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Summary. We introduce the concept of an extreme relation for a topological flow as
an analogue of the extreme measurable partition for a measure-preserving transformation
considered by Rokhlin and Sinai, and we show that every topological flow has such a
relation for any invariant measure. From this result, it follows, among other things, that
any deterministic flow has zero topological entropy and any flow which is a K-system with
respect to an invariant measure with full support is a topological K-flow.

1. Introduction. The theory of invariant partitions discovered by
Rokhlin and Sinai (cf. [13], [14]) is an important part of ergodic theory.
Extreme and perfect partitions have found applications in ergodic theory
and statistical mechanics. On the other hand, topological analogues of some
concepts from this theory, for example, topological entropy and Pinsker re-
lations, are useful tools in topological dynamics.
In our previous paper (cf. [9]), we defined the concept of a deterministic

topological flow and of a topological K-flow using invariant closed equiva-
lence relations as natural analogues of invariant measurable partitions. We
also proved some basic properties of them.
In this note, we introduce the concept of an extreme relation which is

an analogue of the extreme measurable partition of a Lebesgue space. From
our main result, it follows (Corollary 1) that for any invariant measure µ
there exists an extreme relation with respect to µ. Hence, for a uniquely
ergodic flow there exists an extreme relation. This result may by considered
as a topological analogue of the Rokhlin–Sinai theorem (cf. [14]).
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It follows that uniquely ergodic topological flows which have uniformly
positive entropy are topological K-flows.
As another corollary of our Theorem, we obtain a new complete proof

of Theorem 4 of [9] which says that any deterministic flow has zero entropy.
Unfortunately, the original proof given in [9] has a gap.
We also show that if a topological flow is a measure-theoretic K-system

with respect to an invariant measure with full support, then it is a topolog-
ical K-flow. A special case of this result was shown in [9, Theorem 5].
At the end, we give yet another description of the topological Pinsker

relation.

2. Preliminaries. Let (X, d) be a compact metric space and let T :
X → X be a homeomorphism. The pair (X,T ) is said to be a topological
flow . For a given x ∈ X, the sets O+T (x) = {T

nx : n ≥ 0}, O−T (x) = {T
nx :

n ≤ 0} and OT (x) = {Tnx : n ∈ Z} are called the positive semiorbit ,
negative semiorbit and orbit of x respectively.
By CER(X) we denote the set of all closed equivalence relations inX×X

and by ∆ the diagonal relation. A relation R ∈ CER(X) is said to be
positively invariant with respect to T if (T × T )(R) ⊂ R, and invariant if
(T × T )(R) = R.
For a given relation R ∈ CER(X) invariant under T ×T , the factor flow

defined by R is denoted by (X/R, T/R).
For a subset F ⊂ X ×X, the smallest invariant relation R ∈ CER(X)

containing F is denoted by 〈F 〉. For a family {Ri} ⊂ CER(X), the symbol
∨

iRi denotes the smallest closed invariant equivalence relation containing
all Ri’s.
The set of all asymptotic pairs for T is denoted by A. Recall that

(x, x′) ∈ A if limn→∞ d(Tnx, Tnx′) = 0.
Let B be the σ-algebra of Borel subsets of X and let M(X,T ) denote

the space of all probability measures on B invariant under T . For a given
measure µ ∈M(X,T ), Suppµ denotes the topological support of µ. We say
that µ has a full support if Suppµ = X.
In what follows, we shall consider measurable partitions of the Lebesgue

space (X,B, µ), µ ∈ M(X,T ). For the definitions and basic properties of
measurable partitions we refer the reader to [12]. We denote by ε the mea-
surable partition of X into single points.
For a given measurable partition ξ, the σ-algebra generated by ξ is de-

noted by σ(ξ). On the other hand, for any σ-algebra A ⊂ B the symbol ξ(A)
stands for the measurable partition generated by A.
It is clear that for any relation R ∈ CER(X) the partition ξR into equiv-

alence classes of R is measurable with respect to any invariant measure.
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For a given measurable partition ξ of X and x ∈ X, the symbol ξ(x)
means the element of ξ which contains x. We put ∆ξ = {(x, y) ∈ X ×X :
y ∈ ξ(x)}.
Let µ be a probability measure and A ⊂ B be a σ-algebra. We define a

probability measure on (X ×X,B ⊗ B) by

(µ×
A

µ)(A×B) =
\
X

µ(A | A)(x)µ(B | A)(x)µ(dx)

for A,B ∈ B.
If ξ is a measurable partition of X, then (µ ×

ξ
µ) denotes the measure

(µ ×
σ(ξ)
µ).

