Fixed Points of *n*-Valued Multimaps of the Circle

by

Robert F. BROWN

Presented by Czesław BESSAGA

Summary. A multifunction $\phi: X \multimap Y$ is *n*-valued if $\phi(x)$ is an unordered subset of n points of Y for each $x \in X$. The (continuous) *n*-valued multimaps $\phi: S^1 \multimap S^1$ are classified up to homotopy by an integer-valued degree. In the Nielsen fixed point theory of such multimaps, due to Schirmer, the Nielsen number $N(\phi)$ of an *n*-valued $\phi: S^1 \multimap S^1$ of degree d equals |n - d| and ϕ is homotopic to an *n*-valued power map that has exactly |n - d| fixed points. Thus the Wecken property, that Schirmer established for manifolds of dimension at least three, also holds for the circle. An *n*-valued multimap $\phi: S^1 \multimap S^1$ of degree d splits into n selfmaps of S^1 if and only if d is a multiple of n.

1. Introduction. A multifunction $\phi: X \multimap Y$ is a function such that $\phi(x)$ is a subset of Y for each $x \in X$. For S a subset of Y, the set $\phi^{-1}(S)$ consists of the points $x \in X$ such that $\phi(x) \subseteq S$, and the set $\phi_{+}^{-1}(S)$ consists of the points $x \in X$ such that $\phi(x) \cap S \neq \emptyset$. A multifunction ϕ is said to be upper semicontinuous (usc) if U open in Y implies $\phi_{-}^{-1}(U)$ is open in X. It is lower semicontinuous (lsc) if U open in Y implies $\phi_{+}^{-1}(U)$ is open in X. A multifunction that is both upper semicontinuous and lower semicontinuous is said to be continuous. Although the term multimap is sometimes used for a more general concept, in this paper it will mean a continuous multifunction. An *n*-valued multifunction $\phi: X \multimap Y$ is a function that assigns to each $x \in X$ an unordered subset of exactly n points of Y. Thus an *n*-valued multimap is a continuous n-valued multifunction.

O'Neill [6] proved a version of the Lefschetz fixed point theorem for a large class of multimaps $\phi: X \longrightarrow X$ of finite polyhedra that includes the *n*-valued multimaps. Multimaps in this class induce a vector space of endomorphisms of the homology of X. He proved that if any endomorphism

²⁰⁰⁰ Mathematics Subject Classification: Primary 55M20; Secondary 54C60, 55M25.

Key words and phrases: continuous multifunction, Wecken property, degree of n-valued map.

has a nonzero Lefschetz number, then ϕ has a fixed point, that is, $x \in \phi(x)$ for some $x \in X$.

The Nielsen fixed point theory of *n*-valued multimaps was developed by Schirmer in a series of papers [7]–[9]. For $\phi: X \multimap X$ an *n*-valued multimap of a finite polyhedron, the Nielsen number $N(\phi)$ has the property that for any *n*-valued continuous homotopy $\Delta: X \times I \multimap X$ with $\Delta(x,0) = \phi(x)$, the multimap $\psi: X \multimap X$ defined by $\psi(x) = \Delta(x,1)$ has at least $N(\phi)$ fixed points.

The main result of [9] extended a celebrated theorem of Wecken [10] in the following way. If $\phi: X \longrightarrow X$ is an *n*-valued multimap where X is a compact triangulable manifold, with or without boundary, of dimension at least three, then there is an *n*-valued multimap $\psi: X \longrightarrow X$ homotopic to ϕ such that ψ has exactly $N(\phi)$ fixed points. As in the single-valued theory, we will refer to this property as the Wecken property for *n*-valued multimaps.

