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Summary. A multifunction ¢: X — Y is n-valued if ¢(z) is an unordered subset of
n points of Y for each z € X. The (continuous) n-valued multimaps ¢: S* — S* are
classified up to homotopy by an integer-valued degree. In the Nielsen fixed point theory
of such multimaps, due to Schirmer, the Nielsen number N(¢) of an n-valued ¢: S* — S*
of degree d equals |n — d| and ¢ is homotopic to an n-valued power map that has exactly
|n — d| fixed points. Thus the Wecken property, that Schirmer established for manifolds
of dimension at least three, also holds for the circle. An n-valued multimap ¢: S* — S*
of degree d splits into n selfmaps of S! if and only if d is a multiple of n.

1. Introduction. A multifunction ¢: X — Y is a function such that
¢(r) is a subset of Y for each z € X. For S a subset of Y, the set ¢—1(S)
consists of the points # € X such that ¢(z) C S, and the set ¢ '(S) consists
of the points z € X such that ¢(x) NS # (. A multifunction ¢ is said to be
upper semicontinuous (usc) if U open in Y implies ¢~!(U) is open in X. It
is lower semicontinuous (Isc) if U open in Y implies ¢ (U) is open in X.
A multifunction that is both upper semicontinuous and lower semicontinuous
is said to be continuous. Although the term multimap is sometimes used for a
more general concept, in this paper it will mean a continuous multifunction.
An n-valued multifunction ¢: X — Y is a function that assigns to each
x € X an unordered subset of exactly n points of Y. Thus an n-valued
multimap is a continuous n-valued multifunction.

O’Neill [6] proved a version of the Lefschetz fixed point theorem for a
large class of multimaps ¢: X —o X of finite polyhedra that includes the
n-valued multimaps. Multimaps in this class induce a vector space of en-
domorphisms of the homology of X. He proved that if any endomorphism
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has a nonzero Lefschetz number, then ¢ has a fixed point, that is, z € ¢(x)
for some z € X.

The Nielsen fixed point theory of n-valued multimaps was developed by
Schirmer in a series of papers [7]-[9]. For ¢: X — X an n-valued multimap
of a finite polyhedron, the Nielsen number N(¢) has the property that for
any n-valued continuous homotopy A: X x I — X with A(z,0) = ¢(x),
the multimap 1: X —o X defined by ¢ (x) = A(z, 1) has at least N(¢) fixed
points.

The main result of [9] extended a celebrated theorem of Wecken [10] in
the following way. If ¢: X — X is an mn-valued multimap where X is a
compact triangulable manifold, with or without boundary, of dimension at
least three, then there is an n-valued multimap 1: X — X homotopic to ¢
such that 1 has exactly N(¢) fixed points. As in the single-valued theory, we
will refer to this property as the Wecken property for n-valued multimaps.

If fo, fi,..., fam1: X — X are n maps such that j # k implies f;(z) #
fr(x) for all z € X then

¢(x) = {fo(x), fr(x),. .., fn1(2)}

defines an n-valued multimap ¢: X — X that is called split in [8]. Only two
examples of nonsplit n-valued multimaps are included in Schirmer’s papers;
see page 75 of [7] and page 219 of [8]. The examples are of n-valued multimaps
on the unit circle S' and thus the Wecken theorem of [9] does not apply to
them. In both cases, the number of fixed points of the map ¢ that Schirmer
defines is precisely N(¢), but there is no general such result about n-valued
multimaps of the circle.

We recall that, in the single-valued case, among the manifolds only sur-
faces can fail to have the Wecken property that a selfmap f: X — X is
homotopic to a map with exactly N(f) fixed points [4], [5]. With regard to
the 1-dimensional manifolds, the Wecken property holds for maps of the in-
terval because they are all homotopic to a constant map. For X = S, there is
the following well known argument that establishes the Wecken property for
single-valued maps. By the classification theorem ([3, p. 39]), if f: S — S1
is of degree d, then f is homotopic to the power map ¢4 defined by viewing
S' as the unit circle in the complex plane and setting ¢4(z) = 2%, Thus
N(f) = N(¢q). It has long been known that N(¢g) = |1 — d| and clearly
¢q has |1 — d| fixed points except in the case d = 1. Since ¢;, the identity
map, is homotopic to a fixed point free map, every selfmap f on the circle
is homotopic to a map with N(f) fixed points.

