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Summary. K. Baron and Z. Kominek [2] have studied the functional inequality

f(x+y)—f(x)—f(y)2¢(z,y), ZL’,yEX,
under the assumptions that X is a real linear space, ¢ is homogeneous with respect
to the second variable and f satisfies certain regularity conditions. In particular, they

have shown that ¢ is bilinear and symmetric and f has a representation of the form

f(z) = 3¢(x,x) + L(z) for z € X, where L is a linear function.

The purpose of the present paper is to consider this functional inequality under dif-
ferent assumptions upon X, f and ¢. In particular we will give conditions which force
biadditivity and symmetry of ¢ and the representation f(z) = 1¢(z,z) — A(z) for z € X,
where A is a subadditive function.

Let (X, +) be an abelian group. We consider the functional inequality

where ¢: X x X — R and f: X — R are unknown mappings.

It is easy to check that if ¢: X x X — R is biadditive and symmetric,
A: X — R is subadditive and f: X — R is defined by the formula f(z) :=
$¢(z, 2)—A(z) for x € X, then (1) holds. We are going to provide conditions
under which the converse implication is valid.

PROPOSITION. If f: X — R and ¢: X x X — R satisfy (1) and
(2) o(x,—x) > —¢(z,x), z€X,
then: (a) f(0) < 0; (b) f(z) + f(—z) < ¢(z,2) for € X5 (c) f(22) =
3f(x) + f(—=z) for x € X.
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Proof. The assumption (2) implies that ¢(0,0) > 0; thus applying (1)
with z =0 and y = 0 we get f(0) < 0. Using this and substituting y := —x
in (1) we derive (b). Substituting y := x in (1) and using (b) proves (c).
This completes the proof.

In what follows we make use of a result of Karol Baron (see S. Rolewicz [4,

Lemma 5.7]). A careful inspection of the original proof allows us to weaken
certain assumptions of this lemma. The original result reads as follows.

LemMA (K. Baron). Assume that f: X — R and ¢: X x X — R sat-
isfy (1). If f is even, f(2z) = 4f(x) and ¢(x,-) is odd for every x € X, then
there exists a biadditive and symmetric functional B: X x X — R such that
¢ =2B and f(z) = B(x,x) for every x € X.

We have the following modification of this lemma.

LEMMA 1. Assume that f: X — R and ¢: X x X — R satisfy (1). If

(3) o(z,—y) 2 —o(z,y), x,y€X,
and

(4) f2r) <4f(x), weX,
then

Fz) = %gf)(:ﬂ,x}, veX.

Moreover, ¢ is biadditive and symmetric.

Proof. Using the inequality (c) of the Proposition and (4) we see that
f(z) > f(—=z) for € X, which proves that f is even. Setting —y instead of
y in (1) we obtain

fle—y) = f(@) = f(=y) = o(z,—y) = —o(z,y), x,yeX.
Adding this to (1) and using the evenness of f leads to
f@+y) + fla—y) 22f(x) +2f(y), =z yeX.
Fix u,v € X. Applying the above inequality with xt = u+v and y =u — v
we infer that

Af(w) +4f(v) > f(2u) + f(2v) > 2f(u+v) +2f(u —v), w,veE X.

Therefore f is a quadratic function, i.e.

fle+y)+ fl@—y)=2f(x) +2f(y), zyeX.
So, there exists a biadditive and symmetric functional B: X x X — R
such that f(x) = B(z,x) for x € X (see e.g. J. Aczél & J. Dhombres [1,
Chapter 11, Proposition 1]). It is easy to check that

Bla.y) = 5[l +y) — f@) )], wyeX.



Cauchy Difference 267

Now, assumption (3) and the biadditivity of B imply that 2B = ¢. This
completes the proof.

THEOREM 1. Assume that f: X — R and ¢: X x X — R satisfy (1), (3)
and

1
lim sup e o(2"x,2" 1) < o0, € X,
hmlnf—(b(2nx72ny) > ¢($,y), T,y € X.
n—oo 4m

If f is even, then there exists a subadditive function A: X — R such that

Fz) = %gb(az,x) ~A(), zEX.

Moreover, ¢ is biadditive and symmetric.