If $f_0, f_1, \ldots, f_{n-1} \colon X \to X$ are n maps such that $j \neq k$ implies $f_j(x) \neq f_k(x)$ for all $x \in X$ then

$$\phi(x) = \{f_0(x), f_1(x), \dots, f_{n-1}(x)\}\$$

defines an *n*-valued multimap $\phi: X \to X$ that is called *split* in [8]. Only two examples of nonsplit *n*-valued multimaps are included in Schirmer's papers; see page 75 of [7] and page 219 of [8]. The examples are of *n*-valued multimaps on the unit circle S^1 and thus the Wecken theorem of [9] does not apply to them. In both cases, the number of fixed points of the map ϕ that Schirmer defines is precisely $N(\phi)$, but there is no general such result about *n*-valued multimaps of the circle.

We recall that, in the single-valued case, among the manifolds only surfaces can fail to have the Wecken property that a selfmap $f: X \to X$ is homotopic to a map with exactly N(f) fixed points [4], [5]. With regard to the 1-dimensional manifolds, the Wecken property holds for maps of the interval because they are all homotopic to a constant map. For $X = S^1$, there is the following well known argument that establishes the Wecken property for single-valued maps. By the classification theorem ([3, p. 39]), if $f: S^1 \to S^1$ is of degree d, then f is homotopic to the power map ϕ_d defined by viewing S^1 as the unit circle in the complex plane and setting $\phi_d(z) = z^d$. Thus $N(f) = N(\phi_d)$. It has long been known that $N(\phi_d) = |1 - d|$ and clearly ϕ_d has |1 - d| fixed points except in the case d = 1. Since ϕ_1 , the identity map, is homotopic to a fixed point free map, every selfmap f on the circle is homotopic to a map with N(f) fixed points.

The Wecken property is easily seen to hold for *n*-valued multimaps of the interval I, as follows. Let $\phi: I \multimap I$ be a multimap. Define $\Delta: I \times I \multimap I$ by $\Delta(s,t) = \phi(st)$; then Δ is continuous by Theorems 1 and 1' on page 113 of [2]. Thus ϕ is homotopic to the constant *n*-valued multimap $\kappa: I \multimap I$

defined by $\kappa(t) = \phi(0)$, which has *n* fixed points, whereas $N(\kappa) = n$ by Corollary 7.3 of [8].

The purpose of this paper is to prove that the circle also has the Wecken property for *n*-valued multimaps. In outline, the argument follows that of the single-valued setting, but there are several significant issues that must be addressed in the *n*-valued case. In Section 2, we extend the definition of the degree of a selfmap of the circle to define the degree of an *n*-valued multimap of the circle and we discuss its properties. Section 3 introduces a collection of *n*-valued multimaps we call *n*-valued power maps $\phi_{n,d}: S^1 \multimap S^1$ and we extend the classification theorem by proving that an *n*-valued multimap $\phi: S^1 \multimap S^1$ of degree *d* is homotopic to $\phi_{n,d}$. We prove in Section 4 that $\phi_{n,d}$ has |n-d| fixed points if $n \neq d$ and then that $N(\phi_{n,d}) = |n-d|$ for all *n* and *d*. In Section 5, the Wecken property for *n*-valued multimaps of the circle is easily seen to follow from the previous results. Moreover, we characterize the split *n*-valued multimaps of the circle: an *n*-valued multimap is split if and only if its degree is a multiple of *n*.

2. The degree of an *n*-valued multimap of the circle. We begin with some general properties of *n*-valued multimaps. The following result is a special case of a theorem of O'Neill [6] but, according to [9], it was essentially known much earlier [1].

LEMMA 2.1 (Splitting Lemma). Let $\phi: X \multimap Y$ be an n-valued multimap and let

$$\Gamma_{\phi} = \{ (x, y) \in X \times Y \colon y \in \phi(x) \}$$

be the graph of ϕ . The map $p_1: \Gamma_{\phi} \to X$ defined by $p_1(x, y) = x$ is a covering space. It follows that if X is simply connected, then any n-valued multimap $\phi: X \multimap Y$ is split.

THEOREM 2.1. Let $\Delta: X \times I \multimap Y$ be an n-valued homotopy; write $\Delta = \{\delta^t: X \multimap Y\}$. If δ^0 is split, so also is Δ . Thus an n-valued multimap homotopic to a split n-valued multimap is also split.