The Wecken property is easily seen to hold for n-valued multimaps of the
interval I, as follows. Let ¢: I — I be a multimap. Define A: I x I — I
by A(s,t) = ¢(st); then A is continuous by Theorems 1 and 1’ on page 113
of [2]. Thus ¢ is homotopic to the constant n-valued multimap r: I —o [
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defined by k(t) = ¢(0), which has n fixed points, whereas N (k) = n by
Corollary 7.3 of [8].

The purpose of this paper is to prove that the circle also has the Wecken
property for n-valued multimaps. In outline, the argument follows that of
the single-valued setting, but there are several significant issues that must be
addressed in the n-valued case. In Section 2, we extend the definition of the
degree of a selfmap of the circle to define the degree of an n-valued multimap
of the circle and we discuss its properties. Section 3 introduces a collection
of n-valued multimaps we call n-valued power maps ¢, q4: Sl — S and
we extend the classification theorem by proving that an n-valued multimap
¢: St —o ST of degree d is homotopic to ¢, 4. We prove in Section 4 that
¢n,q has |n—d| fixed points if n # d and then that N (¢, 4) = [n—d| for all n
and d. In Section 5, the Wecken property for n-valued multimaps of the circle
is easily seen to follow from the previous results. Moreover, we characterize
the split n-valued multimaps of the circle: an n-valued multimap is split if
and only if its degree is a multiple of n.

2. The degree of an n-valued multimap of the circle. We begin
with some general properties of n-valued multimaps. The following result is a
special case of a theorem of O’Neill [6] but, according to [9], it was essentially
known much earlier [1].

LEMMA 2.1 (Splitting Lemma). Let ¢: X —o Y be an n-valued multimap
and let
Iy ={(z,y) e X xY:y € p(x)}
be the graph of ¢. The map p1: I'y — X defined by p1(x,y) = = is a covering

space. It follows that if X is simply connected, then any n-valued multimap
¢: X —Y is split.

THEOREM 2.1. Let A: X x I — Y be an n-valued homotopy; write
A=1{6" X —Y}. If 6° is split, so also is A. Thus an n-valued multimap
homotopic to a split n-valued multimap is also split.

Proof. Write 6 = {f3, 2,..., f%_,} where f]Q:X—>Y. Define
fO:Xx{O}HFAg(XxI)xY

by fg(:c,()) = ((x,0), f(x)). Since p1: I'a — X x I is a covering space by
Lemma 2.1, by the Covering homotopy property there is a map ]/‘E)' X X
I — I's such that p1f0 is the identity map of X x I. Let po: I'n — Y be
projection. Then pgfo(:c t) € 6'(x) so p2f0 is a selection for A and we can
write A = {pQ%,A’} where A’: X — Y is an (n — 1)-valued homotopy
A = {8} with 6 = {f2,..., f% ,}. Repeated application of the covering

homotopy property produces a splitting A = {p2]%,p2f17 e ,pgfn_l}. If an
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n-valued multimap ¥: X —o Y is homotopic to a split n-valued multimap
¢ = {fo,..., fa_1} by a homotopy A with 6° = ¢ and §' = 1, then ¢ =

{fL,.. ., fL 1} where fjl(x) :pgf;(x, 1). m

Now we turn our attention to the circle and let p: R — S! be the universal
covering space where p(t) = 2™, We will denote points of the circle by p(t)
for 0 <t < 1. Let ¢: S —o S! be an n-valued multimap. Then the n-valued
function ¢p: I —o S! is continuous by Theorems 1 and 1’ on page 133 of [2].
Therefore ¢p is split and, using the ordering on S imposed by p from the
ordering of R, we write ¢p = {fo, f1,..., fn—1} Where the maps f;: I — S1
have the property f;(0) = p(t;) for 0 < tg < t; < -+ < tp—1 < 1. Let
]7]-: I — R be the lift of f; such that ]7](0) =t;. We note that if 0 < j < k <
n — 1, then f;(t) < fi(t) for all ¢ € T because fi(p(t)) # fru(p(t)).

Since ¢ is well defined, the sets ¢p(0) and ¢p(1) must be identical. Con-
sequently, fo(l) = v + tj for some integers v, J where 0 < J < n — 1. We
define Deg(¢), the degree of the n-valued multimap ¢: S' — S!, by

Deg(¢) = nv + J.

