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Alexander Subbase Theorem for FiltersbyIwo LABUDAPresented by Czesªaw BESSAGA
Summary. The theorem in the title is proven. Appliations to produt theorems aregiven.We adopt the terminology of [17℄, and so a topologial spae X = (X, O)is ompat whenever one (and therefore all) of the following equivalent on-ditions is satis�ed.

• Every open over of X ontains a �nite subover;
• Every �lter on X has a luster point;
• Every ultra�lter on X is onvergent.We note that, in ontrast to [5℄ or [14℄, Hausdor�ness is not presupposed.The following [17, Ch. 5, Theorem 6℄ is the Alexander Subbase Theorem:AST. Let S be a subbase of O. If any over of X by elements of Sontains a �nite subover, then X is ompat.We are interested in a more general form of AST in whih the spae X isreplaed by a �lter base or, equivalently, a �lter. We need to introdue someterminology. Let P,H be families of subsets of X. We write P # H and saythat P meshes with H if P ∩ H 6= ∅ for eah P ∈ P and eah H ∈ H. Wesay that H is a over (resp. underover) of a set A ⊂ X if A ⊂

⋃

H (resp.
A ⊂

⋃

H =
⋃

{H : H ∈ H}).A �lter in O is a nonempty subfamily G ⊂ O whih does not ontain theempty set, is stable under �nite intersetions and suh that if G ∈ G and
G ⊂ H ∈ O, then H ∈ G. A �lter whih is a maximal element with respet2000 Mathematis Subjet Classi�ation: Primary 54D30.Key words and phrases: Alexander subbase theorem, Tikhonov produt theorem, �lter,ultra�lter, ompat, midompat, absolutely losed, USCO-map.[147℄
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to inlusion in the family of �lters in O is alled an ultra�lter in O. Note thatif O = 2X (i.e., the topology is disrete), we may drop �in O�, reovering theusual notion of an (ultra) �lter in X.A variant of ompatness, alled absolute losedness [2℄, [5℄ or H-losed-ness [3℄, [14℄, was de�ned in Hausdor� spaes. We do not presuppose Haus-dor�ness and beause of our stress on the analogy with the ompat ase, itis onvenient to swith to a more �exible term of midompatness. The termwas atually introdued as �midompatoidness� in a survey of �ompatoid�lters� [18℄. However, in reent papers there is a tendeny to return to thelassial terminology in whih the term �ompat �lter� (instead of om-patoid �lter) is used. The use of �midompatness� is espeially onvenientwhen dealing with many sorts of midompat-like families of sets (see [11℄).We reserve B to denote a �lter base in X.Cover-Filter Duality. The following onditions are equivalent.(1) (resp. (2)) For eah open over P of A, there exist B ∈ B and a�nite subfamily P0 ⊂ P overing (resp. underovering) B.

(1∗) (resp. (2∗)) For eah �lter (resp. �lter in O) F suh that F # B,

F has a luster point in A.
(1′) (resp. (2′)) For eah ultra�lter (resp. ultra�lter in O) U suh that

U # B, U onverges to a point in A.Proof. Only (2′)⇒(2∗) is not standard. Suppose F is a �lter in O meshingwith B. Denote by F ∨ B the �lter generated by the base {F ∩ B : F ∈ F ,

B ∈ B}. Let U be an ultra�lter �ner than F ∨ B. De�ne
O(U) = {O ∈ O : ∃U ∈ U suh that U ⊂ O}.Then O(U) is an ultra�lter in O whih is �ner than F and meshes with B.By (2′), O(U) onverges to a point x ∈ A. Clearly, x is a luster point of F .This shows (2∗).We say that B is ompat (resp. midompat) at A if any (and thereforeall) of the respetive onditions above is satis�ed. We also onsider (mid)ompatness at a family of subsets of X. If A is suh a family, then B is saidto be (mid) ompat at A if it is so at A, for eah A ∈ A. If A = B, then Bis said to be selfompat (resp. selfmidompat).Let S be a subbase of O and let S be the lass of all overs of A onsistingof sets from S. We say that B is S-ompat (resp. midompat) at A if forevery Q ∈ S there exist B ∈ B and a �nite subfamily {Q1, . . . , Qn} ⊂ Qovering (resp. underovering) B.AST�General Form. Let B be S-ompat (resp. midompat) at A.Then B is ompat (resp. midompat) at A.
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Proof. Denying (1′) (resp. (2′)), let U be an ultra�lter (resp. in O), mesh-ing with B and without a limit point in A. We laim that:For eah x ∈ A, there exists G(x) ∋ x, G(x) in S, suh that G(x) doesnot mesh with U .Otherwise, there exists x suh that the sets G(x) ∈ S ontaining x meshwith U . As U is an ultra�lter (resp. in O) and G(x) are open, the sets G(x)would belong to U . As �nite intersetions of suh sets form a base of theneighborhood �lter of x, the point x would be a limit point of U .Applying the assumption of the theorem to the over {G(x) : x ∈ A}, we�nd x1, . . . , xk and B ∈ B suh that B ⊂

⋃

k

i=1
G(xi) (resp. B ⊂

⋃

k

i=1
G(xi)).On the other hand, as G(xi)'s do not mesh with U , it follows that neitherdoes G =

