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Fixed Points of n-Valued Multimaps of the CirlebyRobert F. BROWNPresented by Czesªaw BESSAGA
Summary. A multifuntion φ : X ⊸ Y is n-valued if φ(x) is an unordered subset of
n points of Y for eah x ∈ X. The (ontinuous) n-valued multimaps φ : S1

⊸ S1 arelassi�ed up to homotopy by an integer-valued degree. In the Nielsen �xed point theoryof suh multimaps, due to Shirmer, the Nielsen number N(φ) of an n-valued φ : S1
⊸ S1of degree d equals |n − d| and φ is homotopi to an n-valued power map that has exatly

|n − d| �xed points. Thus the Weken property, that Shirmer established for manifoldsof dimension at least three, also holds for the irle. An n-valued multimap φ : S1
⊸ S1of degree d splits into n selfmaps of S1 if and only if d is a multiple of n.1. Introdution. A multifuntion φ : X ⊸ Y is a funtion suh that

φ(x) is a subset of Y for eah x ∈ X. For S a subset of Y , the set φ−1(S)onsists of the points x ∈ X suh that φ(x) ⊆ S, and the set φ−1
+ (S) onsistsof the points x ∈ X suh that φ(x) ∩ S 6= ∅. A multifuntion φ is said to beupper semiontinuous (us) if U open in Y implies φ−1(U) is open in X. Itis lower semiontinuous (ls) if U open in Y implies φ−1

+ (U) is open in X.A multifuntion that is both upper semiontinuous and lower semiontinuousis said to be ontinuous. Although the term multimap is sometimes used for amore general onept, in this paper it will mean a ontinuous multifuntion.An n-valued multifuntion φ : X ⊸ Y is a funtion that assigns to eah
x ∈ X an unordered subset of exatly n points of Y . Thus an n-valuedmultimap is a ontinuous n-valued multifuntion.O'Neill [6℄ proved a version of the Lefshetz �xed point theorem for alarge lass of multimaps φ : X ⊸ X of �nite polyhedra that inludes the
n-valued multimaps. Multimaps in this lass indue a vetor spae of en-domorphisms of the homology of X. He proved that if any endomorphism2000 Mathematis Subjet Classi�ation: Primary 55M20; Seondary 54C60, 55M25.Key words and phrases: ontinuous multifuntion, Weken property, degree of n-valuedmap. [153℄
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has a nonzero Lefshetz number, then φ has a �xed point, that is, x ∈ φ(x)for some x ∈ X.The Nielsen �xed point theory of n-valued multimaps was developed byShirmer in a series of papers [7℄�[9℄. For φ : X ⊸ X an n-valued multimapof a �nite polyhedron, the Nielsen number N(φ) has the property that forany n-valued ontinuous homotopy ∆ : X × I ⊸ X with ∆(x, 0) = φ(x),the multimap ψ : X ⊸ X de�ned by ψ(x) = ∆(x, 1) has at least N(φ) �xedpoints.The main result of [9℄ extended a elebrated theorem of Weken [10℄ inthe following way. If φ : X ⊸ X is an n-valued multimap where X is aompat triangulable manifold, with or without boundary, of dimension atleast three, then there is an n-valued multimap ψ : X ⊸ X homotopi to φsuh that ψ has exatly N(φ) �xed points. As in the single-valued theory, wewill refer to this property as the Weken property for n-valued multimaps.If f0, f1, . . . , fn−1 : X → X are n maps suh that j 6= k implies fj(x) 6=
fk(x) for all x ∈ X then

