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Fragmentation-Coagulation Models of PhytoplanktonbyRyszard RUDNICKI and Radosªaw WIECZOREKPresented by Andrzej LASOTA
Summary. We present two new models of the dynamis of phytoplankton aggregates.The �rst one is an individual-based model. Passing to in�nity with the number of indi-viduals, we obtain an Eulerian model. This model desribes the evolution of the densityof the spatial-mass distribution of aggregates. We show the existene and uniqueness ofsolutions of the evolution equation.1. Introdution. In [4℄ the authors built a model of the phytoplanktondynamis, where the individual is an aggregate�a group of phytoplanktonells living together. Aggregates are strutured by their size, whih hangesdue to three proesses: growth aused by ell division, fragmentation andoagulation. The size distribution of aggregates satis�es the equation(1) ∂u

∂t
=

∂

∂m
[g(m)u] + Φu + Cu,where m is the size of an aggregate, g(m) is the growth rate, and Φ and Care the operators of fragmentation and oagulation, respetively. The authorsproved the existene and uniqueness theorem for equation (1) and hekedthe long-time behaviour of the distribution of size for some speial ases.In the present paper we onstrut an individual-based model whih isadditionally spatially strutured and ontains a proess of random movementof aggregates. Our aim is to show that the limit passage in the model, whenthe number of individuals goes to in�nity whereas the mass of a single elltends to zero, leads to a transport equation of type (1) with a di�usion term.In many papers suh a limit is a stohasti proess with values in the spae ofmeasures, alled a superproess (see [9, 13, 16, 2, 15℄). The measures whih2000 Mathematis Subjet Classi�ation: Primary 60K35; Seondary 47J35, 92D40.Key words and phrases: phytoplankton dynamis, measure-valued proesses, frag-mentation-oagulation equation. [175℄
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are values of this superproess desribe the distribution of partiles in spae.In our model we also obtain a limit but it is deterministi. In fat, we derivethe evolution of the distribution density aording to the equation(2) ∂u

∂t
= D(m)∆xu +

∂

∂m
[λ(m)u] + Φ∗u + Cu,where Φ∗ and C are operators responsible for fragmentation and oagulation(for their form, see (29) and (30) in Setion 6). Finally, we prove the existeneand uniqueness of solutions of our equation.The approah resembling ours was applied to a model of oagulationwith di�usion by Norris [24℄ and in a di�erent setting of interating partilesystems by Kolokoltsov [20℄. Measure-valued limits of interating partilesystems leading to so-alled generalized Smoluhowski equations were alsoonsidered in [6, 14℄. Similar equations, but used in a di�erent ontext, ap-pear e.g. in [1, 5, 7, 25℄, while in [11℄ one an �nd a survey of oagulationequations. Other results onerning this subjet an be found in [3, 22℄ andthe papers quoted therein. For the biologial models that use similar meth-ods we also refer to [10, 21, 23, 30℄. We exploit methods that were developedby Dawson (f. [9℄) and other probabilists working on superproesses (seealso [16, 17, 13℄).The sheme of this paper is as follows. In the next setion we introdueour model, whih is mathematially formulated in Setion 3. Setion 4 on-erns the resaling of the individual model and the limit passage; the proofof the onvergene theorem is given in Setion 5. In Setion 6 we derive theevolution equation that desribes the behaviour of the limit proess, and weprove the existene and uniqueness theorem.2. Individual-based model of phytoplankton ells. We onstrutan individual-based model of phytoplankton. In our model an individualis an aggregate that onsists of indistinguishable ells with equal massesjoined by some organi glue. Cells in the aggregate may die or divide intotwo daughter ells, whih auses the derease or growth of the aggregate. Anaggregate may shatter into two smaller aggregates or die (sink or be eaten).Thus the whole situation is desribed by the following proesses:

• A single ell in the aggregate may die in a unit of time with probability
λm(m) depending on the mass (number of ells) m of the aggregate ormay divide into two new ells with probability λb(m).

• A whole aggregate moves aording to the ε-random walk�i.e. it skipsby a vetor of length ε in one of 2d diretions (parallel to one of theaxes, d is the dimension of the spae) with probability (1/ε2)D(m)(where D is a oe�ient depending on the mass).
• The aggregate may die in a unit of time with probability λd(m).
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• The aggregate of mass m may split in a unit of time with probabil-ity λf (m) into two parts with masses m and m − m with probability

p(1)(m, m) (where ∑m
m=1 p(1)(m, m) = 1). We assume that after frag-mentation both new aggregates appear at the same loation as theirparent.