Proof. Write
$$\delta^0 = \{f_0^0, f_1^0, \dots, f_{n-1}^0\}$$
 where $f_j^0 \colon X \to Y$. Define
 $\widehat{f}_0^0 \colon X \times \{0\} \to \Gamma_\Delta \subseteq (X \times I) \times Y$

by $\widehat{f}_0^0(x,0) = ((x,0), f_0^0(x))$. Since $p_1: \Gamma_\Delta \to X \times I$ is a covering space by Lemma 2.1, by the covering homotopy property there is a map $\widehat{f}_0: X \times I \to \Gamma_\Delta$ such that $p_1\widehat{f}_0$ is the identity map of $X \times I$. Let $p_2: \Gamma_\Delta \to Y$ be projection. Then $p_2\widehat{f}_0(x,t) \in \delta^t(x)$ so $p_2\widehat{f}_0$ is a selection for Δ and we can write $\Delta = \{p_2\widehat{f}_0, \Delta'\}$ where $\Delta': X \to Y$ is an (n-1)-valued homotopy $\Delta' = \{\delta'^t\}$ with $\delta'^0 = \{f_1^0, \ldots, f_{n-1}^0\}$. Repeated application of the covering homotopy property produces a splitting $\Delta = \{p_2\widehat{f}_0, p_2\widehat{f}_1, \ldots, p_2\widehat{f}_{n-1}\}$. If an *n*-valued multimap $\psi: X \longrightarrow Y$ is homotopic to a split *n*-valued multimap $\phi = \{f_0, \ldots, f_{n-1}\}$ by a homotopy Δ with $\delta^0 = \phi$ and $\delta^1 = \psi$, then $\psi = \{f_0^1, \ldots, f_{n-1}^1\}$ where $f_j^1(x) = p_2 \widehat{f}_j(x, 1)$.

Now we turn our attention to the circle and let $p: \mathbb{R} \to S^1$ be the universal covering space where $p(t) = e^{i2\pi t}$. We will denote points of the circle by p(t) for $0 \leq t < 1$. Let $\phi: S^1 \multimap S^1$ be an *n*-valued multimap. Then the *n*-valued function $\phi p: I \multimap S^1$ is continuous by Theorems 1 and 1' on page 133 of [2]. Therefore ϕp is split and, using the ordering on S^1 imposed by p from the ordering of \mathbb{R} , we write $\phi p = \{f_0, f_1, \ldots, f_{n-1}\}$ where the maps $f_j: I \to S^1$ have the property $f_j(0) = p(t_j)$ for $0 \leq t_0 < t_1 < \cdots < t_{n-1} < 1$. Let $\tilde{f}_j: I \to \mathbb{R}$ be the lift of f_j such that $\tilde{f}_j(0) = t_j$. We note that if $0 \leq j < k \leq n-1$, then $\tilde{f}_j(t) < \tilde{f}_k(t)$ for all $t \in I$ because $f_j(p(t)) \neq f_k(p(t))$.

Since ϕ is well defined, the sets $\phi p(0)$ and $\phi p(1)$ must be identical. Consequently, $\tilde{f}_0(1) = v + t_J$ for some integers v, J where $0 \leq J \leq n - 1$. We define $\text{Deg}(\phi)$, the *degree* of the *n*-valued multimap $\phi: S^1 \multimap S^1$, by

$$\operatorname{Deg}(\phi) = nv + J.$$

The degree can be defined just in terms of $\tilde{f}_0(1)$ because that value determines $\tilde{f}_i(1)$ for all j, as the next result demonstrates.

LEMMA 2.2. Let $\phi: S^1 \multimap S^1$ be an n-valued multimap of degree $\text{Deg}(\phi)$ = nv + J. For $\phi p = \{f_0, f_1, \ldots, f_{n-1}\}$ where the maps $f_j: I \to S^1$ have the property $f_j(0) = p(t_j)$ with $0 \le t_0 < t_1 < \cdots < t_{n-1} < 1$ and \widetilde{f}_j the lift of f_j such that $\widetilde{f}_j(0) = t_j$, we have $\widetilde{f}_{n-1}(1) - \widetilde{f}_0(1) < 1$. Therefore, $\widetilde{f}_j(1) = v + t_{J+j}$ for $j = 0, \ldots, (n-1) - J$ and, if $J \ge 1$, then $\widetilde{f}_j(1) = v + 1 + t_{j-(n-J)}$ for $j = n - J, \ldots, n - 1$.