φ(x) = {f0(x), f1(x), . . . , fn−1(x)}de�nes an n-valued multimap φ : X ⊸ X that is alled split in [8℄. Only twoexamples of nonsplit n-valued multimaps are inluded in Shirmer's papers;see page 75 of [7℄ and page 219 of [8℄. The examples are of n-valued multimapson the unit irle S1 and thus the Weken theorem of [9℄ does not apply tothem. In both ases, the number of �xed points of the map φ that Shirmerde�nes is preisely N(φ), but there is no general suh result about n-valuedmultimaps of the irle.We reall that, in the single-valued ase, among the manifolds only sur-faes an fail to have the Weken property that a selfmap f : X → X ishomotopi to a map with exatly N(f) �xed points [4℄, [5℄. With regard tothe 1-dimensional manifolds, the Weken property holds for maps of the in-terval beause they are all homotopi to a onstant map. ForX = S1, there isthe following well known argument that establishes the Weken property forsingle-valued maps. By the lassi�ation theorem ([3, p. 39℄), if f : S1 → S1is of degree d, then f is homotopi to the power map φd de�ned by viewing
S1 as the unit irle in the omplex plane and setting φd(z) = zd. Thus
N(f) = N(φd). It has long been known that N(φd) = |1 − d| and learly
φd has |1 − d| �xed points exept in the ase d = 1. Sine φ1, the identitymap, is homotopi to a �xed point free map, every selfmap f on the irleis homotopi to a map with N(f) �xed points.The Weken property is easily seen to hold for n-valued multimaps of theinterval I, as follows. Let φ : I ⊸ I be a multimap. De�ne ∆ : I × I ⊸ Iby ∆(s, t) = φ(st); then ∆ is ontinuous by Theorems 1 and 1′ on page 113of [2℄. Thus φ is homotopi to the onstant n-valued multimap κ : I ⊸ I
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de�ned by κ(t) = φ(0), whih has n �xed points, whereas N(κ) = n byCorollary 7.3 of [8℄.The purpose of this paper is to prove that the irle also has the Wekenproperty for n-valued multimaps. In outline, the argument follows that ofthe single-valued setting, but there are several signi�ant issues that must beaddressed in the n-valued ase. In Setion 2, we extend the de�nition of thedegree of a selfmap of the irle to de�ne the degree of an n-valued multimapof the irle and we disuss its properties. Setion 3 introdues a olletionof n-valued multimaps we all n-valued power maps φn,d : S1

⊸ S1 andwe extend the lassi�ation theorem by proving that an n-valued multimap
φ : S1

⊸ S1 of degree d is homotopi to φn,d. We prove in Setion 4 that
φn,d has |n−d| �xed points if n 6= d and then that N(φn,d) = |n−d| for all nand d. In Setion 5, the Weken property for n-valued multimaps of the irleis easily seen to follow from the previous results. Moreover, we haraterizethe split n-valued multimaps of the irle: an n-valued multimap is split ifand only if its degree is a multiple of n.2. The degree of an n-valued multimap of the irle. We beginwith some general properties of n-valued multimaps. The following result is aspeial ase of a theorem of O'Neill [6℄ but, aording to [9℄, it was essentiallyknown muh earlier [1℄.Lemma 2.1 (Splitting Lemma). Let φ : X ⊸ Y be an n-valued multimapand let

Γφ = {(x, y) ∈ X × Y : y ∈ φ(x)}be the graph of φ. The map p1 : Γφ → X de�ned by p1(x, y) = x is a overingspae. It follows that if X is simply onneted , then any n-valued multimap
φ : X ⊸ Y is split.Theorem 2.1. Let ∆ : X × I ⊸ Y be an n-valued homotopy ; write
∆ = {δt : X ⊸ Y }. If δ0 is split , so also is ∆. Thus an n-valued multimaphomotopi to a split n-valued multimap is also split.Proof. Write δ0 = {f0

0 , f
0
1 , . . . , f

0
n−1} where f0

j : X → Y . De�ne
f̂0

0 : X × {0} → Γ∆ ⊆ (X × I) × Yby f̂0
0(x, 0) = ((x, 0), f0

0 (x)). Sine p1 : Γ∆ → X × I is a overing spae byLemma 2.1, by the overing homotopy property there is a map f̂0 : X ×

I → Γ∆ suh that p1f̂0 is the identity map of X × I. Let p2 : Γ∆ → Y beprojetion. Then p2f̂0(x, t) ∈ δt(x) so p2f̂0 is a seletion for ∆ and we anwrite ∆ = {p2f̂0, ∆
′} where ∆′ : X ⊸ Y is an (n − 1)-valued homotopy

