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Fixed Points of n-Valued Multimaps of the Cir
lebyRobert F. BROWNPresented by Czesªaw BESSAGA
Summary. A multifun
tion φ : X ⊸ Y is n-valued if φ(x) is an unordered subset of
n points of Y for ea
h x ∈ X. The (
ontinuous) n-valued multimaps φ : S1

⊸ S1 are
lassi�ed up to homotopy by an integer-valued degree. In the Nielsen �xed point theoryof su
h multimaps, due to S
hirmer, the Nielsen number N(φ) of an n-valued φ : S1
⊸ S1of degree d equals |n − d| and φ is homotopi
 to an n-valued power map that has exa
tly

|n − d| �xed points. Thus the We
ken property, that S
hirmer established for manifoldsof dimension at least three, also holds for the 
ir
le. An n-valued multimap φ : S1
⊸ S1of degree d splits into n selfmaps of S1 if and only if d is a multiple of n.1. Introdu
tion. A multifun
tion φ : X ⊸ Y is a fun
tion su
h that

φ(x) is a subset of Y for ea
h x ∈ X. For S a subset of Y , the set φ−1(S)
onsists of the points x ∈ X su
h that φ(x) ⊆ S, and the set φ−1
+ (S) 
onsistsof the points x ∈ X su
h that φ(x) ∩ S 6= ∅. A multifun
tion φ is said to beupper semi
ontinuous (us
) if U open in Y implies φ−1(U) is open in X. Itis lower semi
ontinuous (ls
) if U open in Y implies φ−1

+ (U) is open in X.A multifun
tion that is both upper semi
ontinuous and lower semi
ontinuousis said to be 
ontinuous. Although the term multimap is sometimes used for amore general 
on
ept, in this paper it will mean a 
ontinuous multifun
tion.An n-valued multifun
tion φ : X ⊸ Y is a fun
tion that assigns to ea
h
x ∈ X an unordered subset of exa
tly n points of Y . Thus an n-valuedmultimap is a 
ontinuous n-valued multifun
tion.O'Neill [6℄ proved a version of the Lefs
hetz �xed point theorem for alarge 
lass of multimaps φ : X ⊸ X of �nite polyhedra that in
ludes the
n-valued multimaps. Multimaps in this 
lass indu
e a ve
tor spa
e of en-domorphisms of the homology of X. He proved that if any endomorphism2000 Mathemati
s Subje
t Classi�
ation: Primary 55M20; Se
ondary 54C60, 55M25.Key words and phrases: 
ontinuous multifun
tion, We
ken property, degree of n-valuedmap. [153℄
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has a nonzero Lefs
hetz number, then φ has a �xed point, that is, x ∈ φ(x)for some x ∈ X.The Nielsen �xed point theory of n-valued multimaps was developed byS
hirmer in a series of papers [7℄�[9℄. For φ : X ⊸ X an n-valued multimapof a �nite polyhedron, the Nielsen number N(φ) has the property that forany n-valued 
ontinuous homotopy ∆ : X × I ⊸ X with ∆(x, 0) = φ(x),the multimap ψ : X ⊸ X de�ned by ψ(x) = ∆(x, 1) has at least N(φ) �xedpoints.The main result of [9℄ extended a 
elebrated theorem of We
ken [10℄ inthe following way. If φ : X ⊸ X is an n-valued multimap where X is a
ompa
t triangulable manifold, with or without boundary, of dimension atleast three, then there is an n-valued multimap ψ : X ⊸ X homotopi
 to φsu
h that ψ has exa
tly N(φ) �xed points. As in the single-valued theory, wewill refer to this property as the We
ken property for n-valued multimaps.If f0, f1, . . . , fn−1 : X → X are n maps su
h that j 6= k implies fj(x) 6=
fk(x) for all x ∈ X then