The degree can be defined just in terms of ]70(1) because that value
determines f;(l) for all j, as the next result demonstrates.

LEMMA 2.2, Let ¢: S —o St be an n-valued multimap of degree Deg(¢)
=nv+ J. For ¢p = {fo, f1,. .., fa—1} where the maps fj: I — S have the
property f;(0) = p(t;) with0 <tog <t; <--- <tn,—1 <1 and f] the lift of f;
such that E(O) =t;, we have Fa1(1)= fo(1) < 1. Therefore, f](l) = v+t
forj=0,....(n—1)—J and, if J > 1, then f](l) =v+1+tj_(y_y) for
j=n—J,...,n—1.

Proof. Define F: I — R by F(t) = fo_1(t) — fo(t). Then F(0) = t,_1 —
to < 1.If F(1) > 1, then F(t*) = 1 for some ¢* € (0,1) and thus f,_(t*) =
fo(t*) + 1. But fj is a lift of f; so we would have

pfa-1(t) = fac1(p(t9)) = p(fo(t") + 1) = p(fo(t")) = fo(p(t"))
contrary to the definition of a splitting. The formulas for the f](l) then
follow because fy(t) < fi(t) <--- < fp—1(t) forallt € I. =

The fact that this definition of degree agrees with the classical definition
when n = 1 is a special case of the following result.

THEOREM 2.2. If ¢: St —o S' is a split n-valued multimap, then Deg(¢)
equals n times the classical degree of the maps in the splitting.

Proof. Write ¢ = {fo, f1,..., fa—1} where f;(p(0)) = p(t;) and 0 <ty <
t1 < --- <tp—1 <1 Let fj: I — R be the lift of fjp: I — S1 such that
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]A‘;(O) = t;. Since fo: ST — S!, we have fo(1) = v+ fo(0) = v + tq for
some integer v and thus Deg(¢) = nv. Moreover, Lemma 2.2 implies that
]7](1) =wv+tjfor j=0,...,n—1. On the other hand, by the argument on
page 39 of [3], each map f; is homotopic to the power map ¢, : St — S and
therefore it is of classical degree deg(f;) = v, so Deg(¢) = ndeg(f;). n

THEOREM 2.3. If n-valued multimaps ¢,v: S' — S are homotopic,
then Deg(¢) = Deg(v)).

Proof. Let A = {6t}: S' — S' be an n-valued homotopy with ¢ = &%
and 1) = §'. We will show that there exists ¢ > 0 such that if [t — /| < ¢,
then Deg(0%) = Deg(5"), that is, the degree is locally constant. Since the
degree is integer-valued, that will imply that it is constant and therefore

Deg(¢) = Deg(v)). Write §'p = {fé,ﬁ,...,ffl_l} where f£(0) = p(t;) for
0<ty <t <+ - <tp_1 < 1. Let fjt I — R be the lift of fjt such that
]A‘}(O) = t;. We use the corresponding notation for ot If ]A”}(l) = v+t where
ty > 0 then, by the continuity of A, if & > 0 is small enough, [t — | < ¢
implies that f;/(l) = v+ t/; where t/, > 0 and therefore
Deg(8') = Deg(8"') = nv + J.
If fé(l) = v = v+ 0, that means tp = 0 so
f() = v+t =0+ f(0)

for all j by Lemma 2.2. Therefore, the fjt St — 81 defined by fjt(p(s)) =
pﬁ(s) splits 6 and thus Deg(dt) = n - deg(f¢) by Theorem 2.2. Since 6 is
homotopic to ¢, Theorem 2.1 shows that 6 is also split and fg/ is homotopic

to ft so, for the classical degrees, deg(f¢) = deg(f(t)/) and thus Deg(d!) =
Deg(6"). m

3. The classification theorem. For integers d and n > 1, we define
the n-valued multimap we call the n-valued power map ¢, q: St — 81 by

Gn,a(p(t)) = {p(%t),p(%t-l— %),...,p(%t—i— n;1>}

dra(p(t)) = p(dt) = 2™ = (e2™)T = (p(1))",

we see that ¢1 4 = ¢4. The example on page 75 of [7] is ¢21 and the example
on page 219 of [8] is ¢2,—1.