∆′ = {δ′t} with δ′0 = {f0
1 , . . . , f

0
n−1}. Repeated appliation of the overinghomotopy property produes a splitting ∆ = {p2f̂0, p2f̂1, . . . , p2f̂n−1}. If an
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n-valued multimap ψ : X ⊸ Y is homotopi to a split n-valued multimap
φ = {f0, . . . , fn−1} by a homotopy ∆ with δ0 = φ and δ1 = ψ, then ψ =

{f1
0 , . . . , f

1
n−1} where f1

j (x) = p2f̂j(x, 1).Now we turn our attention to the irle and let p : R → S1 be the universalovering spae where p(t) = ei2πt. We will denote points of the irle by p(t)for 0 ≤ t < 1. Let φ : S1
⊸ S1 be an n-valued multimap. Then the n-valuedfuntion φp : I ⊸ S1 is ontinuous by Theorems 1 and 1′ on page 133 of [2℄.Therefore φp is split and, using the ordering on S1 imposed by p from theordering of R, we write φp = {f0, f1, . . . , fn−1} where the maps fj : I → S1have the property fj(0) = p(tj) for 0 ≤ t0 < t1 < · · · < tn−1 < 1. Let

f̃j : I → R be the lift of fj suh that f̃j(0) = tj . We note that if 0 ≤ j < k ≤

n− 1, then f̃j(t) < f̃k(t) for all t ∈ I beause fj(p(t)) 6= fk(p(t)).Sine φ is well de�ned, the sets φp(0) and φp(1) must be idential. Con-sequently, f̃0(1) = v + tJ for some integers v, J where 0 ≤ J ≤ n − 1. Wede�ne Deg(φ), the degree of the n-valued multimap φ : S1
⊸ S1, by

Deg(φ) = nv + J.The degree an be de�ned just in terms of f̃0(1) beause that valuedetermines f̃j(1) for all j, as the next result demonstrates.Lemma 2.2. Let φ : S1
⊸ S1 be an n-valued multimap of degree Deg(φ)

= nv + J . For φp = {f0, f1, . . . , fn−1} where the maps fj : I → S1 have theproperty fj(0) = p(tj) with 0 ≤ t0 < t1 < · · · < tn−1 < 1 and f̃j the lift of fjsuh that f̃j(0) = tj , we have f̃n−1(1)−f̃0(1) < 1. Therefore, f̃j(1) = v+tJ+jfor j = 0, . . . , (n − 1) − J and , if J ≥ 1, then f̃j(1) = v + 1 + tj−(n−J) for
j = n− J, . . . , n− 1.Proof. De�ne F : I → R by F (t) = f̃n−1(t)− f̃0(t). Then F (0) = tn−1 −

t0 < 1. If F (1) > 1, then F (t∗) = 1 for some t∗ ∈ (0, 1) and thus f̃n−1(t
∗) =

f̃0(t
∗) + 1. But f̃j is a lift of fj so we would have
pf̃n−1(t

∗) = fn−1(p(t
∗)) = p(f̃0(t

∗) + 1) = p(f̃0(t
∗)) = f0(p(t

∗))ontrary to the de�nition of a splitting. The formulas for the f̃j(1) thenfollow beause f̃0(t) < f̃1(t) < · · · < f̃n−1(t) for all t ∈ I.The fat that this de�nition of degree agrees with the lassial de�nitionwhen n = 1 is a speial ase of the following result.Theorem 2.2. If φ : S1
⊸ S1 is a split n-valued multimap, then Deg(φ)equals n times the lassial degree of the maps in the splitting.Proof. Write φ = {f0, f1, . . . , fn−1} where fj(p(0)) = p(tj) and 0 ≤ t0 <

t1 < · · · < tn−1 < 1. Let f̃j : I → R be the lift of fjp : I → S1 suh that



Fixed Points of Multimaps 157
f̃j(0) = tj. Sine f0 : S1 → S1, we have f̃0(1) = v + f̃0(0) = v + t0 forsome integer v and thus Deg(φ) = nv. Moreover, Lemma 2.2 implies that
f̃j(1) = v + tj for j = 0, . . . , n− 1. On the other hand, by the argument onpage 39 of [3℄, eah map fj is homotopi to the power map φv : S1 → S1 andtherefore it is of lassial degree deg(fj) = v, so Deg(φ) = ndeg(fj).Theorem 2.3. If n-valued multimaps φ, ψ : S1