• Two aggregates may join up with probability k(1) depending on theirmasses and loations, and on the state of the whole population. Morepreisely, let the rate of oagulation of the ith aggregate be c(mi). Thenthe probability that it joins the jth aggregate is c(mj)/
∑N

k=1 c(mk)and it is modi�ed by a distane-dependent oe�ient v(xi − xj), thus
k(1) takes the form(3) k(1)(mi, mj, xi − xj , ν) =

c(mi)c(mj)∑
k c(mk)

v(xi − xj),where the sum in the denominator extends over all living individuals.Our model of the oagulation proess is essentially di�erent from standardphysial models (e.g. Smoluhowski [29℄) where the probability of oagula-tion is proportional to the square of the number of partiles. We onsider themore biologially justi�able ase, when the ability of oagulation of a singleaggregate is not unbounded, but approximately onstant. Ability of oagu-lation depends on the onentration of some organi glue (TEP) [8, 26℄. Thismeans that the probability of joining is a funtion of prodution of TEP byan aggregate, whih depends on the mass of the aggregate.It should be noted that the probability of oagulation of two aggregates:1) is proportional to the ability of both aggregates to oagulate,2) depends on the distane of the aggregates,3) is symmetrial, i.e. it does not depend on the order of the aggregates.It seems di�ult to �nd another model of oagulation whih has all the abovefeatures and, at the same time, has good mathematial properties.3. Stohasti proess desribing the model. The state of our modelis desribed by the vetor (k; x1, m1, . . . , xk, mk), where k is the number ofaggregates and xi, mi, for i = 1, . . . , k, denote, respetively, the loation andmass of the ith aggregate. Sine k (and so the number of variables) hangesduring evolution, and the order of pairs xi, mi is not important, we need aspeial state spae. We use the set of measures
N =

{ k∑

i=1

δxi,mi
: k ∈ N, (xi, mi) ∈ R

d × N

}
,i.e. we denote the aggregate of size m at position x by the Dira delta
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measure δx,m at (x, m) ∈ R

d ×N. The set N is a subspae of the spae M ofall �nite Borel measures on R
d ×R

+ with the topology of weak onvergene.Constrained by the nature of N (whih is not even a Banah spae), we usethe formalism of D([0,∞),N ) martingale problems. By D([0,∞),N ) wedenote the spae of all àdlàg funtions on N , i.e. right ontinuous funtionswith left hand limits. Let us reallDefinition 1. Let B(N ) be the spae of measurable and bounded fun-tions on N and let L be a linear operator de�ned on a subspae of B(N )with values in B(N ). We say that a stohasti proess X(t) solves the
D([0,∞),N ) martingale problem for L and the initial state ν0 if this proesshas D([0,∞),N )-trajetories, Prob(X(0) = ν0) = 1 and for every f fromthe domain of L,

f(X(t)) − f(X(0)) −
t\
0

Lf(X(s)) dsis a martingale with respet to
F̂t = σ

(
X(s),

s\
0

h(X(r)) dr : s ≤ t, h ∈ B(N )
)
,where B(N ) denotes the set of bounded Borel funtions on N .Throughout this paper we omit the D([0,∞), E) and by the martingaleproblem we mean the D([0,∞), E) martingale problem. We will also speakof the (L, δν0

)-martingale problem, where δν0
is the Dira delta at the initialpoint. We will refer to L as the generator of the stohasti proess. Foran extensive guidebook to stohasti proesses and martingale problems werefer to [17℄.We formulate an individual version of the model in the setting of purejump proesses. We de�ne a generator L(1) as a jump operator

(4) L(1)f(ν)

=
N∑

i=1

[
D(mi)

ε2

d∑

k=1

[f(ν − δxi,mi
+ δxi+εk,m) + f(ν − δxi,mi

+ δxi−εk,m)]

+ miλb(mi)f(ν − δxi,mi
+ δxi,mi+1) + miλm(mi)f(ν − δxi,mi

+ δxi,mi−1)

+ λd(mi)f(ν − δxi,mi
)

+ λf (mi)

mi∑

m=1

p(mi, m)f(ν − δxi,mi
+ δxi,m + δxi,mi−m)

