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Krasinkiewiz Maps from Compata to PolyhedrabyEiihi MATSUHASHIPresented by Czesªaw BESSAGA
Summary. We prove that the set of all Krasinkiewiz maps from a ompat metri spaeto a polyhedron (or a 1-dimensional loally onneted ontinuum, or an n-dimensionalMenger manifold, n ≥ 1) is a dense Gδ-subset of the spae of all maps. We also investigatethe existene of surjetive Krasinkiewiz maps from ontinua to polyhedra.1. Introdution. In this paper all spaes are separable and metrizable,and all maps are ontinuous. We denote the interval [0, 1℄ by I. A ompatmetri spae is alled a ompatum, and a ontinuum means a onnetedompatum. Let X and Y be ompata. Then C(X, Y ) denotes the set ofall ontinuous maps from X to Y endowed with the sup metri.If X, Y are ompata, a map f : X → Y is alled a Krasinkiewicz
map if any ontinuum in X either ontains a omponent of a �ber of f oris ontained in a �ber of f (f. [5℄ and [8℄). In [5℄ J. Krasinkiewiz showedthat the set of all Krasinkiewiz maps from a ompatum to a 1-dimensionalmanifold is a dense subset of the spae of all maps. In fat, he proved thisresult as follows. First, he de�ned a map f : X → Y to be singular if thereexists a Bing map (see [3℄, [4℄, [6℄ and [10℄) F : X×I → Y suh that F0 = f .Next he proved that the set of all singular maps from a ompatum to an
n-dimensional manifold (n ≥ 1) is a dense subset of the spae of all maps,and also that a singular map from a ompatum to a 1-dimensional manifoldis a Krasinkiewiz map. On the other hand, in [8℄ M. Levin and W. Lewisproved that the set of Krasinkiewiz maps from a ompatum to I is a densesubset of the spae of all maps by their own method.2000 Mathematis Subjet Classi�ation: Primary 54C05, 54C35; Seondary 54F15,54F45.Key words and phrases: Krasinkiewiz map, omponent, dense Gδ-subset, polyhedron,ompatum, ontinuum, Menger manifold, loally onneted ontinuum.[137℄
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In this paper, we prove the following theorem.Theorem 1.1. Let X be a ompatum and P a polyhedron. Then the setof all Krasinkiewiz maps from X to P is a dense Gδ-subset of C(X, P ).In Setion 3, as an appliation of Theorem 1.1, we prove that the set of allKrasinkiewiz maps from a ompat metri spae to a 1-dimensional loallyonneted ontinuum (or an n-dimensional Menger manifold, n ≥ 1) is adense Gδ-subset of the spae of all maps. Also, we investigate the existeneof surjetive Krasinkiewiz maps from ontinua to polyhedra.2. Main theorem. In this setion we prove Theorem 1.1. First we in-drodue our notation and terminology. By I̊ we denote the manifold interiorof I, I̊ = (0, 1), and by ∂I its manifold boundary, ∂I = {0, 1}. Analogoussymbols are used for the unit ube In. Let f : X → Y be a mapping. Fora point x ∈ X we denote by C(x, f) the omponent of the �ber f−1(f(x))ontaining x, and all it the omponent of f at x. Any omponent of f at apoint is said to be a omponent of f . A mapping g : X → Y is said to be analteration of f on U over V , where U ⊂ X and V ⊂ Y are arbitrary sets, if

g(x) = f(x) for eah x /∈ U ∩ f−1(V ), and g(U ∩ f−1(V )) ⊂ V .The easy proof of the next lemma is left to the reader.Lemma 2.1. Let q : X → X ′ be a mapping between ompata, and let
u : X → I and u′ : X ′ → I be mappings suh that u = u′ ◦ q.(i) If v′ : X ′ → I is an alteration of u′ on G′ over (a, b), then v = v′ ◦ qis an alteration of u on G = q−1(G′) over (a, b). Moreover , d(u, v) ≤

d(u′, v′).(ii) If q is a monotone surjetion and C ′ is a omponent of u′ then C =
q−1(C ′) is a omponent of u.The next lemma is a strengthening of a result proved by M. Levin [7℄.Lemma 2.2. Let u : X → I be a mapping of a ompatum X and let

