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Summary. In [7], M. Levin proved that the set of all Bing maps of a compact metric space
to the unit interval is a dense Gδ-subset of the space of all maps. In [6], J. Krasinkiewicz
independently proved that the set of all Bing maps of a compact metric space to an
n-dimensional manifold (n ≥ 1) is a dense Gδ-subset of the space of maps. In [9], J. Song
and E. D. Tymchatyn, solving some problems of J. Krasinkiewicz ([6]), proved that the
set of all Bing maps of a compact metric space to a nondegenerate connected polyhedron
is a dense Gδ-subset of the space of maps. In this note, we investigate the existence of
surjective Bing maps from continua to polyhedra.

1. Introduction. In this note, all spaces are separable and metrizable,
and all maps are continuous. We denote the unit interval [0, 1] by I. An arc
is a space which is homeomorphic to I. If X is a compact metrizable space
and Y is a space, C(X,Y ) denotes the space of all continuous maps from X
to Y endowed with the sup metric. A compact metrizable space is called a
compactum, and a continuum means a connected compactum. A continuum
is said to be indecomposable if it is not the union of two proper subcontinua.
A compactum is called a Bing compactum (or hereditarily indecomposable)
if each of its subcontinua is indecomposable. A map is called a Bing map if
each of its fibers is a Bing compactum. In [7], M. Levin proved the following
theorem.

Theorem 1 (M. Levin [7]). For each compactum X, the set of all Bing
maps from X to I is a dense Gδ-subset in C(X, I).

Independently, J. Krasinkiewicz proved the following theorem.
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Theorem 2 (J. Krasinkiewicz [6]). Let X be a compactum and let Y be
an n-dimensional manifold (n ≥ 1). Then the set of all Bing maps from X
to Y is a dense Gδ-subset in C(X,Y ).

In [9], J. Song and E. D. Tymchatyn solved some problems of J. Krasin-
kiewicz ([6]). In particular, they proved the following:

Theorem 3 (J. Song and E. D. Tymchatyn [9]). The set of all Bing
maps of a compact metric space to a nondegenerate connected polyhedron
(or a 1-dimensional locally connected continuum) is a dense Gδ-subset of
the space of maps.

In this note, we investigate the existence of surjective Bing maps from
continua to polyhedra and other spaces. Let X and Y be compacta. Let
CS(X,Y ) be the set of all surjective maps in C(X,Y ). Note that CS(X,Y )
is closed in C(X,Y ). Also, let BS(X,Y ) be the set of all Bing maps in
CS(X,Y ). A map f : X → Y is called an ε-map if diam f−1(y) < ε for each
y ∈ Y , and is 0-dimensional if dim f−1(y) ≤ 0 for each y ∈ Y .

Now, we prove the following theorem.

Theorem 4. Let X be a nondegenerate continuum and let P be a finite
n-dimensional connected polyhedron (n ≥ 1). Then BS(X,P) is a dense
Gδ-subset in CS(X,P).

To prove this theorem, we need the following proposition. The proof is
obtained by modifying a proof of the Dugundji extension theorem.

Proposition 5. Let X be an n-dimensional compactum, A a closed sub-
set of X, and σn an n-dimensional simplex. If g : X → σn is a map such that
g|A : A→ σn is 0-dimensional , then for any ε > 0 there is a 0-dimensional
map g̃ : X → σn such that g̃ is an extension of g|A and d(g̃, g) < ε.

Proof. Let C(X,σn; ε) be the set of all maps f : X → σn such that
if y ∈ σn and C is a component of f−1(y), then diamC < ε. Also, let
C(X,σn; 0) be the set of all 0-dimensional maps f : X → σn. Set

C(X,σn : g|A) = {f | f ∈ C(X,σn) and f |A = g|A}.
We will prove that C(X,σn : g|A) ∩ C(X,σn; ε) is a dense open subset

of C(X,σn : g|A). Put G = X −A. Let f ∈ C(X,σn : g|A). Then there is a
canonical open covering G of G in X such that mesh(G) (< ε) is sufficiently
small and dimN(G) ≤ n (see [3, (1.4), p. 70]), where N(G) denotes the
nerve of the covering G. Consider the space Z = A ∪ N(G), where the
neighborhoods of a point z ∈ Z are defined as subsets Uz of Z such that:

(a) If z ∈ A− cl(G), then Uz ∩ A is a neighborhood of z in X.
(b) If z ∈ N(G), then Uz ∩N(G) is a neighborhood of z in N(G).
(c) If z ∈ A ∩ cl(G), then Uz ∩ A is a neighborhood of z in A and

there exists a neighborhood V of z in X such that every simplex
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σ = σ(G0, G1, . . . , Gk) ∈ N(G), where G0 ∪ G1 ∪ · · · ∪ Gk ⊂ V , is
contained in Uz (see [3, p. 81]).

