On Functions with the Cauchy Difference Bounded by a Functional

by

Włodzimierz FECHNER

Presented by Andrzej LASOTA

Summary. K. Baron and Z. Kominek [2] have studied the functional inequality

\[f(x + y) - f(x) - f(y) \geq \phi(x, y), \quad x, y \in X, \]

under the assumptions that \(X \) is a real linear space, \(\phi \) is homogeneous with respect to the second variable and \(f \) satisfies certain regularity conditions. In particular, they have shown that \(\phi \) is bilinear and symmetric and \(f \) has a representation of the form

\[f(x) = \frac{1}{2} \phi(x, x) + L(x) \]

for \(x \in X \), where \(L \) is a linear function.

The purpose of the present paper is to consider this functional inequality under different assumptions upon \(X, f \) and \(\phi \). In particular we will give conditions which force biadditivity and symmetry of \(\phi \) and the representation

\[f(x) = \frac{1}{2} \phi(x, x) - A(x) \]

for \(x \in X \), where \(A \) is a subadditive function.

Let \((X, +)\) be an abelian group. We consider the functional inequality

\[f(x + y) - f(x) - f(y) \geq \phi(x, y), \quad x, y \in X, \]

where \(\phi: X \times X \to \mathbb{R} \) and \(f: X \to \mathbb{R} \) are unknown mappings.

It is easy to check that if \(\phi: X \times X \to \mathbb{R} \) is biadditive and symmetric, \(A: X \to \mathbb{R} \) is subadditive and \(f: X \to \mathbb{R} \) is defined by the formula

\[f(x) := \frac{1}{2} \phi(x, x) - A(x) \]

for \(x \in X \), then (1) holds. We are going to provide conditions under which the converse implication is valid.

Proposition. If \(f: X \to \mathbb{R} \) and \(\phi: X \times X \to \mathbb{R} \) satisfy (1) and

\[\phi(x, -x) \geq -\phi(x, x), \quad x \in X, \]

then: (a) \(f(0) \leq 0 \); (b) \(f(x) + f(-x) \leq \phi(x, x) \) for \(x \in X \); (c) \(f(2x) \geq 3f(x) + f(-x) \) for \(x \in X \).

2000 Mathematics Subject Classification: Primary 39B62, 39B72.

Key words and phrases: functional inequality; subadditive, quadratic and biadditive functionals.

[265]
Proof. The assumption (2) implies that \(\phi(0,0) \geq 0 \); thus applying (1) with \(x = 0 \) and \(y = 0 \) we get \(f(0) \leq 0 \). Using this and substituting \(y := -x \) in (1) we derive (b). Substituting \(y := x \) in (1) and using (b) proves (c). This completes the proof.

In what follows we make use of a result of Karol Baron (see S. Rolewicz [4, Lemma 5.7]). A careful inspection of the original proof allows us to weaken certain assumptions of this lemma. The original result reads as follows.

Lemma (K. Baron). Assume that \(f: X \to \mathbb{R} \) and \(\phi: X \times X \to \mathbb{R} \) satisfy (1). If \(f \) is even, \(f(2x) = 4f(x) \) and \(\phi(x,\cdot) \) is odd for every \(x \in X \), then there exists a biadditive and symmetric functional \(B: X \times X \to \mathbb{R} \) such that \(\phi = 2B \) and \(f(x) = B(x,x) \) for every \(x \in X \).

We have the following modification of this lemma.

Lemma 1. Assume that \(f: X \to \mathbb{R} \) and \(\phi: X \times X \to \mathbb{R} \) satisfy (1). If

\begin{align}
\label{eq:phi_inequality}
\phi(x,-y) &\geq -\phi(x,y), \quad x,y \in X, \\
\label{eq:f_inequality}
f(2x) &\leq 4f(x), \quad x \in X,
\end{align}

then

\[f(x) = \frac{1}{2} \phi(x,x), \quad x \in X.\]

Moreover, \(\phi \) is biadditive and symmetric.