⊸ S1 are homotopi,then Deg(φ) = Deg(ψ).Proof. Let ∆ = {δt} : S1
⊸ S1 be an n-valued homotopy with φ = δ0and ψ = δ1. We will show that there exists ε > 0 suh that if |t − t′| < ε,then Deg(δt) = Deg(δt′), that is, the degree is loally onstant. Sine thedegree is integer-valued, that will imply that it is onstant and therefore

Deg(φ) = Deg(ψ). Write δtp = {f t
0, f

t
1, . . . , f

t
n−1} where f t

j (0) = p(tj) for
0 ≤ t0 < t1 < · · · < tn−1 < 1. Let f̃ t

j : I → R be the lift of f t
j suh that

f̃ t
j (0) = tj. We use the orresponding notation for δt′ . If f̃ t

j (1) = v+tJ where
tJ > 0 then, by the ontinuity of ∆, if ε > 0 is small enough, |t − t′| < εimplies that f̃ t′

j (1) = v + t′J where t′J > 0 and therefore
Deg(δt) = Deg(δt′) = nv + J.If f̃ t

0(1) = v = v + 0, that means t0 = 0 so
f̃ t

j (1) = v + tj = v + f̃ t
j(0)for all j by Lemma 2.2. Therefore, the f t

j : S1 → S1 de�ned by f t
j (p(s)) =

pf̃ t
j (s) splits δt and thus Deg(δt) = n · deg(f t

0) by Theorem 2.2. Sine δt′ ishomotopi to δt, Theorem 2.1 shows that δt′ is also split and f t′

0 is homotopito f t
0 so, for the lassial degrees, deg(f t

0) = deg(f t′

0 ) and thus Deg(δt) =
Deg(δt′).3. The lassi�ation theorem. For integers d and n ≥ 1, we de�nethe n-valued multimap we all the n-valued power map φn,d : S1

⊸ S1 by
φn,d(p(t)) =

{
p

(
d

n
t

)
, p

(
d

n
t+

1

n

)
, . . . , p

(
d

n
t+

n− 1

n

)}
.Sine

φ1,d(p(t)) = p(dt) = ei2πdt = (ei2πt)d = (p(t))d,we see that φ1,d = φd. The example on page 75 of [7℄ is φ2,1 and the exampleon page 219 of [8℄ is φ2,−1.Lemma 3.1. The degree of φn,d is d.
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Proof. We see that φn,dp = (pf̃0, . . . , pf̃n−1) where f̃j(t) = dt/n+ j/n so

f̃j(0) = j/n = tj. Write d = nv + J where 0 ≤ J ≤ n− 1. Then
f̃0(1) =

d

n
= v +

J

n
= v + f̃J(0) = v + tJso, from the de�nition, Deg(φn,d) = nv + J = d.Theorem 3.1 (Classi�ation Theorem). If φ : S1

⊸ S1 is an n-valuedmultimap of degree d, then φ is homotopi to φn,d.Proof. We again write φp = {f0, f1, . . . , fn−1} : I ⊸ S1 and lift fj to
f̃j : I → R suh that f̃j(0) = tj where fj(0) = p(tj) and 0 ≤ t0 < t1 < · · · <

tn−1 < 1. De�ne maps h̃s
j : I × I → R by

h̃s
j(t) = s

(
d

n
t+ j

)
+ (1 − s)f̃j(t).Then it is lear that j < k implies h̃s

j(t) < h̃s
k(t) for all s, t ∈ I. Write

Deg(φ) = d = nv+J where 0 ≤ J ≤ n−1. Suppose 0 ≤ j ≤ (n−1)−J . Then,by Lemma 2.2, we have h̃s
j(1)−h̃s