Since

LEMMA 3.1. The degree of ¢y q is d.
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Proof. We see that ¢, qp = (pfg, e ,p]?n,l) where ]A”;(t) =dt/n+j/n so
[i(0) = j/n =t;. Write d = nv 4+ J where 0 < J <n — 1. Then
~ d J ~
fo(l) = E :U—}-g :’U+fJ(0) =v+ty
so, from the definition, Deg(¢,, q) =nv+J =d. =
THEOREM 3.1 (Classification Theorem). If ¢: S' —o S is an n-valued
multimap of degree d, then ¢ is homotopic to ¢y, 4.
Proof. We again write ¢p = {fo, f1,..., fu—1} : I — S' and lift f; to
fj: I — R such that f;(0) =t; where f;(0) =p(t;) and 0 <ty <t; <--- <

tn—1 < 1. Define maps h;f: I xI—Rby

~ d ' ~

hi(t) = S<Et +]> + (1= s)f;(1).
Then it is clear that j < k implies Ej(t) < %Z(t) for all s,¢t € I. Write
Deg(¢) = d = nv+J where 0 < J < n—1. Suppose 0 < j < (n—1)—J. Then,
by Lemma 2.2, we have hj(1)—hj, ;(0) =v. For J > landn—J < j <n—1,
Lemma 2.2 implies that E;(l) — ﬁ;_(n_J)(O) = v + 1. Thus, for all s € I,
the sets {pﬁj(O)} and {pﬁj(l)} are identical. Therefore, setting

Alp(t), ) = {phi(6), ph3 (1), ... ph5, 1 (D)}

we obtain a homotopy A: S! x I — S between ¢ and Gnd- m

4. Properties of the n-valued power maps

THEOREM 4.1. If n # d, then the n-valued power map ¢y 4 has |n — d|
fized points, each of nonzero index, and no two fized points are in the same
fized point class, therefore N(¢p q) = |n —d|.

Proof. If p(t) € ¢y q(p(t)) for some ¢ such that 0 < ¢ < 1 then, for some
j=0,1,...,n—1, we have

p(%H %) =p(t)

and therefore

d j d—n)t j
dyy g _y_d=mt J_
n n n n
for some integer r. Since n # d, the possible solutions are of the form
nr—j
t pu—
d—n

where r and j are integers and 0 < j < n — 1. We require that 0 < ¢ < 1
soifd—mn > 0, then 0 < nr —j < d — n, whereas if d — n < 0, then
0 > nr —j > d—n. In either case, there are |d — n| such integers and we
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conclude that ¢,, 4 has |d — n| fixed points. Each of the |n — d| fixed points
of ¢p, 4 is transversal and therefore of index +1 (see page 210 of [8]).
It remains to prove that no two of the fixed points of ¢,, 4 are equivalent

nr—j

in the sense of [8]. Noting that the fixed points are of the form p( 7
will make use of the fact that

d{nr—j j nr—7j
< J>+%:r+ J

1), we

n\d—n d—n’
For £k =0,1, let
T = p<w> = p(Tk)
d—n
be two fixed points of ¢, 4 and let a: I — S! be a path such that a(k) = xy.
Let a: I — R be the lift of a such that a(0) =z € [0, 1). Since a = pa, we
can write

Pn,aa(t) = ¢nap(a(t))

B e )
={90(t), 91(t), - - -, gn-1(t)},

a split multimap. The fixed points zg and x1 are in the same fixed point class
if there exists a path a connecting them and some j* with 0 < j* < n—1 such
that g;«(xx) = x, for k = 0,1 and the paths a, gj«: I — S! are homotopic
relative to the endpoints (see [8, p. 214]).