φ(x) = {f0(x), f1(x), . . . , fn−1(x)}de�nes an n-valued multimap φ : X ⊸ X that is 
alled split in [8℄. Only twoexamples of nonsplit n-valued multimaps are in
luded in S
hirmer's papers;see page 75 of [7℄ and page 219 of [8℄. The examples are of n-valued multimapson the unit 
ir
le S1 and thus the We
ken theorem of [9℄ does not apply tothem. In both 
ases, the number of �xed points of the map φ that S
hirmerde�nes is pre
isely N(φ), but there is no general su
h result about n-valuedmultimaps of the 
ir
le.We re
all that, in the single-valued 
ase, among the manifolds only sur-fa
es 
an fail to have the We
ken property that a selfmap f : X → X ishomotopi
 to a map with exa
tly N(f) �xed points [4℄, [5℄. With regard tothe 1-dimensional manifolds, the We
ken property holds for maps of the in-terval be
ause they are all homotopi
 to a 
onstant map. ForX = S1, there isthe following well known argument that establishes the We
ken property forsingle-valued maps. By the 
lassi�
ation theorem ([3, p. 39℄), if f : S1 → S1is of degree d, then f is homotopi
 to the power map φd de�ned by viewing
S1 as the unit 
ir
le in the 
omplex plane and setting φd(z) = zd. Thus
N(f) = N(φd). It has long been known that N(φd) = |1 − d| and 
learly
φd has |1 − d| �xed points ex
ept in the 
ase d = 1. Sin
e φ1, the identitymap, is homotopi
 to a �xed point free map, every selfmap f on the 
ir
leis homotopi
 to a map with N(f) �xed points.The We
ken property is easily seen to hold for n-valued multimaps of theinterval I, as follows. Let φ : I ⊸ I be a multimap. De�ne ∆ : I × I ⊸ Iby ∆(s, t) = φ(st); then ∆ is 
ontinuous by Theorems 1 and 1′ on page 113of [2℄. Thus φ is homotopi
 to the 
onstant n-valued multimap κ : I ⊸ I
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de�ned by κ(t) = φ(0), whi
h has n �xed points, whereas N(κ) = n byCorollary 7.3 of [8℄.The purpose of this paper is to prove that the 
ir
le also has the We
kenproperty for n-valued multimaps. In outline, the argument follows that ofthe single-valued setting, but there are several signi�
ant issues that must beaddressed in the n-valued 
ase. In Se
tion 2, we extend the de�nition of thedegree of a selfmap of the 
ir
le to de�ne the degree of an n-valued multimapof the 
ir
le and we dis
uss its properties. Se
tion 3 introdu
es a 
olle
tionof n-valued multimaps we 
all n-valued power maps φn,d : S1

⊸ S1 andwe extend the 
lassi�
ation theorem by proving that an n-valued multimap
φ : S1

⊸ S1 of degree d is homotopi
 to φn,d. We prove in Se
tion 4 that
φn,d has |n−d| �xed points if n 6= d and then that N(φn,d) = |n−d| for all nand d. In Se
tion 5, the We
ken property for n-valued multimaps of the 
ir
leis easily seen to follow from the previous results. Moreover, we 
hara
terizethe split n-valued multimaps of the 
ir
le: an n-valued multimap is split ifand only if its degree is a multiple of n.2. The degree of an n-valued multimap of the 
ir
le. We beginwith some general properties of n-valued multimaps. The following result is aspe
ial 
ase of a theorem of O'Neill [6℄ but, a

ording to [9℄, it was essentiallyknown mu
h earlier [1℄.Lemma 2.1 (Splitting Lemma). Let φ : X ⊸ Y be an n-valued multimapand let

Γφ = {(x, y) ∈ X × Y : y ∈ φ(x)}be the graph of φ. The map p1 : Γφ → X de�ned by p1(x, y) = x is a 
overingspa
e. It follows that if X is simply 
onne
ted , then any n-valued multimap
φ : X ⊸ Y is split.Theorem 2.1. Let ∆ : X × I ⊸ Y be an n-valued homotopy ; write
∆ = {δt : X ⊸ Y }. If δ0 is split , so also is ∆. Thus an n-valued multimaphomotopi
 to a split n-valued multimap is also split.Proof. Write δ0 = {f0

0 , f
0
1 , . . . , f

0
n−1} where f0

j : X → Y . De�ne
f̂0

0 : X × {0} → Γ∆ ⊆ (X × I) × Yby f̂0
0(x, 0) = ((x, 0), f0

0 (x)). Sin
e p1 : Γ∆ → X × I is a 
overing spa
e byLemma 2.1, by the 
overing homotopy property there is a map f̂0 : X ×