Proof. Define $F: I \to \mathbb{R}$ by $F(t) = \tilde{f}_{n-1}(t) - \tilde{f}_0(t)$. Then $F(0) = t_{n-1} - t_0 < 1$. If F(1) > 1, then $F(t^*) = 1$ for some $t^* \in (0, 1)$ and thus $\tilde{f}_{n-1}(t^*) = \tilde{f}_0(t^*) + 1$. But \tilde{f}_j is a lift of f_j so we would have

$$p\widetilde{f}_{n-1}(t^*) = f_{n-1}(p(t^*)) = p(\widetilde{f}_0(t^*) + 1) = p(\widetilde{f}_0(t^*)) = f_0(p(t^*))$$

contrary to the definition of a splitting. The formulas for the $f_j(1)$ then follow because $\tilde{f}_0(t) < \tilde{f}_1(t) < \cdots < \tilde{f}_{n-1}(t)$ for all $t \in I$.

The fact that this definition of degree agrees with the classical definition when n = 1 is a special case of the following result.

THEOREM 2.2. If $\phi: S^1 \multimap S^1$ is a split n-valued multimap, then $\text{Deg}(\phi)$ equals n times the classical degree of the maps in the splitting.

Proof. Write $\phi = \{f_0, f_1, \dots, f_{n-1}\}$ where $f_j(p(0)) = p(t_j)$ and $0 \le t_0 < t_1 < \dots < t_{n-1} < 1$. Let $\widetilde{f_j} : I \to \mathbb{R}$ be the lift of $f_j p \colon I \to S^1$ such that

 $\widetilde{f}_j(0) = t_j$. Since $f_0: S^1 \to S^1$, we have $\widetilde{f}_0(1) = v + \widetilde{f}_0(0) = v + t_0$ for some integer v and thus $\operatorname{Deg}(\phi) = nv$. Moreover, Lemma 2.2 implies that $\widetilde{f}_j(1) = v + t_j$ for $j = 0, \ldots, n-1$. On the other hand, by the argument on page 39 of [3], each map f_j is homotopic to the power map $\phi_v: S^1 \to S^1$ and therefore it is of classical degree $\operatorname{deg}(f_j) = v$, so $\operatorname{Deg}(\phi) = n \operatorname{deg}(f_j)$.

THEOREM 2.3. If n-valued multimaps $\phi, \psi \colon S^1 \multimap S^1$ are homotopic, then $\text{Deg}(\phi) = \text{Deg}(\psi)$.

Proof. Let $\Delta = \{\delta^t\}: S^1 \multimap S^1$ be an *n*-valued homotopy with $\phi = \delta^0$ and $\psi = \delta^1$. We will show that there exists $\varepsilon > 0$ such that if $|t - t'| < \varepsilon$, then $\text{Deg}(\delta^t) = \text{Deg}(\delta^{t'})$, that is, the degree is locally constant. Since the degree is integer-valued, that will imply that it is constant and therefore $\text{Deg}(\phi) = \text{Deg}(\psi)$. Write $\delta^t p = \{f_0^t, f_1^t, \dots, f_{n-1}^t\}$ where $f_j^t(0) = p(t_j)$ for $0 \le t_0 < t_1 < \cdots < t_{n-1} < 1$. Let $\tilde{f}_j^t: I \to \mathbb{R}$ be the lift of f_j^t such that $\tilde{f}_j^t(0) = t_j$. We use the corresponding notation for $\delta^{t'}$. If $\tilde{f}_j^t(1) = v + t_j$ where $t_j > 0$ then, by the continuity of Δ , if $\varepsilon > 0$ is small enough, $|t - t'| < \varepsilon$ implies that $\tilde{f}_j^{t'}(1) = v + t'_j$ where $t'_j > 0$ and therefore