(a, b) ⊂ I. Suppose Z is a nonvoid losed subset of X whose omponents liein �bers of u, and u(Z) ⊂ (a, b). Then, for any open neighborhood G of Z inX , u an be approximated by mappings v : X → I suh that :(i) v is an alteration of u on G \ Z over (a, b),(ii) eah omponent of Z is a omponent of v.Proof. Let X ′ denote the quotient spae obtained from X by shrinkingthe omponents of Z to points, and let q : X → X ′ denote the quotientmapping. Then Z ′ = q(Z) is a losed 0-dimensional subset of X ′ and G′ =
q(G) is an open neighborhood of Z ′ in X ′. Sine omponents of Z lie in�bers of u, there is a map u′ : X ′ → I suh that u = u′ ◦ q. Fix ε > 0. Inview of Lemma 2.1, if v′ : X ′ → I is an alteration of u′ on G′ \Z ′ over (a, b)
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with d(v′, u′) < ε, then v = v′ ◦ q satis�es the onlusion of our lemma, and
d(v, u) < ε. Therefore, without loss of generality, we may assume that(1) dim Z = 0.Let U = G ∩ u−1((a, b)). Sine U ⊂ X is open and Z ⊂ U , by (1) thereexist open sets U1, . . . , Un(∅) suh that for eah i, i′ = 1, . . . , n(∅) we have:(21) Z ⊂ U1 ∪ · · · ∪ Un(∅), Z ∩ Ui 6= ∅, cl Ui ⊂ U ,(31) clUi ∩ clUi′ = ∅ for i 6= i′,(41) diamUi < 1/21, diamu(cl Ui) < ε/21.Hene Zi = Z ∩ Ui is a nonvoid losed subset of the open set Ui. Therefore,we an repeat the proedure for Ui, Zi in plae of U, Z; and so on. Thus,for eah k ≥ 1, we onstrut open sets Uα, where α = (i1, . . . , ik), satisfyingonditions (2k)�(4k). Then we pik open sets Vα, Wα and intervals [aα, bα] ⊂
[a, b] suh that(5k) lUα ⊂ Vα ⊂ clVα ⊂Wα ⊂ clWα ⊂ Uβ, where β = (i1, . . . , ik−1),(6k) cl Wα ∩ cl Wα′ = ∅, where α′ = (i1, . . . , ik−1, i

′
k), ik 6= i′k,(7k) diamWα < 1/2k,(8k) u(cl Wα) ⊂ [aα, bα] and diam[aα, bα] < ε/2k.Moreover, we an hoose the intervals so that(9) all the initial points aα are di�erent.Then take any mappings vα : clWα \ Uα → [aα, bα] whih map ∂Vα to aα,and whih oinide with u on ∂Wα ∪ ∂Uα. Finally, de�ne v : X → I to bethe union of the maps vα on clWα \ Uα, and u on the omplement of thesesets.It follows from (8) that d(v, u) < ε. Suppose there is a nondegenerateomponent D of v whih meets Z. It follows from (5) and (7) that D meetstwo di�erent boundaries ∂Vα. Hene v(D) ontains at least two di�erentpoints aα, a ontradition.Lemma 2.3. Let f : X → I be a mapping of a ompatum X and let Gbe an open subset of X. Then f an be approximated by mappings g : X → Isuh that(i) g is an alteration of f on G over I̊,(ii) if L ⊂ G is a ontinuum lying in no �ber of g , then L ontains aomponent of g.Proof. Fix ε > 0. We need a map g : X → I whih is ε-lose to f andsatis�es the onlusion of our lemma. It will be de�ned as the limit of asequene of maps u0, u1, . . . from X to I. To de�ne the latter, �rst hoose asequene of losed intervals [a1, b1], [a2, b2], . . . in I̊, and a sequene of Cantorsets C1, C2, . . . satisfying the following onditions (for i, j = 1, 2, . . . ):
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(1) diam [ai, bi] < ε/2i,(2) Ci ⊂ (ai, bi),(3) ([ai, bi] ∩ [aj, bj ] 6= ∅ and i < j) ⇒ ([aj, bj ] ⊂ (ai, bi) \ Ci),(4) eah nonvoid open subset of I ontains some [ai, bi].Next, take an inreasing sequene G0, G1, . . . of open subsets of X suhthat G = G0∪G1∪· · · and cl Gi−1 ⊂ Gi for eah i. Then de�ne the mappings

ui−1 by indution. Put(5) u0 = f .If ui−1 has been de�ned, de�ne ui as follows. Take a ontinuous surjetion
ϕi : Ci → 2X , where 2X denotes the hyperspae of losed subsets of X, andset