I → Γ∆ su
h that p1f̂0 is the identity map of X × I. Let p2 : Γ∆ → Y beproje
tion. Then p2f̂0(x, t) ∈ δt(x) so p2f̂0 is a sele
tion for ∆ and we 
anwrite ∆ = {p2f̂0, ∆
′} where ∆′ : X ⊸ Y is an (n − 1)-valued homotopy

∆′ = {δ′t} with δ′0 = {f0
1 , . . . , f

0
n−1}. Repeated appli
ation of the 
overinghomotopy property produ
es a splitting ∆ = {p2f̂0, p2f̂1, . . . , p2f̂n−1}. If an
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n-valued multimap ψ : X ⊸ Y is homotopi
 to a split n-valued multimap
φ = {f0, . . . , fn−1} by a homotopy ∆ with δ0 = φ and δ1 = ψ, then ψ =

{f1
0 , . . . , f

1
n−1} where f1

j (x) = p2f̂j(x, 1).Now we turn our attention to the 
ir
le and let p : R → S1 be the universal
overing spa
e where p(t) = ei2πt. We will denote points of the 
ir
le by p(t)for 0 ≤ t < 1. Let φ : S1
⊸ S1 be an n-valued multimap. Then the n-valuedfun
tion φp : I ⊸ S1 is 
ontinuous by Theorems 1 and 1′ on page 133 of [2℄.Therefore φp is split and, using the ordering on S1 imposed by p from theordering of R, we write φp = {f0, f1, . . . , fn−1} where the maps fj : I → S1have the property fj(0) = p(tj) for 0 ≤ t0 < t1 < · · · < tn−1 < 1. Let

f̃j : I → R be the lift of fj su
h that f̃j(0) = tj . We note that if 0 ≤ j < k ≤

n− 1, then f̃j(t) < f̃k(t) for all t ∈ I be
ause fj(p(t)) 6= fk(p(t)).Sin
e φ is well de�ned, the sets φp(0) and φp(1) must be identi
al. Con-sequently, f̃0(1) = v + tJ for some integers v, J where 0 ≤ J ≤ n − 1. Wede�ne Deg(φ), the degree of the n-valued multimap φ : S1
⊸ S1, by

Deg(φ) = nv + J.The degree 
an be de�ned just in terms of f̃0(1) be
ause that valuedetermines f̃j(1) for all j, as the next result demonstrates.Lemma 2.2. Let φ : S1
⊸ S1 be an n-valued multimap of degree Deg(φ)

= nv + J . For φp = {f0, f1, . . . , fn−1} where the maps fj : I → S1 have theproperty fj(0) = p(tj) with 0 ≤ t0 < t1 < · · · < tn−1 < 1 and f̃j the lift of fjsu
h that f̃j(0) = tj , we have f̃n−1(1)−f̃0(1) < 1. Therefore, f̃j(1) = v+tJ+jfor j = 0, . . . , (n − 1) − J and , if J ≥ 1, then f̃j(1) = v + 1 + tj−(n−J) for
j = n− J, . . . , n− 1.Proof. De�ne F : I → R by F (t) = f̃n−1(t)− f̃0(t). Then F (0) = tn−1 −

t0 < 1. If F (1) > 1, then F (t∗) = 1 for some t∗ ∈ (0, 1) and thus f̃n−1(t
∗) =

f̃0(t
∗) + 1. But f̃j is a lift of fj so we would have
pf̃n−1(t

∗) = fn−1(p(t
∗)) = p(f̃0(t

∗) + 1) = p(f̃0(t
∗)) = f0(p(t

∗))
ontrary to the de�nition of a splitting. The formulas for the f̃j(1) thenfollow be
ause f̃0(t) < f̃1(t) < · · · < f̃n−1(t) for all t ∈ I.The fa
t that this de�nition of degree agrees with the 
lassi
al de�nitionwhen n = 1 is a spe
ial 
ase of the following result.Theorem 2.2. If φ : S1
⊸ S1 is a split n-valued multimap, then Deg(φ)equals n times the 
lassi
al degree of the maps in the splitting.Proof. Write φ = {f0, f1, . . . , fn−1} where fj(p(0)) = p(tj) and 0 ≤ t0 <

t1 < · · · < tn−1 < 1. Let f̃j : I → R be the lift of fjp : I → S1 su
h that
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f̃j(0) = tj. Sin
e f0 : S1 → S1, we have f̃0(1) = v + f̃0(0) = v + t0 forsome integer v and thus Deg(φ) = nv. Moreover, Lemma 2.2 implies that
f̃j(1) = v + tj for j = 0, . . . , n− 1. On the other hand, by the argument onpage 39 of [3℄, ea
h map fj is homotopi
 to the power map φv : S1 → S1 andtherefore it is of 
lassi
al degree deg(fj) = v, so Deg(φ) = ndeg(fj).Theorem 2.3. If n-valued multimaps φ, ψ : S1