$$\operatorname{Deg}(\delta^t) = \operatorname{Deg}(\delta^{t'}) = nv + J.$$

If $\tilde{f}_{0}^{t}(1) = v = v + 0$, that means $t_{0} = 0$ so

$$\widetilde{f}_j^t(1) = v + t_j = v + \widetilde{f}_j^t(0)$$

for all j by Lemma 2.2. Therefore, the $f_j^t \colon S^1 \to S^1$ defined by $f_j^t(p(s)) = p \tilde{f}_j^t(s)$ splits δ^t and thus $\text{Deg}(\delta^t) = n \cdot \text{deg}(f_0^t)$ by Theorem 2.2. Since $\delta^{t'}$ is homotopic to δ^t , Theorem 2.1 shows that $\delta^{t'}$ is also split and $f_0^{t'}$ is homotopic to f_0^t so, for the classical degrees, $\text{deg}(f_0^t) = \text{deg}(f_0^{t'})$ and thus $\text{Deg}(\delta^t) = \text{Deg}(\delta^{t'})$.

3. The classification theorem. For integers d and $n \ge 1$, we define the *n*-valued multimap we call the *n*-valued power map $\phi_{n,d} \colon S^1 \multimap S^1$ by

$$\phi_{n,d}(p(t)) = \left\{ p\left(\frac{d}{n}t\right), p\left(\frac{d}{n}t + \frac{1}{n}\right), \dots, p\left(\frac{d}{n}t + \frac{n-1}{n}\right) \right\}.$$

Since

$$\phi_{1,d}(p(t)) = p(dt) = e^{i2\pi dt} = (e^{i2\pi t})^d = (p(t))^d$$

we see that $\phi_{1,d} = \phi_d$. The example on page 75 of [7] is $\phi_{2,1}$ and the example on page 219 of [8] is $\phi_{2,-1}$.

LEMMA 3.1. The degree of $\phi_{n,d}$ is d.

Proof. We see that $\phi_{n,d}p = (p\widetilde{f}_0, \dots, p\widetilde{f}_{n-1})$ where $\widetilde{f}_j(t) = dt/n + j/n$ so $\widetilde{f}_j(0) = j/n = t_j$. Write d = nv + J where $0 \le J \le n - 1$. Then

$$\widetilde{f}_0(1) = \frac{d}{n} = v + \frac{J}{n} = v + \widetilde{f}_J(0) = v + t_J$$

so, from the definition, $\text{Deg}(\phi_{n,d}) = nv + J = d$.

THEOREM 3.1 (Classification Theorem). If $\phi: S^1 \multimap S^1$ is an n-valued multimap of degree d, then ϕ is homotopic to $\phi_{n,d}$.

Proof. We again write $\phi p = \{f_0, f_1, \ldots, f_{n-1}\} : I \multimap S^1$ and lift f_j to $\widetilde{f}_j : I \to \mathbb{R}$ such that $\widetilde{f}_j(0) = t_j$ where $f_j(0) = p(t_j)$ and $0 \le t_0 < t_1 < \cdots < t_{n-1} < 1$. Define maps $\widetilde{h}_j^s : I \times I \to \mathbb{R}$ by

$$\widetilde{h}_j^s(t) = s\left(\frac{d}{n}t + j\right) + (1-s)\widetilde{f}_j(t).$$

Then it is clear that j < k implies $\tilde{h}_j^s(t) < \tilde{h}_k^s(t)$ for all $s, t \in I$. Write $\text{Deg}(\phi) = d = nv + J$ where $0 \le J \le n-1$. Suppose $0 \le j \le (n-1) - J$. Then, by Lemma 2.2, we have $\tilde{h}_j^s(1) - \tilde{h}_{J+j}^s(0) = v$. For $J \ge 1$ and $n-J \le j \le n-1$, Lemma 2.2 implies that $\tilde{h}_j^s(1) - \tilde{h}_{j-(n-J)}^s(0) = v + 1$. Thus, for all $s \in I$, the sets $\{p\tilde{h}_j^s(0)\}$ and $\{p\tilde{h}_j^s(1)\}$ are identical. Therefore, setting

$$\Delta(p(t),s) = \{ p\widetilde{h}_0^s(t), p\widetilde{h}_1^s(t), \dots, p\widetilde{h}_{n-1}^s(t) \}$$

we obtain a homotopy $\Delta: S^1 \times I \multimap S^1$ between ϕ and $\phi_{n,d}$.