We claim that the condition gj«(xg) = xo implies that j* = jo. To prove
it, we note that since a(0) = o, it follows that

d (nro — jo +£ _ ("o —Jo
pn d—n n p d—n

d (nrg—7j j* nro — j
_( 0 ]0>+%: o—Jdo

and therefore

n\ d—n
for some integer m, which implies
nro—jo | Jj°—Jjo _ nro—Jjo

ro + 1 + i = 1 +m,

SO
J = Jo
n
an integer. But 0 < j*, jo < n—1 and therefore j* = jy. This establishes the
claim and we write g = g;« = gj,: I — S as the path from x( to z; that is
homotopic to a relative to the endpoints.
Let g: I — R be the lift of g defined by
~ d Jo

g(t) = 55(75) + oo

=m —To,
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1

Then §(0) = Zo = a(0). Since ag~! is a contractible loop, its lift ag—" is also

a loop and thus g(1) = a(1) = 71 + ¢ for some integer q. Now

T .
g(1>=—<Ll - +q> + 28—

n\ d—n
nry—j jo— J d
=+ 1 ]1+]0 ‘71+—q—r0,
d—n n n
which implies that
. d
q:rl—ro+]0 ]1+ﬁq

and thus that . .
q= nri—Ji Nnro—Jjo — % — Fo.
d—n d—n
Then 0 < Zp,77 < 1 implies that ¢ = 0 so o = 71 and therefore g = 7.
We conclude that no two distinct fixed points of ¢, 4 are in the same fixed

point class. =

5. The Wecken property and split multimaps

THEOREM 5.1 (The Wecken Property). The circle has the Wecken prop-
erty for n-valued multimaps because, if ¢p: S —o S' is an n-valued multimap
of degree d, then N(¢) = |[n—d| and there is an n-valued multimap homotopic
to ¢ that has exactly |n — d| fized points.

Proof. By Theorem 3.1, ¢ is homotopic to ¢, 4 so N(¢) = N(¢pq) by
Theorem 6.5 of [8]. If d = n, then ¢ is homotopic to ¢y, ,,. Choose 0 < ¢ < 1/n
and define A: S1 x I — S by

A(p(t), s) = {p(t+se),p(t+se+ %),...,p(t+se+ nT—1>}

Then ¢, , is homotopic by A to a fixed point free multimap. Furthermore,
N(¢) = N(¢nn) = 0. If n # d, then Theorem 4.1 completes the proof
because N(¢) = N(¢pq) = |n —d| and ¢, g has |n — d| fixed points. m

THEOREM 5.2. The power map ¢, q s split if and only if d is a multiple
of n.

Proof. The graph of ¢, 4 is

d J .
I = t —t+ = teR,7=0,1,...,n—15.
d)n,d {<p< )7p<n +n)) € 7.] 9+ 7n }

For j € {0,1,...,n — 1} define v;: [ — I'y , by

w0 = (srp(Se+2)).
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Let IV C Iy, , be the component of the graph containing (p(0), p(j/n)).
Then p;: I'l — 81 the restriction of p; to IV, is a covering space and 5 is
a path in I’ from (p(0),p(j/n)) to (p(0), p(d/n + j/n)). Write d = nv + J
where 0 < J <n —1. Then

(d j) <rn+J+j> <J+j)
pl—+=]=p|l ——— ) =0»p
n n n n

tells us that p(j/n) = p(d/n+ j/n) and thus ~;(0) = ~;(1) if, and only if,
J = 0, that is, if and only if d is a multiple of n. If d is not a multiple of
n, then we have shown that the fiber of every covering space p1;: I 7 — St
obtained by restricting p1 to a component of I'y , contains at least two
points. If ¢, 4 were split, it would have a selection, that is, there would
be a map f: S! — S! such that f(p(t)) € ¢na(p(t)) for each t € I. In
particular, (p(0), f(p(0))) € I'V for some j and thus o: St — I'V defined by
a(p(t)) = (p(t), f(p(t)) is a cross-section of the covering space pi;: IV —
S1, that is, p1jo is the identity map of S'. Thus p1jo would induce the
identity isomorphism on the fundamental group of S'. But that is impossible
because the index of the image of the homomorphism induced by p; in that
fundamental group equals the cardinality of the fiber of the covering space,
which is greater than one. On the other hand, if d is a multiple of n, then
®n.a splits as ¢nq = {fo, f1,. .., fa—1} where the map f;: S? — S is defined

by fj(p(t)) = p(dt/n+j/n). =

COROLLARY 5.1. If ¢: S' — S' is an n-valued multimap of degree d,
then ¢ is split if and only if d is a multiple of n.

Proof. By Theorem 3.1, ¢ is homotopic to ¢, 4. Therefore, by Theorem
2.1, ¢ is split if and only if ¢, 4 is split, which, by Theorem 5.2, occurs if
and only if d is a multiple of n.
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