]

+
N∑

i,j=1

c(mi)c(mj)v(xi − xj)∑
k c(mk)

f(ν − δxi,mi
− δxj ,mj

+ δ(xi+xj)/2,mi+mj
)

− λ(ν)f(ν),
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where

λ(ν) =

N∑

i=1

[
2d D(mi)

ε2
+ miλb(mi) + miλm(mi) + λd(mi) + λf (mi)

]

+

N∑

i,j=1

c(mi)c(mj)v(xi − xj)∑
k c(mk)and εi is a d-dimensional vetor with ε at the ith plae and zeros elsewhere. Inthis setion we assume that ε = 1, but in the next setion we use a modi�edform of the operator L(1) with ε = 1/N . We assume that the funtions

D(m), mλm(m), mλb(m), λf (m), λd(m) , c(m) and v(x − x) are boundedand ontinuous; moreover c(m) > 0 for all m ∈ [0,∞). Sine the probabilityof extintion of the proess is nonzero, we must also assume that for ν = 0we have L(1)f(ν) = 0 (this means that after extintion the proess remainsin the state ν(t) = 0).Proposition 1. For any initial state ν0 ∈ N there exists a unique so-lution {ν(1)(t)}t≥0 of the martingale problem for (L(1), δν0
).Proof. The operator L(1) given by (4) is a jump operator with unboundedjump rate (for the theory of jump proesses see [18℄ or [17℄). To obtain theexistene of the proess generated by L(1) we onstrut an approximatingsequene of stohasti proesses that are solutions of stopped martingaleproblems with operators with bounded jump rates. For any n ∈ N de�ne

N≤n = {ν ∈ N : 〈1, ν〉 ≤ n}. Notie that the jump rate satis�es(5) λ(ν) ≤ Cnon N≤n with some onstant C. That is why the solution of the stoppedmartingale problem for (L(1), δν0
,N≤n) oinides with the solution of thestopped martingale problem with the operator bounded by Cn. Moreover,the stopping time

τn = inf{t ≥ 0 : ν(t) 6∈ N≤n or ν(t−) 6∈ N≤n}is suh that
τn ≥

n∑

k=1

∆k

Cn

n→∞
−−−→ ∞,where {∆n}n∈N is a sequene of i.i.d. random variables, exponentially dis-tributed with intensity one. We use Proposition 3.2 in Chapter 4 of [17℄ toend the proof.Remark 1. Although the desription of the proess is now formulated inthe language of jump proesses, in the subsequent setions we will use a dif-ferent setting. That is why we will write the operator (4) in a di�erent form.Compare it with the approah used in papers on superproesses (f. [16℄,
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[17℄). Let C2

b be the spae of all bounded funtions with bounded derivativesup to seond order and C2
b,pos = {g : R

d×R
+ → R : g ∈ C2

b and inf g > 0}.For a given g ∈ C2
b,pos we de�ne a funtion Fg ∈ Cb(M) (bounded andontinuous on M) by the formula Fg(ν) = exp [〈log g, ν〉] . The generatingoperator L(1) on the funtions Fg(ν) has the form(6) L(1)Fg(ν) = exp [〈log g, ν〉]

[〈
L(1)g + B(1)g + Φ(1)g

g
, ν

〉
+ C(g, ν)

]
,where

L(1)g(x, m) =
D(mi)

ε2

d∑

k=1

[g(x + εk, m) + g(x − εk, m) − 2g(x, m)]

is the operator responsible for the spatial movement;
B(1)g(x, m) = m[λm(m)g(x, m − 1) + λb(m)g(x, m + 1)

− (λm(m) + λb(m))g(x, m)]is the operator of birth and death inside aggregates;
Φ(1)g(x, m) = λf (m)

[ m∑

m=1

g(x, m − m)g(x, m)p(1)(m, m) − g(x, m)
]

+ λd(m)(1 − g(x, m))is responsible for the fragmentation and death of whole aggregates; and
C(g, ν) =

\\\\ c(m)c(m)TT
c(m) ν(dx dm)

v(x − x)

×

[
g((x + x)/2, m + m)

g(x, m)g(x, m)
− 1

]
ν(dx dm) ν(dxdm)is the oagulation term.4. The limit passage. Now, we onstrut a sequene of resaled pro-esses {ν(N)(t)}t≥0, N ∈ N, based on {ν(1)(t)}t≥0 that will approximate someontinuous model. Assume that the number of partiles at time 0 inreasesto in�nity as N → ∞ and assume that the mass of eah ell is 1/N . The

Nth proess ν(N) has values in the spae
NN =

{
1

N

k∑

i=1

δxi,ni/N : k ∈ N,

(
xi,

ni

N

)
∈ R

d ×
1

N
N

}
.