4. Properties of the *n*-valued power maps

THEOREM 4.1. If $n \neq d$, then the n-valued power map $\phi_{n,d}$ has |n - d| fixed points, each of nonzero index, and no two fixed points are in the same fixed point class, therefore $N(\phi_{n,d}) = |n - d|$.

Proof. If $p(t) \in \phi_{n,d}(p(t))$ for some t such that $0 \le t < 1$ then, for some $j = 0, 1, \ldots, n-1$, we have

$$p\left(\frac{d}{n}t + \frac{j}{n}\right) = p(t)$$

and therefore

$$\frac{d}{n}t + \frac{j}{n} - t = \frac{(d-n)t}{n} + \frac{j}{n} = r$$

for some integer r. Since $n \neq d$, the possible solutions are of the form

$$t = \frac{nr - j}{d - n}$$

where r and j are integers and $0 \le j \le n-1$. We require that $0 \le t < 1$ so if d-n > 0, then $0 \le nr-j < d-n$, whereas if d-n < 0, then $0 \ge nr-j > d-n$. In either case, there are |d-n| such integers and we conclude that $\phi_{n,d}$ has |d-n| fixed points. Each of the |n-d| fixed points of $\phi_{n,d}$ is transversal and therefore of index ± 1 (see page 210 of [8]).

It remains to prove that no two of the fixed points of $\phi_{n,d}$ are equivalent in the sense of [8]. Noting that the fixed points are of the form $p(\frac{nr-j}{d-n})$, we will make use of the fact that

$$\frac{d}{n}\left(\frac{nr-j}{d-n}\right) + \frac{j}{n} = r + \frac{nr-j}{d-n}$$

For k = 0, 1, let

$$x_k = p\left(\frac{nr_k - j_k}{d - n}\right) = p(\tilde{x}_k)$$

be two fixed points of $\phi_{n,d}$ and let $a: I \to S^1$ be a path such that $a(k) = x_k$. Let $\tilde{a}: I \to \mathbb{R}$ be the lift of a such that $\tilde{a}(0) = \tilde{x}_0 \in [0, 1)$. Since $a = p\tilde{a}$, we can write

$$\phi_{n,d}a(t) = \phi_{n,d}p(\widetilde{a}(t))$$

$$= \left\{ p\left(\frac{d}{n}\widetilde{a}(t)\right), p\left(\frac{d}{n}\widetilde{a}(t) + \frac{1}{n}\right), \dots, p\left(\frac{d}{n}\widetilde{a}(t) + \frac{n-1}{n}\right) \right\}$$

$$= \{g_0(t), g_1(t), \dots, g_{n-1}(t)\},$$

a split multimap. The fixed points x_0 and x_1 are in the same fixed point class if there exists a path *a* connecting them and some j^* with $0 \le j^* \le n-1$ such that $g_{j^*}(x_k) = x_k$ for k = 0, 1 and the paths $a, g_{j^*} \colon I \to S^1$ are homotopic relative to the endpoints (see [8, p. 214]).