Proof. Using the inequality (c) of the Proposition and (4) we see that \(f(x) \geq f(-x) \) for \(x \in X \), which proves that \(f \) is even. Setting \(-y\) instead of \(y \) in (1) we obtain

\[f(x-y) - f(x) - f(-y) \geq \phi(x,-y) \geq -\phi(x,y), \quad x,y \in X.
\]

Adding this to (1) and using the evenness of \(f \) leads to

\[f(x+y) + f(x-y) \geq 2f(x) + 2f(y), \quad x,y \in X.
\]

Fix \(u,v \in X \). Applying the above inequality with \(x = u + v \) and \(y = u - v \) we infer that

\[4f(u) + 4f(v) \geq f(2u) + f(2v) \geq 2f(u+v) + 2f(u-v), \quad u,v \in X.
\]

Therefore \(f \) is a quadratic function, i.e.

\[f(x+y) + f(x-y) = 2f(x) + 2f(y), \quad x,y \in X.
\]

So, there exists a biadditive and symmetric functional \(B: X \times X \to \mathbb{R} \) such that \(f(x) = B(x,x) \) for \(x \in X \) (see e.g. J. Aczél & J. Dhombres [1, Chapter 11, Proposition 1]). It is easy to check that

\[B(x,y) = \frac{1}{2} [f(x+y) - f(x) - f(y)], \quad x,y \in X.
\]
Now, assumption (3) and the biadditivity of B imply that $2B = \phi$. This completes the proof.

Theorem 1. Assume that $f: X \to \mathbb{R}$ and $\phi: X \times X \to \mathbb{R}$ satisfy (1), (3) and
\[\limsup_{n \to \infty} \frac{1}{4^n} \phi(2^n x, 2^n x) < \infty, \quad x \in X, \]
(5)
\[\liminf_{n \to \infty} \frac{1}{4^n} \phi(2^n x, 2^n y) \geq \phi(x, y), \quad x, y \in X. \]

If f is even, then there exists a subadditive function $A: X \to \mathbb{R}$ such that
\[f(x) = \frac{1}{2} \phi(x, x) - A(x), \quad x \in X. \]
Moreover, ϕ is biadditive and symmetric.

Proof. Fix an $x \in X$ and a positive integer n. By the evenness of f and the Proposition we get
\[\frac{1}{4^n-1} f(2^{n-1} x) \leq \frac{1}{4^n} f(2^n x) \leq \frac{1}{4^n} \cdot \frac{1}{2} \phi(2^n x, 2^n x). \]
The first part of the assumption (5) implies that the right-hand side of this inequality is bounded by a real constant which does not depend on n. Therefore the formula
\[Q(x) := \lim_{n \to +\infty} \frac{1}{4^n} f(2^n x), \quad x \in X, \]
correctly defines a map $Q: X \to \mathbb{R}$. Moreover, $Q(2x) = 4Q(x)$ for $x \in X$ and the following inequality is satisfied:
\[Q(x + y) - Q(x) - Q(y) = \lim_{n \to \infty} \left[\frac{1}{4^n} f(2^n x + 2^n y) - \frac{1}{4^n} f(2^n x) - \frac{1}{4^n} f(2^n y) \right] \]
\[\geq \liminf_{n \to \infty} \frac{1}{4^n} \phi(2^n x, 2^n y) \geq \phi(x, y), \quad x, y \in X. \]

Lemma 1 states that ϕ is biadditive and symmetric and $Q(x) = \frac{1}{2} \phi(x, x)$ for $x \in X$. In particular $Q(x + y) - Q(x) - Q(y) = \phi(y, x)$ for $x, y \in X$. From this and (1), it is easy to check that $A := Q - f$ is subadditive. This completes the proof.

Corollary 1. Assume that $f: X \to \mathbb{R}$ and $\phi: X \times X \to \mathbb{R}$ satisfy (1), (3), (5) and
\[\phi(-x, -y) = \phi(x, y), \quad x, y \in X. \]
(6)
Then there exists a subadditive function $A: X \to \mathbb{R}$ such that
\[f(x) = \frac{1}{2} \phi(x, x) - A(x), \quad x \in X. \]
Moreover, ϕ is biadditive and symmetric.
Proof. Define $h: X \to \mathbb{R}$ by $h(x) := \frac{1}{2}(f(x) + f(-x))$ for $x \in X$. Assumption (6) implies that

$$h(x + y) - h(x) - h(y) \geq \phi(x, y), \quad x, y \in X.$$

Using Theorem 1 with f replaced by h we get the biadditivity and symmetry of ϕ. Now, one may easily check that the map $A: X \to \mathbb{R}$ given by $A(x) := \frac{1}{2}\phi(x, x) - f(x)$ for $x \in X$ is subadditive. This completes the proof.

Now, we are going to provide conditions which, in particular, allow us to omit the assumption (6) and to weaken (5). We start with a lemma.

Lemma 2. If $f: X \to \mathbb{R}$ and $\phi: X \times X \to \mathbb{R}$ satisfy (1), (2) and f is odd then $f(2x) = 2f(x)$ and $\phi(x, x) = 0$ for $x \in X$. Moreover, if ϕ satisfies (3), then f is additive and $\phi = 0$.