⊸ S1 are homotopi
,then Deg(φ) = Deg(ψ).Proof. Let ∆ = {δt} : S1
⊸ S1 be an n-valued homotopy with φ = δ0and ψ = δ1. We will show that there exists ε > 0 su
h that if |t − t′| < ε,then Deg(δt) = Deg(δt′), that is, the degree is lo
ally 
onstant. Sin
e thedegree is integer-valued, that will imply that it is 
onstant and therefore

Deg(φ) = Deg(ψ). Write δtp = {f t
0, f

t
1, . . . , f

t
n−1} where f t

j (0) = p(tj) for
0 ≤ t0 < t1 < · · · < tn−1 < 1. Let f̃ t

j : I → R be the lift of f t
j su
h that

f̃ t
j (0) = tj. We use the 
orresponding notation for δt′ . If f̃ t

j (1) = v+tJ where
tJ > 0 then, by the 
ontinuity of ∆, if ε > 0 is small enough, |t − t′| < εimplies that f̃ t′

j (1) = v + t′J where t′J > 0 and therefore
Deg(δt) = Deg(δt′) = nv + J.If f̃ t

0(1) = v = v + 0, that means t0 = 0 so
f̃ t

j (1) = v + tj = v + f̃ t
j(0)for all j by Lemma 2.2. Therefore, the f t

j : S1 → S1 de�ned by f t
j (p(s)) =

pf̃ t
j (s) splits δt and thus Deg(δt) = n · deg(f t

0) by Theorem 2.2. Sin
e δt′ ishomotopi
 to δt, Theorem 2.1 shows that δt′ is also split and f t′

0 is homotopi
to f t
0 so, for the 
lassi
al degrees, deg(f t

0) = deg(f t′

0 ) and thus Deg(δt) =
Deg(δt′).3. The 
lassi�
ation theorem. For integers d and n ≥ 1, we de�nethe n-valued multimap we 
all the n-valued power map φn,d : S1

⊸ S1 by
φn,d(p(t)) =

{
p

(
d

n
t

)
, p

(
d

n
t+

1

n

)
, . . . , p

(
d

n
t+

n− 1

n

)}
.Sin
e

φ1,d(p(t)) = p(dt) = ei2πdt = (ei2πt)d = (p(t))d,we see that φ1,d = φd. The example on page 75 of [7℄ is φ2,1 and the exampleon page 219 of [8℄ is φ2,−1.Lemma 3.1. The degree of φn,d is d.
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Proof. We see that φn,dp = (pf̃0, . . . , pf̃n−1) where f̃j(t) = dt/n+ j/n so

f̃j(0) = j/n = tj. Write d = nv + J where 0 ≤ J ≤ n− 1. Then
f̃0(1) =

d

n
= v +

J

n
= v + f̃J(0) = v + tJso, from the de�nition, Deg(φn,d) = nv + J = d.Theorem 3.1 (Classi�
ation Theorem). If φ : S1

⊸ S1 is an n-valuedmultimap of degree d, then φ is homotopi
 to φn,d.Proof. We again write φp = {f0, f1, . . . , fn−1} : I ⊸ S1 and lift fj to
f̃j : I → R su
h that f̃j(0) = tj where fj(0) = p(tj) and 0 ≤ t0 < t1 < · · · <

tn−1 < 1. De�ne maps h̃s
j : I × I → R by

h̃s
j(t) = s

(
d

n
t+ j

)
+ (1 − s)f̃j(t).Then it is 
lear that j < k implies h̃s

j(t) < h̃s
k(t) for all s, t ∈ I. Write

Deg(φ) = d = nv+J where 0 ≤ J ≤ n−1. Suppose 0 ≤ j ≤ (n−1)−J . Then,by Lemma 2.2, we have h̃s
j(1)−h̃s