From now on we set m = n/N . The resaling means that the proess Nν(N)behaves like ν(1) with appropriate oe�ients. Namely:
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• The birth or death of a ell means the hange of mass by a fator of

1/N .
• We set the step of the random walk to be ε = 1/N .
• The result of fragmentation of an aggregate of size m = n/N may haveany mass in 1/N, 2/N, . . . , (n−1)/N ; so we assume that the oe�ients

p(N) are suh that ∑n
n=1 p(N)(n/N, n/N) = 1; moreover, we assumethat there exists a ontinuous funtion q : R

+ × R
+ → R

+ suh thatfor all m, m ∈ R
+ with m ≤ m and all sequenes (nN ), (nN ) of positiveintegers suh that nN/N → m and nN/N → m as N → ∞ we have

Np(N)(nN/N, nN/N) → q(m, m) and this onvergene is uniform,
• the oagulation term remains unhanged.Notie that the funtion q satis�es Tm0 q(m, m) dm = 1 for m > 0 and theprobabilisti kernel P (m, A) :=

T
A q(m, m) dm will desribe the distribu-tion of the size of the aggregates after fragmentation if the aggregate beforefragmentation has size m.So the operator governing this Nth approximation has the form

L(N)Fg(Nν) = exp [〈log g, Nν〉](7)
×

[〈
L(N)g + B(N)g + Φ(N)g

g
, Nν

〉
+ C(g, Nν)

]
,

with L(N) equal to L(1) (at m = n/N instead of n) and with
B(N)g

(
x,

n

N

)
= n

(
λm

(
n

N

)
g

(
x,

n − 1

N

)
+ λb

(
n

N

)
g

(
x,

n + 1

N

)

−

(
λm

(
n

N

)
+ λb

(
n

N

))
g

(
x,

n

N

))
,

Φ(N)g

(
x,

n

N

)

= λf

(
n

N

)[ n∑

n=1

g

(
x,

n − n

N

)
g

(
x,

n

N

)
p(N)

(
n

N
,

n

N

)
− g

(
x,

n

N

)]

+ λd

(
n

N

)(
1 − g

(
x,

n

N

))
.

The sequene of resaled proesses onverges weakly to some measure-valued stohasti proess (governed also by a martingale problem), but itturns out that the limit proess desribes a deterministi behaviour.Theorem 1. Let ν(N)(0)
w
→ ν0. The sequene of proesses ν(N) on-verges weakly in distribution to the deterministi measure-valued proess
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uniquely determined by the equation(8) 〈h, ν(t)〉 − 〈h, ν0〉 =

t\
0

[〈(L + B + Φ)h, ν(s)〉 + C(h, ν(s))] dsfor all h ∈ C2
b, with

Lh(x, m) = D(m)∆xh(x, m),(9)
Bh(x, m) = m(λb(m) − λm(m))

∂

∂m
h(x, m),(10)

Φh(x, m) = λf (m)
[
2

m\
0

h(x, m)q(m, m) dm − h(x, m)

](11)
− λd(m)h(x, m),

C(h, ν) =
\\\\c(m)c(m)v(x − x)TT

c(m) ν(dx dm)
(12)

× (h(x + x/2, m + m) − h(x, m) + h(x, m))