Zi =
⋃
{ϕi(c) ∩ u−1

i−1(c) ∩ cl Gi−1 | c ∈ Ci}.Then Zi is a losed subset of X, its omponents lie in �bers of ui−1, and
ui−1(Zi) ⊂ Ci. Therefore, by Lemma 2.2, there is a mapping ui : X → Isuh that(6) ui is an alteration of ui−1 on Gi \ Zi over (ai, bi),(7) eah omponent of Zi is a omponent of u−1

i (c) for some c ∈ Ci.Let us observe that(8) if L ⊂ Gi−1 is a ontinuum and Ci ⊂ ui−1(L), then L ontains aomponent of u−1
i (c) for some c ∈ Ci.In fat, there is c0 ∈ Ci suh that ϕi(c0) = L. Sine c0 ∈ ui−1(L), we have

L ∩ u−1
i−1(c0) 6= ∅. On the other hand,

L ∩ u−1
i−1(c0) = ϕi(c0) ∩ u−1

i−1(c0) ∩ cl Gi−1is a subset of Zi. Let D be a omponent of L ∩ u−1
i−1(c0). Then D is aomponent of Zi. Sine ui(D) = ui−1(D) = {c0}, by (7) we infer that D isa omponent of u−1

i (c0). Thus, L ontains a omponent of u−1
i (c0), whihproves (8).From (3) and (6) we infer that(9) if ui(x) ∈ [aj , bj ] for some j > i, and j0 = min{j > i | ui(x) ∈

[aj , bj ]}, then uk(x) ∈ [aj0 , bj0 ] for eah k > i.Now we are ready to omplete the proof. We are going to show that
g = limui satis�es the onlusion of our lemma. The limit is well de�ned inview of (6) and (1). Then, by (1), (5) and (6), g is ε-lose to f . Condition (i)follows from (6). It remains to prove (ii). To this end, onsider a ontinuum
L ⊂ G suh that g(L) is not a singleton. Then there is i ≥ 1 suh that
L ⊂ Gi−1 and [ai, bi] ⊂ ui−1(L). By (2) and (8), L ontains a omponent of
u−1

i (c) for some c ∈ Ci. Therefore, it is enough to show that(10) g−1(c) = u−1
i (c).
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By (3) and (6) one easily sees that u−1

i (c) ⊂ g−1(c). To prove the on-verse, suppose on the ontrary that there is a point x ∈ g−1(c) \ u−1
i (c).Then g(x) = c 6= ui(x). It follows that ui(x) ∈ [aj, bj ] for some j > i (other-wise g(x) = ui(x)). By (9), uk(x) ∈ [aj0 , bj0 ] for eah k ≥ i, where j0 > i.It follows that g(x) ∈ [aj0 , bj0 ]. On the other hand, [aj0 , bj0 ] ⊂ (ai, bi) \ Ci,by (3). Hene c = g(x) /∈ Ci, a ontradition. This proves (10), and ends theentire proof.Lemma 2.4. Let X be a ompatum and let f = (f1, . . . , fn) : X → In bea mapping suh that f |f−1(∂In) : f−1(∂In)→ ∂In is a Krasinkiewiz map.Then f an be approximated by Krasinkiewiz maps g : X → In whih are al-terations of f on f−1(I̊n) over I̊n. In other words, eah g extends f |f−1(∂In)and transforms f−1(I̊n) into I̊n.Proof. Fix ε > 0 and let G = f−1(I̊n). By Lemma 2.3, for eah i =

1, . . . , n, there is a mapping gi : X → I whih is (ε/√n)-lose to fi and suhthat(1) gi is an alteration of fi on G over I̊,(2) if L ⊂ G is a ontinuum lying in no �ber of gi, then L ontains aomponent of gi.We shall show that g = (g1, . . . , gn) : X → In satis�es the onlusion.First note that g is ε-lose to f , and g is an alteration of f on f−1(I̊n)over I̊n. It remains to show that g is a Krasinkiewiz map. To this end,onsider a ontinuum L ⊂ X suh that g(L) is not a singleton. We mustshow that L ontains a omponent of g. If L ∩ G = ∅, then L ⊂ f−1(∂In)hene, by our hypothesis L ontains a omponent of f |f−1(∂In), whih isalso a omponent of f . Next, assume L ∩G 6= ∅. Then there is a ontinuum
L′ ⊂ L∩G suh that g(L′) is not a singleton. Hene gi(L