Proof. Fix an $x \in X$. Since f is odd, we get

$$f(2x) - 2f(x) = -[f(-2x) - 2f(-x)] \leq -\phi(-x, -x) \leq \phi(-x, x) \leq f(-x + x) - f(-x) - f(x) = 0,$$

whence, again by the oddness of f, we obtain $f(2x) = 2f(x)$ for $x \in X$ and, in consequence, $\phi(x, x) = 0$ for $x \in X$.

Now, assume (3) and let $x, y \in X$. Using the assumption (3) and (1) twice we obtain

$$f(x - y) - f(x) - f(-y) \geq \phi(x, -y) \geq -\phi(x, y) \geq -f(x + y) + f(x) + f(y),$$

which means that

$$f(x + y) + f(x - y) \geq 2f(x).$$

Interchanging the roles of x and y we obtain

$$f(y + x) + f(y - x) \geq 2f(y).$$

Summing up these two inequalities we derive the superadditivity of f, which together with its oddness implies that f is additive and $\phi \leq 0$. Using this and (3) we finally get $\phi = 0$. This completes the proof.

The following lemma provides sufficient conditions for the function f to satisfy the assumption (4).

Recall that a group X is called *uniquely 2-divisible* if the map $X \ni x \mapsto x + x \in X$ is bijective.

Lemma 3. Assume that X is uniquely 2-divisible, $f: X \to \mathbb{R}$ and $\phi: X \times X \to \mathbb{R}$ satisfy (1), (2) and

$$\phi(2x, 2x) \leq 4\phi(x, x), \quad x \in X.$$

If f is nonnegative and even, then $f(x) = \frac{1}{2}\phi(x, x)$ for $x \in X$.

Proof. By the Proposition, for every \(x \in X \) and every positive integer \(n \) we have \(4^n f(x/2^n) \geq 4^{n+1} f(x/2^{n+1}) \geq 0 \). So, the sequence \((4^n f(x/2^n))_{n \in \mathbb{N}} \) is pointwise convergent. In particular, \(\lim_{n \to \infty} 2^n f(x/2^n) = 0 \) for every \(x \in X \).

Now, fix an \(x \in X \). Using (1) and (7), by induction, we get
\[
2^k f(\frac{x}{2^{k-1}}) - 2^{k+1} f(\frac{x}{2^k}) \geq 2^k \phi\left(\frac{x}{2^k}, \frac{x}{2^k}\right) \geq \frac{1}{2^k} \phi(x, x)
\]
for all \(k \in \mathbb{N} \). Summing up these inequalities for \(k \in \{1, \ldots, n\} \) we get
\[
2f(x) - 2^{n+1} f(\frac{x}{2^n}) \geq \sum_{k=1}^{n} \frac{1}{2^k} \phi(x, x), \quad n \in \mathbb{N}.
\]
Letting \(n \) tend to \(+\infty \) yields \(2f(x) \geq \phi(x, x) \). Since the Proposition provides the opposite inequality, the proof is complete.

The following result yields an analogue of Corollary 1 in the paper [2] of K. Baron and Z. Kominek.

Theorem 2. Assume \(X \) to be uniquely 2-divisible. If \(f: X \to \mathbb{R} \) and \(\phi: X \times X \to \mathbb{R} \) satisfy (1), (3), (7) and
\[
f(x) + f(-x) \geq 0, \quad x \in X,
\]
then there exists an additive function \(a: X \to \mathbb{R} \) such that
\[
f(x) = \frac{1}{2} \phi(x, x) + a(x), \quad x \in X.
\]
Moreover, \(\phi \) is biadditive and symmetric.

Proof. Define \(h, a: X \to \mathbb{R} \) by \(h(x) := \frac{1}{2}[f(x) + f(-x)] \) and \(a(x) := \frac{1}{2}[f(x) - f(-x)] \), \(x \in X \). Clearly \(h \) is even whereas \(a \) is odd. Next, define \(\phi_1: X \times X \to \mathbb{R} \) by \(\phi_1(x, y) := \frac{1}{2} [\phi(x, y) + \phi(-x, -y)] \) for \(x, y \in X \). It is easy to check that \(h \) and \(\phi_1 \) satisfy the assumptions of Lemma 3. So, \(h(x) = \frac{1}{2} \phi_1(x, x) \) for \(x \in X \). Now, observe that the assumptions of Lemma 1 are satisfied. Therefore \(\phi_1 \) is biadditive and symmetric and, in consequence,
\[
h(x + y) - h(x) - h(y) = \phi_1(x, y), \quad x, y \in X.
\]
Define \(\phi_2: X \times X \to \mathbb{R} \) by \(\phi_2 := \phi - \phi_1 \). Note that \(\phi_2(x, -y) \geq -\phi_2(x, y) \) for \(x, y \in X \) and
\[
a(x + y) - a(x) - a(y) \geq \phi_2(x, y), \quad x, y \in X.
\]
Now, Lemma 2 applied for \(f = a \) and \(\phi = \phi_2 \) states that \(a \) is additive and \(\phi_2 = 0 \), i.e. \(\phi = \phi_1 \). This completes the proof.