× ν(dx dm) ν(dxdm).The limit proess ν has values in the spae M.5. Proof of Theorem 1. The sheme of the proof is as follows. Firstlywe de�ne a new operator L (see (16)). Next we prove that if the proess
{ν(t)}t≥0 solves the (L, ν0)-martingale problem then it is a deterministievolution of measure given by (8); moreover it is unique (i.e. there exists atmost one solution of the (L, ν0)-martingale problem). Then we hek thatthe sequene ν(N) onverges to the solution of this problem.In the proof we will use the following auxiliary theorem of Kurtz andEthier:Proposition 2 ([17, Corollary 8.16, Chapter 4℄). Let (E, r) be a Polishspae, A ⊂ Cb(E) × Cb(E) be an operator (possibly multivalued), and P0 bea probability measure on E. Suppose that the martingale problem for (A, P0)has at most one solution. For N = 1, 2, . . . , suppose that YN is a progressiveMarkov proess in a Polish spae EN orresponding to a measurable ontra-tion semigroup with generator AN and ηN : EN → E is Borel measurable.Let XN = ηN ◦YN . Assume that : the distribution of XN (0) onverges weaklyto P0 as N → ∞, XN satis�es the ompat ontainment ondition, and thelosure of the linear span of D(A) ontains an algebra that separates points.If , moreover , for all (f, g) ∈ A and T > 0 there exist sequenes of funtions
(fN , gN ) ∈ AN and sets ΓN ⊂ EN suh that :(i) lim

N→∞
Prob({YN (t) ∈ ΓN , 0 ≤ t ≤ T}) = 1,(ii) sup

N
‖fN‖ < ∞,
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(iii) lim

N→∞
sup

y∈ΓN

|f ◦ ηN (y)− fN (y)| = lim
N→∞

sup
y∈ΓN

|g ◦ ηN (y)− gN (y)| = 0,then there exists a solution X of the (A, P0) martingale problem and XNonverges weakly in distribution to X. Here ‖ · ‖ is the maximum norm in
Cb(E).Remark 2. By the ompat ontainment ondition we mean that forevery ε > 0 and T > 0 there is a ompat set Γε,T suh that

inf
N

Prob{XN (t) ∈ Γε,T , 0 ≤ t ≤ T} ≥ 1 − ε.Moreover we need some lemmas:Lemma 1. If the proess {ν(t)}t≥0 solves the (L(N), δν0
)-martingale prob-lem (where L(N) is given by (7)) then(13) Prob( sup

0≤t≤T
〈1, ν(t)〉 ≥ a) ≤

〈1, ν0〉

a
exp[T (‖λf − λd‖ + ‖cv‖)].The proof is based on that of Lemma 4.1 in [17, Chapter 9℄. Although itrequires some alulation, it is not very interesting, so we omit it here.Lemma 2. The operator L+B+Φ generates a strongly ontinuous semi-group on C0(R

d × R
+).Proof. The operator L + B generates a strongly ontinuous semigroupon C0(R

d × R
+) (f. [28℄) and Φ is a bounded operator on Cb(R

d × R
+), sothe Phillips perturbation theorem [12℄ gives the result.Let us write C(h, ν) as 〈h, Ĉν〉, where

Ĉν(A) =
\\\\c(m)c(m)v(x − x)TT

c(m) ν(dx dm)

× [1A((x + x)/2, m + m) − 1A(x, m) − 1A(x, m)] ν(dx dm) ν(dxdm).One an prove that for every measure ν ∈ M we have Ĉν ∈ M.Lemma 3. Let h ∈ C(Rd × R
+) be suh that ‖h‖ ≤ 1 and let ν, µ ∈ M.Then(14) |〈h, Ĉν − Ĉµ〉| ≤ ‖µ − ν‖TV.Here ‖ν‖TV denotes the total variation norm of the measure ν (f. e.g.[17℄).Proof. Set α(ν) =

TT
c(m) ν(dx dm) and

ĥ = h

(
x + x

2
, m + m

)
− h(x, m) − h(x, m).
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Fix µ ∈ M \ {0} and let ε = ‖c‖−1α(µ). Then α(ν) ≤ 2α(µ) for ‖ν − µ‖TV
≤ ε. Moreover

|〈h, Ĉν − Ĉµ〉|

=

∣∣∣∣
(α(µ) − α(ν))

α(ν)α(µ)

\\\\
c(m)c(m)v(x − x)ĥ ν(dx dm) ν(dxdm)

+
1

α(µ)

\\\\
c(m)c(m)v(x − x)ĥ (ν + µ)(dx dm) (ν − µ)(dx dm)

∣∣∣∣

≤ 3‖v‖
|α(µ) − α(ν)|

α(ν)α(µ)
α(ν)α(ν)

+
3‖v‖ ‖c‖α(µ + ν)

α(µ)

\\
fh,µ,ν(x, m) (ν − µ)(dx dm),where

fh,µ,ν(x, m) =
\\c(m)c(m)v(x − x)