′) is not a singletonfor some i. By Lemma 2.3, L′ ontains a omponent C(x, gi). Sine C(x, g) ⊂
C(x, gi) ⊂ L′ ⊂ L, this ends the proof.Before the proof of Theorem 2.5 we give some notations. If X and Y areompata, then K(X, Y ) denotes the set of all Krasinkiewiz maps from Xto Y . If K is a simpliial omplex, we write Kn = {σ ∈ K | dim σ ≤ n} anddenote the polyhedron of K by |K|. Let X be a ompatum, K a simpliialomplex and f : X → |K| a mapping. A mapping g : X → |K| is said to be a
K-modi�ation of f if f(x) ∈ σ̊ implies g(x) ∈ σ̊ for every x ∈ X and σ ∈ K.One easily sees that(∗) if g is a K-modi�ation of f and L is a subomplex of K then g−1(|L|)

= f−1(|L|) and the mapping g−1(|L|) → L determined by g is an
L-modi�ation of the mapping f−1(|L|)→ L determined by f.
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Theorem 2.5. Let X be a ompatum and P a polyhedron. Then K(X, P )is a dense subset of C(X, P ).Proof. For any ε > 0 there is a simpliial omplex K suh that P = |K|and meshK < ε. Therefore our theorem readily follows from the followingassertion:(∗∗) for any mapping f : X → |K|, where X is a ompatum and K is asimpliial omplex, there is a Krasinkiewiz map g : X → |K| whihis a K-modi�ation of f.We prove (∗∗) by indution on dimK. For dimK = 0 it is obvious be-ause every map from a ompatum into a disrete spae is a Krasinkiewizmap. Then onsider any mapping f : X → |K|, where n = dimK > 0,and assume (∗∗) holds for any (n − 1)-dimensional omplex. It su�es to�nd a Krasinkiewiz map g : X → |K| whih is a K-modi�ation of f . Tothis end onsider the mapping f0 : f−1(|Kn−1|) → |Kn−1| determined by

f (i.e. f0(x) = f(x) for every x). By the indutive assumption there is aKrasinkiewiz map g0 : f−1(|Kn−1|)→ |Kn−1| whih is a Kn−1-modi�ationof f0. For any n-simplex σ ∈ K \ Kn−1, by (∗), g−1
0 (∂σ) = f−1(∂σ) andthe mapping g∂σ : g−1

0 (∂σ) → ∂σ determined by g0 is a ∂σ-modi�ationof the mapping f−1(∂σ) → ∂σ determined by f . Sine σ is homeomorphito In and the mapping g∂σ is a Krasinkiewiz map, by Lemma 2.4, thereis a Krasinkiewiz map gσ : f−1(σ) → σ suh that gσ(x) = g0(x) for all
x ∈ f−1(∂σ), and gσ(x) ∈ σ̊ if f(x) ∈ σ̊. Now we de�ne the mapping
g : X → |K| to be g0 on the inverse f−1(|Kn−1|), and gσ on f−1(σ) for eah
σ ∈ K \ Kn−1. One easily veri�es that g is well de�ned and has the desiredproperties, whih ends the proof.A set A ⊂ X is said to be residual in X if A ontains a dense Gδ-subsetin X. In [8℄ M. Levin and W. Lewis laimed that if X is a ompatum, then
K(X, I) is a residual set of C(X, I). In fat, they laimed that the set ofmaps f in C(X, I) satisfying the following ondition is a dense Gδ-subset of
C(X, I):(#) for every ontinuum F ⊂ X suh that f(F ) is not a singleton thereexists a subset D ⊂ f(F ) dense in f(F ) suh that for every d ∈ D,

f−1(d) ∩ F is the union of some omponents of f−1(d).Contrary to this assertion, one an show that there exist ontinua X suhthat the set of maps in C(X, I) satisfying (#) is not dense in C(X, I). Forinstane, take any mapping f : I×I → I lose enough to the �rst projetion
pr1 : I × I → I. Then f does not satisfy (#). In fat, let F = I × {1/2}.Then f(F ) is not a singleton, but if d ∈ f(F ) and 1/2 ∈ f(F ) are su�ientlynear, then there exists a omponent C of f−1(d) suh that C ∩ (I × {0}) 6=
∅ 6= C ∩ (I × {1}). So there does not exist a subset D ⊂ f(F ) as in (#).
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So K(X, I) need not be a residual subset of C(X, I). However, we provethat if X and Y are ompata, then K(X, Y ) is a Gδ-subset of C(X, Y ).If δ > 0 and A ⊂ X, we denote the set {x ∈ X | d(x, A) < δ} by B(A, δ).Theorem 2.6. Let X and Y be ompata. Then K(X, Y ) is a Gδ-subsetof C(X, Y ).Proof. For eah m, n ∈ N, let Hm,n be the set of all maps f ∈ C(X, Y )satisfying the ondition:(⋆) if L ⊂ X is a subontinuum with diam f(L) ≥ 1/n, then there exists