We claim that the condition $g_{j^*}(x_0) = x_0$ implies that $j^* = j_0$. To prove it, we note that since $a(0) = \tilde{x}_0$, it follows that

$$p\left(\frac{d}{n}\left(\frac{nr_0-j_0}{d-n}\right)+\frac{j^*}{n}\right)=p\left(\frac{nr_0-j_0}{d-n}\right)$$

and therefore

$$\frac{d}{n}\left(\frac{nr_0 - j_0}{d - n}\right) + \frac{j^*}{n} = \frac{nr_0 - j_0}{d - n} + m$$

for some integer m, which implies

$$r_0 + \frac{nr_0 - j_0}{d - n} + \frac{j^* - j_0}{n} = \frac{nr_0 - j_0}{d - n} + m,$$
$$\frac{j^* - j_0}{n} = m - r_0,$$

 \mathbf{SO}

an integer. But $0 \leq j^*, j_0 \leq n-1$ and therefore $j^* = j_0$. This establishes the claim and we write $g = g_{j^*} = g_{j_0} \colon I \to S^1$ as the path from x_0 to x_1 that is homotopic to a relative to the endpoints.

Let $\widetilde{g}: I \to \mathbb{R}$ be the lift of g defined by

$$\widetilde{g}(t) = \frac{d}{n}\widetilde{a}(t) + \frac{j_0}{n} - r_0.$$

Then $\tilde{g}(0) = \tilde{x}_0 = \tilde{a}(0)$. Since ag^{-1} is a contractible loop, its lift $\tilde{a}\tilde{g}^{-1}$ is also a loop and thus $\tilde{g}(1) = \tilde{a}(1) = \tilde{x}_1 + q$ for some integer q. Now

$$\widetilde{g}(1) = \frac{d}{n} \left(\frac{nr_1 - j_1}{d - n} + q \right) + \frac{j_0}{n} - r_0$$
$$= r_1 + \frac{nr_1 - j_1}{d - n} + \frac{j_0 - j_1}{n} + \frac{d}{n} q - r_0,$$

which implies that

$$q = r_1 - r_0 + \frac{j_0 - j_1}{n} + \frac{d}{n} q$$

and thus that

$$q = \frac{nr_1 - j_1}{d - n} - \frac{nr_0 - j_0}{d - n} = \widetilde{x}_1 - \widetilde{x}_0.$$

Then $0 \leq \tilde{x}_0, \tilde{x}_1 < 1$ implies that q = 0 so $\tilde{x}_0 = \tilde{x}_1$ and therefore $x_0 = x_1$. We conclude that no two distinct fixed points of $\phi_{n,d}$ are in the same fixed point class.

5. The Wecken property and split multimaps

THEOREM 5.1 (The Wecken Property). The circle has the Wecken property for n-valued multimaps because, if $\phi: S^1 \multimap S^1$ is an n-valued multimap of degree d, then $N(\phi) = |n-d|$ and there is an n-valued multimap homotopic to ϕ that has exactly |n-d| fixed points.

Proof. By Theorem 3.1, ϕ is homotopic to $\phi_{n,d}$ so $N(\phi) = N(\phi_{n,d})$ by Theorem 6.5 of [8]. If d = n, then ϕ is homotopic to $\phi_{n,n}$. Choose $0 < \varepsilon < 1/n$ and define $\Delta \colon S^1 \times I \longrightarrow S^1$ by

$$\Delta(p(t),s) = \left\{ p(t+s\varepsilon), p\left(t+s\varepsilon+\frac{1}{n}\right), \dots, p\left(t+s\varepsilon+\frac{n-1}{n}\right) \right\}.$$

Then $\phi_{n,n}$ is homotopic by Δ to a fixed point free multimap. Furthermore, $N(\phi) = N(\phi_{n,n}) = 0$. If $n \neq d$, then Theorem 4.1 completes the proof because $N(\phi) = N(\phi_{n,d}) = |n-d|$ and $\phi_{n,d}$ has |n-d| fixed points.

THEOREM 5.2. The power map $\phi_{n,d}$ is split if and only if d is a multiple of n.