⋃

n

i=1
G(xi). This gives a ontradition in the ompat ase, beause

B ⊂ G and B#U . In the �mid ase�, U ∈ U being open, U ∩G = ∅ for some
U ∈ U . This ontradits the fat that G ⊃ B ∈ B and U # B.Corollary 1. If B is S-selfompat (resp. S-selfmidompat), then itis selfompat (resp. selfmidompat).The orollary solves a question left open in [18℄ (see the omment afterTh. 5.3 there). Atually, the statement in parentheses seems to be new evenin the speial ase of an absolutely losed spae X. We now dedue a generalTikhonov Produt Theorem (TPT):TPT�General Form. Let Xι be a �lter on Xι, whih is ompat (resp.midompat) at Aι. The produt �lter X =

∏

ι∈I
Xι on X =

∏

ι∈I
Xι isompat (resp. midompat) at A =

∏

ι∈I
Aι.Proof. Let S be a subbase of X de�ned by the sets pr−1

ι (Eι), ι ∈ I, where
Eι is an open set in Xι. Suppose that G is a family of sets from S so that thereis no D ∈ X and no �nite subfamily of G overing (resp. underovering) D.Let Eι be the family of all open sets in Xι suh that pr−1

ι (Eι) ⊂ G. As
prι(X) = Xι, there is no Bι ∈ Xι and no �nite subfamily of Eι whih overs(resp. underovers) Bι. By ompatness (resp. midompatness) of Xι at Aι,there is aι ∈ Aι not overed by Eι. Then a = (aι) ∈ A is not overed by G.Hene X is S-ompat at A. Now apply the general form of AST.The �ompat ase� of the theorem goes bak to Pettis [19℄ (who thoughtin terms of nets). The �midompat ase� has been announed in [12℄ but noproof has ever been published. In the speial ase of the produt of spaesthis is a theorem of Chevalley and Frink [9℄.Let us onsider a still more general ompatness theorem [13℄. Reall thata USCO-map is an upper semiontinuous funtion taking nonempty ompatvalues.
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Corollary 2. For eah ι ∈ I, let Γι : Xι ⇉ Yι be a USCO-map. Thenthe produt map

Γ :
∏

ι∈I

Xι ⇉ Y =
∏

ι∈I

Yιde�ned by Γ ((xι)ι∈I) =
∏

ι∈I
Γι(xι) is also a USCO-map.The following proof shows that the �lter generalizations may be useful.Indeed, let Nι = N(xι) be the neighborhood �lter of xι. Then the image�lter Γι(Nι) is ompat at Γι(xι). Hene the produt �lter ∏

ι∈I
Γι(Nι) isompat at ∏

ι∈I
Γ (xι). This also means that

(

∏

ι∈I

Γι

)(

∏

ι∈I

Nι

)

= Γ (N(x))is ompat at Γ (x), where x = (xι)ι∈I , or, whih is the same, that Γ is uppersemiontinuous at x.Remark 1. The Alexander Subbase Theorem is [1, Theorem 1℄. As its�rst orollary [1, Theorem 2℄, Alexander gives the Tikhonov Produt The-orem delaring its proof evident. Kelley gives a proof in [17℄. NonethelessKelley, disussing the onnetions with the axiom of hoie in [16℄, speaksabout �Alexander's proof� and alls it �the most illuminating� of all theproofs (of TPT). The present paper adapts the �Alexander approah� to themore general situation studied here.Kelley also gives in [17℄ a seond proof alling it �Bourbaki's proof�. A-tually, the proof is the one of Chevalley and Frink [9℄. A proof à la Bourbaki[5℄ of the general TPT as stated above will appear in [10℄. Whether it isless �illuminating� than Alexander's proof is perhaps a matter of taste. It isundeniable though that Bourbaki's proof works in non-topologial situationsof onvergene theory (see for instane [4℄).Remark 2. In [6℄, a book aimed at beginning students, Buskes and vanRooij have a setion entitled �Dates from the History of General Topology�in whih the important events are listed. Here is one of the entries:� 1937 �eh proves the Tyhono� Theorem.I tried to trae a soure of this �anard� in the literature. The earliestlaim of this type that I found, was in [20℄. Walter Rudin apparently likedto stir alm waters; some other historial remarks in Appendix B of thebook prompted further, rather septial, omments in the Russian transla-tion of [20℄ (Mosow 1975). In the ase at hand, Rudin brie�y summarizesthe ontents of [21℄ and [8℄ onluding that �it appears that �eh proved theTyhono� theorem, whereas Tyhono� found the �eh ompati�ation�a good illustration of the historial reliability of mathematial nomenla-ture�.
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The laims were later examined again by Cameron in [7℄. Although theonlusion about the ompati�ation is, to some extent, aknowledged in [8℄by �eh himself, both Cameron and later Simon in [15℄ �nd the �eh�Stoneor Stone��eh denominations to be orret. On the other hand, similarly toRudin, Cameron onludes that the full version of the Tikhonov theorem isdue to �eh. Yet, while it is true that in [21℄ only produts of unit intervalsare onsidered and in [8℄ one �nds the TPT for topologial spaes, it is alsotrue that Tikhonov states the general theorem in [22℄. Besides, this last in-formation an also be found in [14℄. To onlude, the Tikhonov theorem isdue�no sensation here�to Tikhonov.
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