x ∈ L suh that C(x, f) ⊂ B(L, 1/m).We laim that(A) Hm,n is an open subset of C(X, Y ),(B) K(X, Y ) =
⋂

m,n∈N
Hm,n.To prove (A), we show that C(X, Y )\Hm,n is a losed subset of C(X, Y ).Note that C(X, Y ) \Hm,n is the set of all maps f ∈ C(X, Y ) satisfying:(⋆⋆) there exists a subontinuum K ⊂ X suh that diam f(K) ≥ 1/nand C(x, f) 6⊂ B(K, 1/m) for eah x ∈ K.Let f ∈ cl(C(X, Y ) \ Hm,n). Then there exists a sequene of maps

{fi}∞i=1 ⊂ C(X, Y ) \ Hm,n suh that lim fi = f . For eah i = 1, 2, . . . ,there exists a subontinuum Ki ⊂ X suh that diam fi(Ki) ≥ 1/n and
C(x, fi) 6⊂ B(Ki, 1/m) for eah x ∈ Ki. We may assume that Ki onvergesto a subontinuum K ⊂ X. Then it is easy to see that diam f(K) ≥ 1/n.Let x ∈ K. Then there exists a sequene {xi}∞i=1 ⊂ X suh that xi ∈ Kifor eah i = 1, 2, . . ., and limxi = x. Hene C(xi, fi) 6⊂ B(Ki, 1/m) for eah
i = 1, 2, . . . . We may assume that C(xi, fi) onverges to a subontinuum
C ⊂ X. Then it is easy to see that x ∈ C ⊂ C(x, f) and C 6⊂ B(K, 1/m).So f ∈ C(X, Y ) \Hm,n. This ompletes the proof of (A).Next we prove (B). It is easy to see that K(X, Y ) ⊂ ⋂

m,n∈N
Hm,n. Sowe only prove the reverse inlusion. Let f ∈ ⋂

m,n∈N
Hm,n and let L ⊂ Xbe a subontinuum suh that diam f(L) > 0. Let L1 = L. Now we provethat there exists a subontinuum L2 ⊂ L1 suh that diam f(L2) > 0 and

C(x, f) ⊂ B(L1, 1/2) for eah x ∈ L2. Sine diam f(L1) > 0, there exists
n1 ∈ N suh that diam f(L1) ≥ 1/n1. Sine f ∈ H2,n1

, there exists x0 ∈ L1suh that C(x0, f) ⊂ B(L1, 1/2). Sine B(L1, 1/2) is open and C(x0, f) is aomponent of the ompat set f−1(f(x0)), there exist two disjoint open sets
U, U ′ suh that(1) f−1(f(x0)) ⊂ U ∪ U ′,(2) C(x0, f) ⊂ U ⊂ B(L1, 1/2).
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Sine f is a losed mapping, by (1) there is an open neighborhood V of f(x0)in Y suh that(3) f−1(clV ) ⊂ U ∪ U ′.Sine diam f(L1) > 0, we an also assume that(4) f(L1) \ V 6= ∅.Consider the open set W = f−1(V ) ∩ U . Note that(5) C(x0, f) ⊂W .Let C0 denote the omponent of W ∩L1 whih ontains x0. We are going toshow that L2 = clC0 is a ontinuum with the desired properties. First weshow that(6) diam f(L2) > 0.Sine L1 is a ontinuum and L1 6⊂ W by (4), we infer that clC0 ∩
∂L(W ∩ L1) 6= ∅. Note that ∂L(W ∩ L1) ⊂ ∂W . The set f−1(clV ) ∩ U islosed, beause it is a losed subset of the losed set f−1(clV ), by (3). Itfollows that cl W ⊂ f−1(clV ) ∩ U , hene ∂W = clW \W ⊂ (f−1(clV ) ∩
U)\ (f−1(V )∩U) ⊂ f−1(∂V ). Consequently, ∂L(W ∩L1) ⊂ f−1(∂V ), hene
cl C0∩f−1(∂V ) 6= ∅. Therefore, f(clC0) ontains f(x0) and meets ∂V , whihproves (6).Now onsider any x ∈ cl C0. In order to end the proof it is enough toshow that(7) C(x, f) ⊂ B(L1, 1/2).Sine f−1(clV ) ∩ U is losed, clC0 ⊂ f−1(clV ) ∩ U , so x ∈ f−1(cl V ) ∩ U .Therefore, x ∈ f−1(f(x)) ∩ U . The set f−1(f(x)) ∩ U is losed and open in
f−1(f(x)), as f−1(clV ) ∩ U is losed and open in f−1(cl V ), by (3), and
f−1(f(x)) ⊂ f−1(cl V ). It follows that C(x, f) ⊂ f−1(f(x)) ∩ U ⊂ U . Thus,by (2), we get (7).By indution, we an �nd a dereasing sequene {Lk}∞k=1 of subontinuaof L suh that if k ∈ N , then
• diam f(Lk) > 0,
• C(x, f) ⊂ B(Lk, 1/(k + 1)) for eah x ∈ Lk+1.Then it is easy to see that C(x, f) ⊂ L for eah x ∈ ⋂∞