3‖v‖ ‖c‖α(µ + ν)
ĥ(ν + µ)(dx dm).Notie that fh,µ,ν is bounded by 1. Therefore Tfh,µ,ν d(µ − ν) ≤ ‖µ − ν‖TV.Thus, going on with the above alulations, for ‖ν − µ‖TV ≤ ε we have

|〈h, Ĉν − Ĉµ〉| ≤ 3‖v‖
2α(µ)

α(µ)
‖c‖ ‖ν − µ‖TV(15)

+3‖v‖ ‖c‖
3α(µ)

α(µ)
‖ν − µ‖TV

≤ 15‖v‖ ‖c‖ ‖ν − µ‖TV.Let us now take arbitrary measures µ, ν ∈ M\{0}. Let µt = (1−t)µ+tνand ε = ‖c‖−1 inf0≤t≤1 α(µt). Choose an n suh that ‖ν − µ‖TV/n < ε. Frominequality (15) it follows that
|〈h, Ĉµi/n − Ĉµ(i−1)/n〉| ≤ 15‖v‖ ‖c‖ ‖µi/n − µ(i−1)/n‖TVfor i = 1, . . . , n. Therefore

|〈h, Ĉν − Ĉµ〉| ≤
n∑

i=1

|〈h, Ĉµi/n − Ĉµ(i−1)/n〉|

≤
n∑

i=1

15‖v‖ ‖c‖ ‖µi/n − µ(i−1)/n‖TV

≤ 15‖v‖ ‖c‖ ‖ν − µ‖TV.Proof of Theorem 1. De�ne the operator(16) L[exp[−〈h, ν〉]] = exp[−〈h, ν〉][〈−Lh− Bh − Φh, ν〉 + C(h, ν)]with L, B, Φ and C given by (9)�(12) in Setion 4.
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Assume that {ν(t)}t≥0 solves the (L, ν0)-martingale problem. This meansthat(17) E

[
e−〈h,ν(t)〉 − e−〈h,ν(s)〉 −

t\
s

L[e−〈h,ν(r)〉] dr
∣∣∣ Fs

]
= 0

for all h ∈ C2
b. Take h = θh and di�erentiate with respet to θ; setting now

θ = 0 we get
E

[
〈h, ν(s)〉 − 〈h, ν(t)〉 +

t\
s

[〈(L + B + Φ)h, ν(r)〉 + C(h, ν(r))] dr
∣∣∣ Fs

]
= 0.That means that

〈h, ν(t)〉 = 〈h, ν0〉(18)
+

t\
0

[〈(L + B + Φ)h, ν(s)〉 + C(h, ν(s))] ds + M(t),where M(t) is a Pν0
-martingale. From the It� formula (see e.g. [19℄) we have

e−〈h,ν(t)〉 − e−〈h,ν0〉 −
t\
0

e−〈h,ν(s)〉[〈Lh + Bh + Φh, ν(r)〉 + C(h, ν(r))] dr

=

t\
0

e−〈h,ν(s)〉 dM(s) +
1

2

t\
0

e−〈h,ν(s)〉 d〈M〉(s),where 〈M〉 is the quadrati variational proess of M . We know that the lefthand side is a martingale with mean value 0 and the �rst integral on theright hand side has the same property. Therefore the integral
t\
0

e−〈h,ν(s)〉 d〈M〉(s)is also a martingale with mean value 0. But it is the integral of a nonnegative,nontrivial funtion with respet to a quadrati variational proess, whih isinreasing. Thus, sine its mean value is 0, we know that 〈M〉(s) = 0. Thismeans that also M(s) = 0. Therefore (18) implies that ν(t) satis�es (8) forall h ∈ C2
b.Now we prove that this solution is unique. Assume that the (nonrandom)right ontinuous family {ν(t)} of measures satis�es (8) and ν(0) = ν0. Itfollows from (8) that 〈h, ν(t)〉 is di�erentiable as a funtion of time, thereforethis equation an be rewritten as(19) ∀h∈C2

b

d

dt
〈h, ν(t)〉 = 〈(L + B + Φ)h, ν(s)〉 + 〈h, Ĉν(s)〉.
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Fix h0 ∈ C2