Proof. The graph of $\phi_{n,d}$ is

$$\Gamma_{\phi_{n,d}} = \left\{ \left(p(t), p\left(\frac{d}{n}t + \frac{j}{n}\right) \right) \colon t \in \mathbb{R}, \ j = 0, 1, \dots, n-1 \right\}.$$

For $j \in \{0, 1, \dots, n-1\}$ define $\gamma_j \colon I \to \Gamma_{\phi_{n,d}}$ by

$$\gamma_j(t) = \left(p(t), p\left(\frac{d}{n}t + \frac{j}{n}\right)\right).$$

Let $\Gamma^j \subseteq \Gamma_{\phi_{n,d}}$ be the component of the graph containing (p(0), p(j/n)). Then $p_{1j} \colon \Gamma^j \to S^1$, the restriction of p_1 to Γ^j , is a covering space and γ_j is a path in Γ^j from (p(0), p(j/n)) to (p(0), p(d/n + j/n)). Write d = nv + Jwhere $0 \leq J \leq n - 1$. Then

$$p\left(\frac{d}{n} + \frac{j}{n}\right) = p\left(\frac{rn+J+j}{n}\right) = p\left(\frac{J+j}{n}\right)$$

tells us that p(j/n) = p(d/n + j/n) and thus $\gamma_j(0) = \gamma_j(1)$ if, and only if, J = 0, that is, if and only if d is a multiple of n. If d is not a multiple of n, then we have shown that the fiber of every covering space $p_{1j}: \Gamma^j \to S^1$ obtained by restricting p_1 to a component of $\Gamma_{\phi_{n,d}}$ contains at least two points. If $\phi_{n,d}$ were split, it would have a selection, that is, there would be a map $f: S^1 \to S^1$ such that $f(p(t)) \in \phi_{n,d}(p(t))$ for each $t \in I$. In particular, $(p(0), f(p(0))) \in \Gamma^j$ for some j and thus $\sigma: S^1 \to \Gamma^j$ defined by $\sigma(p(t)) = (p(t), f(p(t)))$ is a cross-section of the covering space $p_{1j}: \Gamma^j \to S^1$, that is, $p_{1j}\sigma$ is the identity map of S^1 . Thus $p_{1j}\sigma$ would induce the identity isomorphism on the fundamental group of S^1 . But that is impossible because the index of the image of the homomorphism induced by p_{1j} in that fundamental group equals the cardinality of the fiber of the covering space, which is greater than one. On the other hand, if d is a multiple of n, then $\phi_{n,d}$ splits as $\phi_{n,d} = \{f_0, f_1, \ldots, f_{n-1}\}$ where the map $f_j: S^1 \to S^1$ is defined by $f_j(p(t)) = p(dt/n + j/n)$.

COROLLARY 5.1. If $\phi: S^1 \multimap S^1$ is an n-valued multimap of degree d, then ϕ is split if and only if d is a multiple of n.

Proof. By Theorem 3.1, ϕ is homotopic to $\phi_{n,d}$. Therefore, by Theorem 2.1, ϕ is split if and only if $\phi_{n,d}$ is split, which, by Theorem 5.2, occurs if and only if d is a multiple of n.

References

- S. Banach und S. Mazur, Über mehrdeutige stetige Abbildungen, Studia Math. 5 (1934), 174-178.
- [2] C. Berge, *Topological Spaces*, Oliver & Boyd, 1963.
- [3] S. Hu, Homotopy Theory, Academic Press, 1959.
- [4] B. Jiang, On the least number of fixed points, Amer. J. Math. 102 (1980), 749–763.
- [5] —, Fixed points and braids, II, Math. Ann. 272 (1985), 249–256.
- B. O'Neill, Induced homology homomorphisms for set-valued maps, Pacific J. Math. 7 (1957), 1179-1184.
- [7] H. Schirmer, Fix-finite approximations of n-valued multifunctions, Fund. Math. 121 (1984), 73–80.
- [8] —, An index and Nielsen number for n-valued multifunctions, ibid. 124 (1984), 207–219.

- [9] H. Schirmer, A minimum theorem for n-valued multifunctions, ibid. 126 (1985), 83–92.
- [10] F. Wecken, Fixpunktklassen, III, Math. Ann. 118 (1942), 544-577.

Robert F. Brown Department of Mathematics University of California Los Angeles, CA 90095-1555, U.S.A. E-mail: rfb@math.ucla.edu

Received September 25, 2006

(7553)