Then there is a canonical map p : X → Z such that p|A = 1A : A→ A ⊂ Z
and p|X − A : X − A → N(G) is an ε-map. Since dimN(G) ≤ n, we may
assume that there is a map ψ : Z → σn such that ψ|A = g|A, d(ψp, f) < ε
and for each simplex σ ∈ N(G), ψ|σ is injective (see [3, p. 81]). Put f ′ = ψp.
Since f |A = g|A is a 0-dimensional map and p|X−A is an ε-map, we can see
that f ′ ∈ C(X,σn : g|A)∩C(X,σn; ε). Clearly, C(X,σn : g|A)∩C(X,σn; ε)
is an open subset of C(X,σn : g|A). By the Baire theorem,

C(X,σn : g|A) ∩ C(X,σn; 0) =
∞⋂

k=1

(C(X,σn : g|A) ∩ C(X,σn; 1/k))

is a dense Gδ-subset of C(X,σn : g|A). This completes the proof.

Proof of Theorem 4. Let f ∈ CS(X,P) and let ε > 0. Choose a simplicial
triangulation K of P such that mesh(K) is sufficiently small. By Theorem 3,
there is a Bing map g : X → P such that d(f, g) < ε/2 and for each
principal simplex T of K, g(X) intersects the interior T − ∂T of T . Recall
that a simplex T ∈ K is principal if it is a proper face of no simplex of K. Let
T ∈ K be a principal simplex of K. Since g(X) is a continuum, we can take a
Cantor set C in g(X)∩(T−∂T ). Put E = T∩g(X) and F = (∂T∩g(X))∪C.
Take a surjective map s : C → T . Define a map h : F → T by h(x) = x for
x ∈ ∂T ∩ g(X), and h(x) = s(x) for x ∈ C. Note that h is a 0-dimensional
map and dimE ≤ dimT . By Proposition 5, we obtain a 0-dimensional
surjective map h̃T : E → T with h̃T |F = h. By using the map h̃T for
each principal simplex T of K, we obtain a 0-dimensional surjective map
ψ : g(X) → P such that d(ψ, idP) < ε/2. Put g′ = ψg : X → P. Then
d(f, g′) < ε and g′ is the desired surjective Bing map. This completes the
proof.

Theorem 6. Let X be a continuum and let Y be a Peano curve. Then
BS(X,Y ) is a dense Gδ-subset in CS(X,Y ).

Proof. Note that for each ε > 0 there are a graph G and surjective maps
p : Y → G and q : G→ Y such that d(q · p, idY ) < ε and q is 0-dimensional.
By using Theorem 4, we can easily get the assertion.

Corollary 7. Let M be a Menger manifold with dim M ≥ 1. Then
BS(X,M) is a dense Gδ-subset in CS(X,M).

(See [1] for properties of Menger manifolds.)
To prove the above corollary, we need the following proposition.

Proposition 8. Let X be an n-dimensional compactum and A a closed
subset of X. Let M be a Menger manifold with dim M = n ≥ 1. If g : X →
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M is a map such that g|A : A → M is 0-dimensional , then for any ε > 0
there is a 0-dimensional map g̃ : X →M such that g̃ is an extension of g|A
and d(g̃, g) < ε.

Proof. The proof is similar to that of Proposition 5. By the Z-set embed-
ding theorem for Menger manifolds (see [1]), in the proof of Proposition 5 we
may assume that ψ|σ : σ →M is a Z-embedding into M for each σ ∈ N(G).

Proof of Corollary 7. The assertion follows from the proof of Theorem 6,
Theorem 4 and Proposition 8.

Corollary 9. Let X be any nondegenerate continuum. If Y is either a
compact nondegenerate connected polyhedron, a Peano curve, or a Menger
manifold , then there is an upper semicontinuous decomposition D of X such
that each element of D is a Bing compactum and the quotient space X/D
of X with respect to D is homeomorphic to Y .

Proof. Since Y is a Peano continuum, CS(X,Y ) is nonempty. Hence so
is BS(X,Y ).

Also, we give an application of Theorem 4. We need the following well-
known theorem.

Theorem 10 (M. Brown [4]). Let {Xi, fi} be an inverse sequence such
that Xi is compact for each i = 1, 2, . . . . Then there exist ε1 > ε2 > · · · > 0
such that if gi : Xi+1 → Xi are maps such that d(fi, gi) < εi for each i, then
lim←−{Xi, gi} is homeomorphic to lim←−{Xi, fi}.

By Theorems 4 and 10, we obtain the following result.

Corollary 11. For each nondegenerate continuum X, there exists an
inverse sequence {Pi, gi} such that Pi is a nondegenerate compact connected
polyhedron and gi : Pi+1 → Pi is a surjective Bing map for each i = 1, 2, . . . ,
and X = lim←−{Pi, gi}.

Problem 12. Does the assertion of Corollary 9 hold if Y is any nonde-
generate Peano continuum?
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