0 suh that ‖h‖ ≤ 1. By Lemma 2 the evolution equation
(20) 





dh

dt
= (L + B + Φ)h,

h(0) = h0,has a unique solution. Notie that this solution satis�es ‖h(t)‖ ≤ ‖h0‖eat ≤
eat for some a > 0 that is independent of h0. Sine h0 ∈ D(L+B +Φ) ⊂ C2

0 ,we also have h(t) ∈ C2
0 for all t > 0. Thus for any ν ∈ M we an write(21) d

dt
〈h(t), ν〉 = 〈(L + B + Φ)h(t), ν〉.Using (19) and (21) we an write(22) ∂

∂s
〈h(t − s), ν(s)〉 = 〈h(t − s), Ĉν(s)〉.Integrating both sides of (22) with respet to s we get(23) 〈h0, ν(t)〉 = 〈h(t), ν0〉 −

t\
0

〈h(t − s), Ĉν(s)〉 ds.Now assume that {ν(t)}t≥0 and {µ(t)}t≥0 satisfy (8) with the same ini-tial ondition ν(0) = µ(0) = ν0. Then, using the above alulations andLemma 3, we have
〈h0, ν(t) − µ(t)〉 =

t\
0

〈h(t − s), Ĉµ(s) − Ĉν(s)〉 ds

= eat
t\
0

〈h(t − s)e−at, Ĉµ(s) − Ĉν(s)〉 ds

≤ eat
t\
0

‖µ(s) − ν(s)‖TV ds.Reall that this is valid for any h0 ∈ C2
0 . Hene(24) ‖ν(t) − µ(t)‖TV ≤ eat
t\
0

‖µ(s) − ν(s)‖TV ds,and from the Gromwall inequality µ(t) = ν(t) for all t ≥ 0.Our aim now is to prove that the sequene of the proesses ν(N) onvergesto a solution of the (L, ν0)-martingale problem. In order to do it, we hek theassumptions of Proposition 2. We have already heked that this martingaleproblem has at most one solution. To prove the ompat ontainment of thesequene we will hange our spae a little: namely we replae R
d ×R

+ by itsompati�ation Ê = (Rd ×R
+)∪{∞} and so the proesses XN take valuesin the spae M̂ = M(Ê) of all �nite Borel measures on the ompati�ation
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of R

d × R
+. Observe how our situation �ts into the frame of Proposition 2:In our ase E = M̂ and we an onsider EN = NN as subsets of Ê so that

XN = µ(N) oinides with YN and ηN is just the identity. For the ompatontainment ondition we use the fat that the set {µ : 〈1, µ〉 ≤ M} isompat in Ê. So by Lemma 1,
Prob(νN (t) ∈ {µ : 〈1, µ〉 ≤ M} for 0 ≤ t ≤ T )

≥ 1 −
〈1, ν0〉

a
eT (‖λf−λd‖+‖cv‖),whih proves the ompat ontainment.The family of funtions {e−〈h,ν〉 : h ∈ C2

b} is rih enough to separatepoints in M̂. Fix h ∈ Cb,pos. We now onstrut funtions FN suh that FNonverges to exp[−〈h, ν〉] and L(N)FN onverges to L exp[−〈h, ν〉]. Namely,let FN (ν) = exp[〈N log(1− h/N), ν〉] (for N su�iently large 1 − h/N > 0)and ΓN = NN . Obviously XN (t) ∈ ΓN for all t ≥ 0 and FN are uniformlybounded. Then
sup

ν∈NN

|FN (ν) − exp[−〈h, ν〉]|

≤ sup
ν∈NN

exp[−〈1, ν〉 inf h]|〈h + N log(1 − h/N), ν〉|

≤ sup
ν∈NN

exp[−〈1, ν〉 inf h]〈1, ν〉‖h − log(1 − h/N)−N‖

≤ sup
ν∈NN

C‖h − log(1 − h/N)−N‖
N→∞
−−−→ 0,where C is some onstant. Similar alulations show that(25) sup

ν∈NN

|L(N)FN (ν) − L[exp(−〈h, ν〉)]|
N→∞
−−−→ 0,whih ompletes the proof.6. Equation on densities. Consider the solution ν(t) of (8) and assumethat it is absolutely ontinuous with respet to the Lebesgue measure, i.e.