J+j(0) = v. For J ≥ 1 and n−J ≤ j ≤ n−1,Lemma 2.2 implies that h̃s
j(1) − h̃s

j−(n−J)(0) = v + 1. Thus, for all s ∈ I,the sets {ph̃s
j(0)} and {ph̃s

j(1)} are identi
al. Therefore, setting
∆(p(t), s) = {ph̃s

0(t), ph̃
s
1(t), . . . , ph̃

s
n−1(t)}we obtain a homotopy ∆ : S1 × I ⊸ S1 between φ and φn,d.4. Properties of the n-valued power mapsTheorem 4.1. If n 6= d, then the n-valued power map φn,d has |n − d|�xed points, ea
h of nonzero index , and no two �xed points are in the same�xed point 
lass, therefore N(φn,d) = |n− d|.Proof. If p(t) ∈ φn,d(p(t)) for some t su
h that 0 ≤ t < 1 then, for some

j = 0, 1, . . . , n− 1, we have
p

(
d

n
t+

j

n

)
= p(t)and therefore

d

n
t+

j

n
− t =

(d− n)t

n
+
j

n
= rfor some integer r. Sin
e n 6= d, the possible solutions are of the form

t =
nr − j

d− nwhere r and j are integers and 0 ≤ j ≤ n − 1. We require that 0 ≤ t < 1so if d − n > 0, then 0 ≤ nr − j < d − n, whereas if d − n < 0, then
0 ≥ nr − j > d − n. In either 
ase, there are |d − n| su
h integers and we
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on
lude that φn,d has |d − n| �xed points. Ea
h of the |n− d| �xed pointsof φn,d is transversal and therefore of index ±1 (see page 210 of [8℄).It remains to prove that no two of the �xed points of φn,d are equivalentin the sense of [8℄. Noting that the �xed points are of the form p

(
nr−j
d−n

), wewill make use of the fa
t that
d

n

(
nr − j

d− n

)
+
j

n
= r +

nr − j

d− n
.For k = 0, 1, let

xk = p

(
nrk − jk
d− n

)
= p(x̃k)be two �xed points of φn,d and let a : I → S1 be a path su
h that a(k) = xk.Let ã : I → R be the lift of a su
h that ã(0) = x̃0 ∈ [0, 1). Sin
e a = pã, we
an write

φn,da(t) = φn,dp(ã(t))

=

{
p

(
d

n
ã(t)

)
, p

(
d

n
ã(t) +

1

n

)
, . . . , p

(
d

n
ã(t) +

n− 1

n

)}

= {g0(t), g1(t), . . . , gn−1(t)},a split multimap. The �xed points x0 and x1 are in the same �xed point 
lassif there exists a path a 
onne
ting them and some j∗ with 0 ≤ j∗ ≤ n−1 su
hthat gj∗(xk) = xk for k = 0, 1 and the paths a, gj∗ : I → S1 are homotopi
relative to the endpoints (see [8, p. 214℄).We 
laim that the 
ondition gj∗(x0) = x0 implies that j∗ = j0. To proveit, we note that sin
e a(0) = x̃0, it follows that
p

(
d

n

(
nr0 − j0
d− n

)
+
j∗

n

)
= p

(
nr0 − j0
d− n

)

and therefore
d

n

(
nr0 − j0
d− n

)
+
j∗

n
=
nr0 − j0
d− n

+mfor some integer m, whi
h implies
r0 +

nr0 − j0
d− n

+
j∗ − j0
n

=
nr0 − j0
d− n

+m,so
j∗ − j0
n

= m− r0,an integer. But 0 ≤ j∗, j0 ≤ n−1 and therefore j∗ = j0. This establishes the
laim and we write g = gj∗ = gj0 : I → S1 as the path from x0 to x1 that ishomotopi
 to a relative to the endpoints.Let g̃ : I → R be the lift of g de�ned by
g̃(t) =

d

n
ã(t) +

j0
n

− r0.
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Then g̃(0) = x̃0 = ã(0). Sin
e ag−1 is a 
ontra
tible loop, its lift ãg̃−1 is alsoa loop and thus g̃(1) = ã(1) = x̃1 + q for some integer q. Now