J+j(0) = v. For J ≥ 1 and n−J ≤ j ≤ n−1,Lemma 2.2 implies that h̃s
j(1) − h̃s

j−(n−J)(0) = v + 1. Thus, for all s ∈ I,the sets {ph̃s
j(0)} and {ph̃s

j(1)} are idential. Therefore, setting
∆(p(t), s) = {ph̃s

0(t), ph̃
s
1(t), . . . , ph̃

s
n−1(t)}we obtain a homotopy ∆ : S1 × I ⊸ S1 between φ and φn,d.4. Properties of the n-valued power mapsTheorem 4.1. If n 6= d, then the n-valued power map φn,d has |n − d|�xed points, eah of nonzero index , and no two �xed points are in the same�xed point lass, therefore N(φn,d) = |n− d|.Proof. If p(t) ∈ φn,d(p(t)) for some t suh that 0 ≤ t < 1 then, for some

j = 0, 1, . . . , n− 1, we have
p

(
d

n
t+

j

n

)
= p(t)and therefore

d

n
t+

j

n
− t =

(d− n)t

n
+
j

n
= rfor some integer r. Sine n 6= d, the possible solutions are of the form

t =
nr − j

d− nwhere r and j are integers and 0 ≤ j ≤ n − 1. We require that 0 ≤ t < 1so if d − n > 0, then 0 ≤ nr − j < d − n, whereas if d − n < 0, then
0 ≥ nr − j > d − n. In either ase, there are |d − n| suh integers and we
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onlude that φn,d has |d − n| �xed points. Eah of the |n− d| �xed pointsof φn,d is transversal and therefore of index ±1 (see page 210 of [8℄).It remains to prove that no two of the �xed points of φn,d are equivalentin the sense of [8℄. Noting that the �xed points are of the form p

(
nr−j
d−n

), wewill make use of the fat that
d

n

(
nr − j

d− n

)
+
j

n
= r +

nr − j

d− n
.For k = 0, 1, let

xk = p

(
nrk − jk
d− n

)
= p(x̃k)be two �xed points of φn,d and let a : I → S1 be a path suh that a(k) = xk.Let ã : I → R be the lift of a suh that ã(0) = x̃0 ∈ [0, 1). Sine a = pã, wean write

φn,da(t) = φn,dp(ã(t))

=

{
p

(
d

n
ã(t)

)
, p

(
d

n
ã(t) +

1

n

)
, . . . , p

(
d

n
ã(t) +

n− 1

n

)}

= {g0(t), g1(t), . . . , gn−1(t)},a split multimap. The �xed points x0 and x1 are in the same �xed point lassif there exists a path a onneting them and some j∗ with 0 ≤ j∗ ≤ n−1 suhthat gj∗(xk) = xk for k = 0, 1 and the paths a, gj∗ : I → S1 are homotopirelative to the endpoints (see [8, p. 214℄).We laim that the ondition gj∗(x0) = x0 implies that j∗ = j0. To proveit, we note that sine a(0) = x̃0, it follows that
p

(
d

n

(
nr0 − j0
d− n

)
+
j∗

n

)
= p

(
nr0 − j0
d− n

)

and therefore
d

n

(
nr0 − j0
d− n

)
+
j∗

n
=
nr0 − j0
d− n

+mfor some integer m, whih implies
r0 +

nr0 − j0
d− n

+
j∗ − j0
n

=
nr0 − j0
d− n

+m,so
j∗ − j0
n

= m− r0,an integer. But 0 ≤ j∗, j0 ≤ n−1 and therefore j∗ = j0. This establishes thelaim and we write g = gj∗ = gj0 : I → S1 as the path from x0 to x1 that ishomotopi to a relative to the endpoints.Let g̃ : I → R be the lift of g de�ned by
g̃(t) =

d

n
ã(t) +

j0
n

− r0.
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Then g̃(0) = x̃0 = ã(0). Sine ag−1 is a ontratible loop, its lift ãg̃−1 is alsoa loop and thus g̃(1) = ã(1) = x̃1 + q for some integer q. Now