ν(t)(dx dm) = u(t, x, m) dx dm.Remark 3. Sine (8) implies uniqueness (f. proof of Theorem 1) andTheorem 2 will give us an absolutely ontinuous solution for any initialdensity, it su�es to assume that the initial measure ν0 in (8) is absolutelyontinuous.Then by simple alulations one an hek that (8) is the mild version ofthe equation
(26)

∂u(t, x, m)

∂t
= L∗u(t, x, m)+B∗u(t, x, m)+Φ∗u(t, x, m)+Cu(t, x, m),
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where

L∗f(x, m) = D(m)∆xf(x, m),(27)
B∗f(x, m) =

∂

∂m
[m(λm(m) − λb(m))f(x, m)],(28)

Φ∗f(x, m) = λf (m)
[
2

∞\
m

f(x, m)q(m, m) dm − f(x, m)
](29)

− λd(m)f(x, m),

Cf(x, m) =
\

Rd

m\
0

2d c(m − m)c(m)v(2(x − x))TT
c(m)f(x, m) dx dm

(30)
× f(2x − x, m − m)f(x, m) dmdx

−
\

Rd

∞\
0

2
c(m)c(m)v(x − x)TT
c(m)f(x, m) dx dm

× f(x, m)f(x, m) dm dx,where ∆x is the Laplae operator with respet to the spatial variable x.Theorem 2. Let D(m) > 0 and c(m) > 0 for m ≥ 0. For any u0 ∈
L1

+(Rd×R
+) there exists a unique solution u(t, x, m) ∈ L1

+(Rd×R
+) of (26)suh that u(0, x, m) = u0(x, m).Proof. The operator L∗ + B∗ generates a strongly ontinuous Markovsemigroup of linear operators on X = L1(Rd ×R

+), whih an be written inthe form(31) P (t)ϕ(x, m)

=






\
Rd

κ+(π−tm, m, x, x)ϕ(x, π−tm)
∂

∂m
π−tm dx for λ(m) > 0,\

Rd

κ0(t; m; x, x)ϕ(x, m) dx for λ(m) = 0,\
Rd

κ−(π−tm, m, x, x)ϕ(x, π−tm)
∂

∂m
π−tm dx for λ(m) < 0.

Notie that, beause λ is ontinuous, we an divide the half-line R
+ intointervals where λ < 0 or λ > 0 and plaes�single points or intervals�where

λ = 0. The term πtm is the solution of
d

dt
πtm = λ(πtm)with π0m = m and λ(m) = m[λm(m) − λb(m)]. The funtions κ+/0/− are
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de�ned by

κ+(τ0, τ1, x, x) =
1

√
4π
Tτ1

τ0

D(τ)
λ(τ) dτ

d
exp

(
−

|x − x|2

4
Tτ1

τ0

D(τ)
λ(τ) dτ

)
,

κ0(t; m; x, x) =
1

√
4πD(m) t

d
exp

(
−
|x − x|2

4D(m)t

)
,

κ−(τ0, τ1, x, x) =
1

√
4π
Tτ0

τ1

D(τ)
−λ(τ) dτ

d
exp

(
−

|x − x|2

4
Tτ0

τ1

D(τ)
−λ(τ) dτ

)
.

The terms κ+, κ0, and κ− have the following natural interpretation. Fun-tions κ+ and κ− are fundamental solutions of the non-autonomous, respe-tively, forward and bakward heat equation
λ(τ)

∂

∂τ
u(τ, x) = D(τ)∆u(τ, x),whereas κ0 is the fundamental solution of the autonomous heat equationwith onstant di�usion D(m).Sine λf , λd and p are bounded, Φ∗ is a bounded linear operator on X.Thus, by the Phillips perturbation theorem, the operator L∗ + B∗ + Φ∗generates a strongly ontinuous semigroup of bounded positive operatorson X.One an prove that the operator C is Lipshitzian on X+ = L1

+(Rd×R
+).This proof is based on that of Theorem 1 in [4℄ and is similar to the proof ofLemma 3. The rest of the proof of the existene of the semigroup generatedby (26) is a simple onsequene of the method of variation of parameters(see e.g. [27℄).Remark 4. We should underline that (26) is a fragmentation-oagula-tion equation, whih, aording to Theorem 2, has a unique solution thatexists for all positive time. This feature distinguishes (26) from physialoagulation equations whih do not have global solutions. This surprisingproperty of (26) results from the speial form of the oagulation term (30),whih is homogeneous with respet to f .
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