g̃(1) =
d

n

(
nr1 − j1
d− n

+ q

)
+
j0
n

− r0

= r1 +
nr1 − j1
d− n

+
j0 − j1
n

+
d

n
q − r0,whi
h implies that

q = r1 − r0 +
j0 − j1
n

+
d

n
qand thus that

q =
nr1 − j1
d− n

−
nr0 − j0
d− n

= x̃1 − x̃0.Then 0 ≤ x̃0, x̃1 < 1 implies that q = 0 so x̃0 = x̃1 and therefore x0 = x1.We 
on
lude that no two distin
t �xed points of φn,d are in the same �xedpoint 
lass.5. The We
ken property and split multimapsTheorem 5.1 (The We
ken Property). The 
ir
le has the We
ken prop-erty for n-valued multimaps be
ause, if φ : S1
⊸ S1 is an n-valued multimapof degree d, then N(φ) = |n−d| and there is an n-valued multimap homotopi
to φ that has exa
tly |n− d| �xed points.Proof. By Theorem 3.1, φ is homotopi
 to φn,d so N(φ) = N(φn,d) byTheorem 6.5 of [8℄. If d = n, then φ is homotopi
 to φn,n. Choose 0 < ε < 1/nand de�ne ∆ : S1 × I ⊸ S1 by

∆(p(t), s) =

{
p(t+ sε), p

(
t+ sε+

1

n

)
, . . . , p

(
t+ sε+

n− 1

n

)}
.Then φn,n is homotopi
 by ∆ to a �xed point free multimap. Furthermore,

N(φ) = N(φn,n) = 0. If n 6= d, then Theorem 4.1 
ompletes the proofbe
ause N(φ) = N(φn,d) = |n− d| and φn,d has |n− d| �xed points.Theorem 5.2. The power map φn,d is split if and only if d is a multipleof n.Proof. The graph of φn,d is
Γφn,d

=

{(
p(t), p

(
d

n
t+

j

n

))
: t ∈ R, j = 0, 1, . . . , n− 1

}
.For j ∈ {0, 1, . . . , n− 1} de�ne γj : I → Γφn,d

by
γj(t) =

(
p(t), p

(
d

n
t+

j

n

))
.
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Let Γ j ⊆ Γφn,d

be the 
omponent of the graph 
ontaining (p(0), p(j/n)).Then p1j : Γ j → S1, the restri
tion of p1 to Γ j , is a 
overing spa
e and γj isa path in Γ j from (p(0), p(j/n)) to (p(0), p(d/n + j/n)). Write d = nv + Jwhere 0 ≤ J ≤ n− 1. Then
p

(
d

n
+
j

n

)
= p

(
rn+ J + j

n

)
= p

(
J + j

n

)

tells us that p(j/n) = p(d/n + j/n) and thus γj(0) = γj(1) if, and only if,
J = 0, that is, if and only if d is a multiple of n. If d is not a multiple of
n, then we have shown that the �ber of every 
overing spa
e p1j : Γ j → S1obtained by restri
ting p1 to a 
omponent of Γφn,d


ontains at least twopoints. If φn,d were split, it would have a sele
tion, that is, there wouldbe a map f : S1 → S1 su
h that f(p(t)) ∈ φn,d(p(t)) for ea
h t ∈ I. Inparti
ular, (p(0), f(p(0))) ∈ Γ j for some j and thus σ : S1 → Γ j de�ned by
σ(p(t)) = (p(t), f(p(t)) is a 
ross-se
tion of the 
overing spa
e p1j : Γ j →
S1, that is, p1jσ is the identity map of S1. Thus p1jσ would indu
e theidentity isomorphism on the fundamental group of S1. But that is impossiblebe
ause the index of the image of the homomorphism indu
ed by p1j in thatfundamental group equals the 
ardinality of the �ber of the 
overing spa
e,whi
h is greater than one. On the other hand, if d is a multiple of n, then
φn,d splits as φn,d = {f0, f1, . . . , fn−1} where the map fj : S1 → S1 is de�nedby fj(p(t)) = p(dt/n+ j/n).Corollary 5.1. If φ : S1

⊸ S1 is an n-valued multimap of degree d,then φ is split if and only if d is a multiple of n.Proof. By Theorem 3.1, φ is homotopi
 to φn,d. Therefore, by Theorem2.1, φ is split if and only if φn,d is split, whi
h, by Theorem 5.2, o

urs ifand only if d is a multiple of n.
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