u(s)‖) ds

≤ ML(N)
t−γ

−γ
|h|θ + ML(N)

t\
0

(t − s)−(γ+1)‖u(s + h) − u(s)‖ ds,

and, for m′ such that ‖f(t, u(t))‖ ≤ m′ for t ∈ [0, τ1],

h\
0

‖T (t + h − s)‖ ‖f(s, u(s))‖ ds ≤ Mm′ (t + h)−γ − t−γ

−γ
.

Finally, as follows from Observation 1,

‖T (t)[T (h)u0 − u0]‖ ≤ M‖Au0‖

t+h\
t

s−(γ+1) ds = M‖Au0‖
(t + h)−γ − t−γ

−γ
.
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Collecting the estimates, using the inequality (t + h)−γ − t−γ ≤ h−γ ,
−γ ∈ (1/2, 1), we find that

(3.21) ‖u(t + h) − u(t)‖ ≤ (M‖Au0‖ + Mm′)
|h|−γ

−γ

+ ML(N)
τ−γ
1

−γ
|h|θ + ML(N)

t\
0

(t − s)−(γ+1)‖u(s + h) − u(s)‖ ds.

Since −γ > γ +1 for −γ ∈ (1/2, 1), setting β = min{θ,−γ} > γ +1 > 0, we
arrive at

‖u(t + h) − u(t)‖

|h|β
≤ const + ML(N)

t\
0

(t − s)−(γ+1) ‖u(s + h) − u(s)‖

|h|β
ds.

The usual Gronwall lemma then applies and we find that

‖u(t + h) − u(t)‖

|h|β
≤ const · exp

(
ML(N)

t−γ

−γ

)
≤ const′

for 0 < t ≤ τ1 − h0 and 0 < h < h0. The proof is thus completed.

3.2. An example. Finally, we give a simple example illustrating the pre-
sented theory. Since there is no significant difference in considerations for
the general elliptic operator described in Example 1 and the basic Laplace
operator with Dirichlet boundary condition, we will consider a simple prob-
lem

(3.22)

{
ut = ∆u + f(u), t > 0, x ∈ Ω,

u(0, x) = u0(x) in Ω, u = 0 on ∂Ω.

Let µ ∈ (0, 1) be the Hölder exponent and Ω ⊂ Rn be a bounded domain
with ∂Ω ∈ C4. In the space Cµ(Ω) of Hölder continuous functions consider
the extension A of −∆ with the domain

D(−∆) = {v ∈ C2+µ(Ω) : v = 0 on ∂Ω}.

The operator A : D(A) ⊂ Cµ(Ω) → Cµ(Ω) is almost sectorial with exponent
γ = µ/2 − 1 ∈ (−1,−1/2), but not sectorial (see [P-S, p. 44]). Note also
that A is not densely defined since

D(A) ⊂ {v ∈ Cµ(Ω) : v = 0 on ∂Ω},

which is not dense in Cµ(Ω).

Recall that Cµ(Ω), µ ∈ (0, 1), is a Banach space of uniformly continuous
functions v : Ω → R equipped with the norm

‖v‖µ = sup
x∈Ω

|v(x)| + sup
x,y∈Ω, 0<|x−y|≤1

|v(x) − v(y)|

|x − y|µ
= ‖v‖C(Ω) + Hµ(v).
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A sufficient condition for a real function f : R → R to generate a bounded
and locally Lipschitz substitution (Nemytskĭı) operator F : Cµ(Ω)→Cµ(Ω),

(3.23) ‖F(x1) −F(x2)‖µ ≤ k(r)‖x1 − x2‖µ, ‖x1‖µ, ‖x2‖µ ≤ r,

was formulated in [A-Z, Theorem 7.9] (see also the remark on p. 204 there).
To ensure (3.23) we need to assume that f is continuously differentiable on
R with

(3.24) |f ′(x) − f ′(y)| ≤ k(r)
|x − y|

r
, |x|, |y| ≤ r.

If, in Proposition 2, we take smooth initial data u0 ∈ D(A) then, ac-
cording to Remark 1, the function T (t)u0 is continuous at t = 0+ and the
values of functions in K(T, u0) vary in a bounded subset of Cµ(Ω). Assuming
(3.24), thanks to (3.23), Proposition 2 then provides a unique mild solution
for all u0 ∈ D(A). Existence of mild solutions to (3.22) for such u0 is thus
justified.

If we assume additionally that f ′, f ′′ : R → R are continuously dif-
ferentiable functions satisfying condition (3.24), then a simple but lengthy
calculation using the fact that Cµ(Ω) is a Banach algebra shows that the as-
sumptions of Proposition 3 are satisfied. Thus, for u0 ∈ D(A) with Au0 ∈ Ω
and f as described, the corresponding mild solution to (3.22) is also a clas-
sical solution.
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