A similar reasoning allows us to derive the following corollary from Lemmas 2 and 3.

Corollary 2. Assume \(X \) to be uniquely 2-divisible. If \(f: X \to \mathbb{R} \) and \(\phi: X \times X \to \mathbb{R} \) satisfy (1), (2), (7) and (8), then there exists an odd function
a: \(X \rightarrow \mathbb{R} \) such that \(a(2x) = 2a(x) \) for \(x \in X \) and

\[
f(x) = \frac{1}{2} \phi(x, x) + a(x), \quad x \in X.
\]

Moreover, \(\phi(2x, 2x) = 4\phi(x, x) \geq 0 \) for \(x \in X \).

Proof. Define \(a, h, \phi_1 \) and \(\phi_2 \) as in the previous proof. Lemma 3 implies that \(h(x) = \frac{1}{2} \phi_1(x, x) \) and \(h(2x) = 4h(x) \) for \(x \in X \). We are going to show that \(\phi_2 \) satisfies (2). Since \(\phi_2 = \phi - \phi_1 \), it suffices to prove that \(\phi_1(x, -x) = -\phi_1(x, x) \) for \(x \in X \). But

\[
-2h(x) = h(-x + x) - h(-x) - h(x) \geq \phi_1(-x, x) \geq -\phi_1(-x, -x)
\]

\[
= -2h(x),
\]

which is what we wanted. Lemma 2 implies that \(a(2x) = 2a(x) \) and \(\phi_2(x, x) = 0 \), i.e. \(h(x) = \frac{1}{2} \phi_1(x, x) = \frac{1}{2} \phi(x, x) \) for \(x \in X \). This completes the proof.

We end this paper with some additional remarks.

Remark 1. If \(c \in (0, \infty) \), \(f : \mathbb{R} \rightarrow \mathbb{R} \) is constant and equal to \(-c\), \(\phi : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \) is constant and equal to \(c \), then (1), (3) and (7) are satisfied. So, the assumption (4) in Lemma 1 cannot be omitted, the assumption (5) in Theorem 1 and Corollary 1 cannot be replaced by (7), the nonnegativity of \(f \) in Lemma 3 cannot be replaced by its boundedness, and the assumption (8) in Theorem 2 cannot be omitted.

Remark 2. Let \(\varphi : \mathbb{R} \rightarrow \mathbb{R} \) be a nonzero and even function which satisfies the equality

\[
\varphi(2t) = 2\varphi(t), \quad t \in \mathbb{R}
\]

(see e.g. M. Kuczma, B. Choczewski and R. Ger [3] for examples of such functions). Define \(f : \mathbb{R} \rightarrow \mathbb{R} \) and \(\phi : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \) by

\[
f(x) := (\varphi(x))^2, \quad x \in \mathbb{R},
\]

\[
\phi(x, y) := f(x + y) - f(x) - f(y), \quad x, y \in \mathbb{R}.
\]

Then inequality (1) is satisfied, and \(f \) is even, nonnegative and satisfies (4). Moreover, \(\phi \) satisfies (2), (5) and (6). So, in Lemma 1, Theorems 1 and 2 and Corollary 1, (3) cannot be replaced by (2).

Remark 3. Let \((X; \cdot \| \cdot \|) \) be a normed linear space. Corollary 1 implies that the inequality

\[
f(x + y) - f(x) - f(y) \geq \|x\| \cdot \|y\|, \quad x, y \in X,
\]

has no solution. In fact, the function \(\phi(x, y) := \|x\| \cdot \|y\|, \quad x, y \in X \), satisfies (3), (5) and (6), but \(\phi \) fails to be biadditive.

In this inequality \(X \) may stand for an abelian group and the norm can be replaced by any real function, which is nonzero, nonnegative, even and 2-homogeneous.
References

Włodzimierz Fechner
Institute of Mathematics
Silesian University
Bankowa 14
40-007 Katowice, Poland
E-mail: fechner@ux2.math.us.edu.pl

Received March 31, 2004;
received in final form August 3, 2004 (7391)