Proof. Fix an x € X and a positive integer n. By the evenness of f and
the Proposition we get

1 _ 1 1 1
e 127I0) < 1 f(2) < L 02, 20),

The first part of the assumption (5) implies that the right-hand side of
this inequality is bounded by a real constant which does not depend on n.
Therefore the formula

: 1 n
Q)= lm — f(2"), weX.
correctly defines a map @Q: X — R. Moreover, Q(2z) = 4Q(zx) for z € X
and the following inequality is satisfied:

QU +y) ~ Q) — Qy) = lim | - f(2"a +2"y) — 1 [(2"2) — 2 F(2")

1
> liminf — ¢(2"x,2"y) > ¢(z,y), =,y € X.

n—oo 4N

Lemma 1 states that ¢ is biadditive and symmetric and Q(z) = 3¢(z,z)

for x € X. In particular Q(z + y) — Q(z) — Q(y) = ¢(x,y) for z,y € X.
From this and (1), it is easy to check that A := @ — f is subadditive. This
completes the proof.

COROLLARY 1. Assume that f: X — R and ¢: X x X — R satisfy (1),
(3), (5) and

(6) ¢(_'T’_y) :¢(xay)a l“ayGX-
Then there exists a subadditive function A: X — R such that
1

Moreover, ¢ is biadditive and symmetric.
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Proof. Define h: X — R by h(z) := (f(z) + f(—2)) for z € X. As-
sumption (6) implies that
Wz +y) = hz) = h(y) > o(z,y), 2,y X.

Using Theorem 1 with f replaced by h we get the biadditivity and symmetry
of ¢. Now, one may easily check that the map A: X — R given by A(x) :=
$¢(z, ) — f(z) for x € X is subadditive. This completes the proof.

Now, we are going to provide conditions which, in particular, allow us
to omit the assumption (6) and to weaken (5). We start with a lemma.

LEMMA 2. If f: X — R and ¢: X x X — R satisfy (1), (2) and f is odd
then f(2z) = 2f(x) and ¢(z,x) =0 for x € X. Moreover, if ¢ satisfies (3),
then f is additive and ¢ = 0.

Proof. Fix an x € X. Since f is odd, we get
f2x) = 2f(z) = —[f(—22) — 2f(—=)] < —¢(—=, ) < ¢(—x, )
< flmx+x) = f(—z) = f(z) =0,
whence, again by the oddness of f, we obtain f(2z) = 2f(x) for z € X and,
in consequence, ¢(x,z) =0 for z € X.

Now, assume (3) and let x,y € X. Using the assumption (3) and (1)
twice we obtain

flx—y)— f(x) = f(~y) = ¢(x,~y) > —¢(x,y) > —f(x+y)+ f(x) + f(y),
which means that
fl@+y)+ flz—y) = 2f(2).

Interchanging the roles of x and y we obtain

fly+x)+ fly—=) > 2f(y).

Summing up these two inequalities we derive the superadditivity of f, which
together with its oddness implies that f is additive and ¢ < 0. Using this
and (3) we finally get ¢ = 0. This completes the proof.

The following lemma provides sufficient conditions for the function f to
satisfy the assumption (4).

Recall that a group X is called uniquely 2-divisible if the map X > x —
x4+ x € X is bijective.

LEMMA 3. Assume that X is uniquely 2-divisible, f: X — R and ¢: X X
X — R satisfy (1), (2) and

(7) ¢(2x,2z) < 4¢(z,x), =z€X.
If f is nonnegative and even, then f(x) = %d)(m,a:) forxz e X.
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Proof. By the Proposition, for every x € X and every positive integer n
we have 4™ f(z/2") > 4" f(2/2"F1) > 0. So, the sequence (47 f(2/2"))nen
is pointwise convergent. In particular, lim,_,. 2" f(x/2") =0 for every x € X.

Now, fix an € X. Using (1) and (7), by induction, we get

#1(5r) - 271 (5) 2 2053 ) = e o)

for all £ € N. Summing up these inequalities for k € {1,...,n} we get

n

2f(ac)—2n+1f<2£n> > Zz—lkqb(m,x), n € N.
k=1

Letting n tend to 400 yields 2f(z) > ¢(z, z). Since the Proposition provides
the opposite inequality, the proof is complete.

The following result yields an analogue of Corollary 1 in the paper [2] of
K. Baron and Z. Kominek.