g̃(1) =
d

n

(
nr1 − j1
d− n

+ q

)
+
j0
n

− r0

= r1 +
nr1 − j1
d− n

+
j0 − j1
n

+
d

n
q − r0,whih implies that

q = r1 − r0 +
j0 − j1
n

+
d

n
qand thus that

q =
nr1 − j1
d− n

−
nr0 − j0
d− n

= x̃1 − x̃0.Then 0 ≤ x̃0, x̃1 < 1 implies that q = 0 so x̃0 = x̃1 and therefore x0 = x1.We onlude that no two distint �xed points of φn,d are in the same �xedpoint lass.5. The Weken property and split multimapsTheorem 5.1 (The Weken Property). The irle has the Weken prop-erty for n-valued multimaps beause, if φ : S1
⊸ S1 is an n-valued multimapof degree d, then N(φ) = |n−d| and there is an n-valued multimap homotopito φ that has exatly |n− d| �xed points.Proof. By Theorem 3.1, φ is homotopi to φn,d so N(φ) = N(φn,d) byTheorem 6.5 of [8℄. If d = n, then φ is homotopi to φn,n. Choose 0 < ε < 1/nand de�ne ∆ : S1 × I ⊸ S1 by

∆(p(t), s) =

{
p(t+ sε), p

(
t+ sε+

1

n

)
, . . . , p

(
t+ sε+

n− 1

n

)}
.Then φn,n is homotopi by ∆ to a �xed point free multimap. Furthermore,

N(φ) = N(φn,n) = 0. If n 6= d, then Theorem 4.1 ompletes the proofbeause N(φ) = N(φn,d) = |n− d| and φn,d has |n− d| �xed points.Theorem 5.2. The power map φn,d is split if and only if d is a multipleof n.Proof. The graph of φn,d is
Γφn,d

=

{(
p(t), p

(
d

n
t+

j

n

))
: t ∈ R, j = 0, 1, . . . , n− 1

}
.For j ∈ {0, 1, . . . , n− 1} de�ne γj : I → Γφn,d

by
γj(t) =

(
p(t), p

(
d

n
t+

j

n

))
.
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Let Γ j ⊆ Γφn,d

be the omponent of the graph ontaining (p(0), p(j/n)).Then p1j : Γ j → S1, the restrition of p1 to Γ j , is a overing spae and γj isa path in Γ j from (p(0), p(j/n)) to (p(0), p(d/n + j/n)). Write d = nv + Jwhere 0 ≤ J ≤ n− 1. Then
p

(
d

n
+
j

n

)
= p

(
rn+ J + j

n

)
= p

(
J + j

n

)

tells us that p(j/n) = p(d/n + j/n) and thus γj(0) = γj(1) if, and only if,
J = 0, that is, if and only if d is a multiple of n. If d is not a multiple of
n, then we have shown that the �ber of every overing spae p1j : Γ j → S1obtained by restriting p1 to a omponent of Γφn,d

ontains at least twopoints. If φn,d were split, it would have a seletion, that is, there wouldbe a map f : S1 → S1 suh that f(p(t)) ∈ φn,d(p(t)) for eah t ∈ I. Inpartiular, (p(0), f(p(0))) ∈ Γ j for some j and thus σ : S1 → Γ j de�ned by
σ(p(t)) = (p(t), f(p(t)) is a ross-setion of the overing spae p1j : Γ j →
S1, that is, p1jσ is the identity map of S1. Thus p1jσ would indue theidentity isomorphism on the fundamental group of S1. But that is impossiblebeause the index of the image of the homomorphism indued by p1j in thatfundamental group equals the ardinality of the �ber of the overing spae,whih is greater than one. On the other hand, if d is a multiple of n, then
φn,d splits as φn,d = {f0, f1, . . . , fn−1} where the map fj : S1 → S1 is de�nedby fj(p(t)) = p(dt/n+ j/n).Corollary 5.1. If φ : S1

⊸ S1 is an n-valued multimap of degree d,then φ is split if and only if d is a multiple of n.Proof. By Theorem 3.1, φ is homotopi to φn,d. Therefore, by Theorem2.1, φ is split if and only if φn,d is split, whih, by Theorem 5.2, ours ifand only if d is a multiple of n.
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