k=1 Lk (⊂ L). Thisimplies f ∈ K(X, Y ), and ompletes the proof.By Theorems 2.5 and 2.6, we get Theorem 1.1.3. Appliations. In this setion we give some appliations of Theo-rem 1.1. First we prove the following result.
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Proposition 3.1. Let X, Y and Z be ompata. If f : X → Y is aKrasinkiewiz map and g : Y → Z is a 0-dimensional map, then g ◦f : X →

Z is a Krasinkiewiz map.Proof. Let h = g ◦ f and L ⊂ X a ontinuum suh that h(L) is not asingleton. Sine f(L) is not a singleton and f is a Krasinkiewiz map, thereexists y ∈ Y suh that L ontains a omponent C of f−1(y). Sine g is a0-dimensional map, {y} is a omponent of g−1(g(y)). Then C is a omponentof h−1(g(y)). This ompletes the proof.By Theorem 1.1, Proposition 3.1 and the proofs of Corollaries 4.3 and4.4 in [10℄ we obtain the following results.Theorem 3.2. Let X be a ompatum and Y a 1-dimensional loallyonneted ontinuum. Then K(X, Y ) is a dense Gδ-subset of C(X, Y ).Theorem 3.3. Let X be a ompatum and M an n-dimensional Mengermanifold (n ≥ 1). Then K(X, M) is a dense Gδ-subset of C(X, M).(See [1℄ for properties of Menger manifolds.)We denote the spae of all surjetive maps from X to Y by Cs(X, Y ).Also, we denote the set of all surjetive Krasinkiewiz maps from X to Y by
Ks(X, Y ). By Theorem 1.1, Proposition 3.1 and the argument in [3℄ we getthe following result.Theorem 3.4. Let X be a ontinuum and P a onneted polyhedron.Then Ks(X, P ) is a dense Gδ-subset of Cs(X, P ).By Proposition 3.1, Theorem 3.4 and the proofs of Theorem 6 and Corol-lary 7 in [3℄ we get the following results.Theorem 3.5. Let X be a ontinuum and Y a 1-dimensional loallyonneted ontinuum. Then Ks(X, Y ) is a dense Gδ-subset of Cs(X, Y ).Theorem 3.6. Let X be a ontinuum and M an n-dimensional Mengermanifold (n ≥ 1). Then Ks(X, M) is a dense Gδ-subset of Cs(X, M).Also we give an appliation of Theorem 3.4. We need the following wellknown theorem.Theorem 3.7 (M. Brown [2℄). Let {Xi, fi} be an inverse sequene suhthat Xi is ompat for eah i = 1, 2, . . . . Then there exist ε1 > ε2 > · · · > 0suh that if {gi}∞i=1 (gi : Xi+1 → Xi for eah i = 1, 2, . . .) satis�es d(fi, gi)
< εi for eah i = 1, 2, . . . , then lim←−{Xi, gi} is homeomorphi to lim←−{Xi, fi}.By Theorems 3.4 and 3.7, we obtain the following result.Corollary 3.8. For eah ontinuum X, there exists an inverse sequene
{Pi, gi} suh that Pi is a ompat onneted polyhedron, gi : Pi+1 → Pi is asurjetive Krasinkiewiz map for eah i = 1, 2, . . . , and X = lim←−{Pi, gi}.
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