THEOREM 2. Assume X to be uniquely 2-divisible. If f: X — R and
¢: X x X — R satisfy (1), (3), (7) and
(8) f@)+ f(-2) >0, z€X,

then there exists an additive function a: X — R such that

1
f(x):§¢(x,a:)+a(a:), z e X.
Moreover, ¢ is biadditive and symmetric.

Proof. Define h,a: X — R by h(z) = [f(z) + f(—2)] and a(z) :=
$f(z) = f(—=)], z € X. Clearly h is even whereas a is odd. Next, define
¢1: X x X — R by ¢1(z,y) := 3[o(z,y) + ¢(—z,—y)] for z,y € X. It
is easy to check that h and ¢; satisfy the assumptions of Lemma 3. So,
h(z) = 3¢1(z, z) for z € X. Now, observe that the assumptions of Lemma 1
are satisfied. Therefore ¢, is biadditive and symmetric and, in consequence,

h(z +y) = hz) = h(y) = d1(z,y), =yeX.
Define ¢2: X x X — R by ¢2 := ¢ — ¢1. Note that ¢a(z, —y) > —pa2(x,y)
for z,y € X and

a(a:—i—y)—a(x)—a(y) 2¢2(‘T7y)7 xayEX'

Now, Lemma 2 applied for f = a and ¢ = ¢4 states that a is additive and
P2 =0, i.e. ¢ = ¢1. This completes the proof.

A similar reasoning allows us to derive the following corollary from Lem-
mas 2 and 3.

COROLLARY 2. Assume X to be uniquely 2-divisible. If f: X — R and
¢: X x X — R satisfy (1), (2), (7) and (8), then there exists an odd function
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a: X — R such that a(2x) = 2a(x) for x € X and

1
fla) =5 d(z,2) +alz), zeX
Moreover, ¢(2z,2x) = 4¢(x,x) > 0 for v € X.
Proof. Define a, h, 1 and ¢o as in the previous proof. Lemma 3 implies
that h(z) = 3¢1(z,z) and h(2z) = 4h(z) for z € X. We are going to show

that ¢o satisfies (2). Since ¢o = ¢ — ¢1, it suffices to prove that ¢;(x, —x) =
—¢1(x,z) for z € X. But

—2h(z) = h(—x 4+ ) — h(—x) — h(x) > ¢1(—z,2) > —d1(—x, —x)
which is what we wanted. Lemma 2 implies that a(2z) = 2a(z) and ¢o(z, x)
=0, ie. h(z) = $¢1(z,2) = J¢(z,z) for x € X. This completes the proof.

We end this paper with some additional remarks.

REMARK 1. If ¢ € (0,00), f : R — R is constant and equal to —c,
¢ : R xR — R is constant and equal to ¢, then (1), (3) and (7) are satisfied.
So, the assumption (4) in Lemma 1 cannot be omitted, the assumption (5)
in Theorem 1 and Corollary 1 cannot be replaced by (7), the nonnegativity

of f in Lemma 3 cannot be replaced by its boundedness, and the assumption
(8) in Theorem 2 cannot be omitted.

REMARK 2. Let ¢: R — R be a nonzero and even function which satisfies
the equality

e(2t) =2¢(t), teR

(see e.g. M. Kuczma, B. Choczewski and R. Ger [3] for examples of such
functions). Define f: R — R and ¢: R x R — R by

f@) = (p(2))?, z€R,
o(x,y) = fle+y) - f(z) - fly), =zyek
Then inequality (1) is satisfied, and f is even, nonnegative and satisfies (4).

Moreover, ¢ satisfies (2), (5) and (6). So, in Lemma 1, Theorems 1 and 2
and Corollary 1, (3) cannot be replaced by (2).

REMARK 3. Let (X;| - ||) be a normed linear space. Corollary 1 implies
that the inequality

fla+y) = f@) = fy) = =l lyll, =y€X,
has no solution. In fact, the function ¢(z,y) := ||z|| - [|y||, =,y € X, satisfies
(3), (5) and (6), but ¢ fails to be biadditive.
In this inequality X may stand for an abelian group and the norm can
be replaced by any real function, which is nonzero, nonnegative, even and
2-homogeneous.
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