We denote by hµ(T ) and πµ(T ) the entropy and the Pinsker partition of
T respectively.
Let us recall that a measurable partition ξ is called extreme ([13]) if it

satisfies the following conditions:

(i) T−1ξ ≤ ξ,

(ii)
∞
∨

n=0
Tnξ = ε,

(iii)
∞
∧

n=0
T−nξ = πµ(T ).

It is called perfect if, in addition,

(iv) hµ(T ) = Hµ(ξ |T−1ξ).

It was shown in [14] that, for any T , there exists a perfect partition.
For a given σ-algebra A ⊂ B, we put A− =

∨

∞

i=1 T
−iA. We say that

A is invariant if T−1A = A. We denote by πµ(T | A) the relative Pinsker
partition of T with respect toA (cf. [8]). By h(T ) and E(X,T ), we denote the
topological entropy and the set of topological entropy pairs of T respectively.
The relation Π(T ) = 〈E(X,T )〉 is called the Pinsker relation of T (cf. [4]).
For a given µ ∈M(X,T ), Eµ(X,T ) denotes the set of entropy pairs for T

with respect to µ. We put λµ = (µ ×
πµ(T )
µ). The relationΠµ(T ) = 〈Eµ(X,T )〉

is called the Pinsker relation of T with respect to µ.
For the definition and properties of entropy, we refer the reader to [15].

The definitions and properties of topological entropy pairs and entropy pairs
for a measure can be found in [1] and [2] respectively.
We denote by M+(X,T ) (resp. MK(X,T )) the set of all measures from

M(X,T ) which are ergodic and have positive (resp. completely positive)
entropy.
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By analogy with the concept of a Rokhlin–Sinai extreme measurable
partition we define an extreme relation as follows. We say that a relation
R ∈ CER(X) is extreme (resp. extreme with respect to µ) if

(i) (T × T )(R) ⊂ R,

(ii)
∞
⋂

n=0
(T × T )n(R) = ∆,

(iii)
∞
∨

n=0
(T × T )−n(R) = Π(T ) (resp. Πµ(T )).

The following result is shown in [3]. Below we give a simpler proof.

Proposition 1 ([3]). For any measure µ ∈M(X,T ), there exists a per-
fect partition ζ with ∆ζ ⊂ A.

Proof. We start as in [3, p. 675]. Namely, we take a sequence (ξn) of
finite measurable partitions of X such that ξ1 ≤ ξ2 ≤ · · · and the diameters
of ξn tend to 0 as n→∞. Hence, ξn ր ε.
Now one constructs a perfect partition ζ using (ξn) in the same way as

in [13, pp. 42–43] (see also [11, Theorem 6.11, p. 71].
Finally, one checks, as in [3, Lemma 4], that ∆ζ ⊂ A.

We also give a direct and simple proof of the following result given in
[3, Lemma 7], which plays an important role in the theory of asymptotic
pairs and in our considerations.

Proposition 2 ([3]). If µ ∈ M(X,T ) is ergodic, then the measure λµ
is ergodic.

Proof. First, applying a simple direct reasoning one shows that, for any
invariant σ-algebra F ⊂ B, the measure (µ ×

F

µ) is ergodic if µ is ergodic

and relatively weakly mixing with respect to F . Recall that µ is relatively
weakly mixing with respect to F if

lim
n→∞

1
n

n−1
∑

k=0

‖µ(T−kA ∩B | F)− µ(T−kA | F)µ(B | F)‖1 = 0

for any A,B ∈ B.
Next, by repeating the arguments from proof of Theorem 1 [5, p. 283] and

replacing measures with conditional measures, one shows that if πµ(T | F) =
ξ(F) (i.e. T is a relative K-automorphism with respect to F), then T is
relatively K-mixing, i.e.

lim
n→∞

sup
A∈T−nA−∨F

‖µ(A ∩B | F)− µ(A | F)µ(B | F)‖1 = 0
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for any finite algebra A and B ∈ B. Therefore, T is relatively weakly mixing
and so (µ×

F

µ) is ergodic.

Finally, applying Theorem 6.13 from [11] we see at once that the equality
πµ(T | F) = ξ(F) is satisfied for ξ(F) = πµ(T ).

3. The result

Theorem. For any ergodic measure µ ∈M(X,T ), there exists a relation
R = Rµ ∈ CER(X) with

(i) (T × T )(R) ⊂ R,

(ii)
∞
⋂

n=0
(T × T )n(R) = ∆,

(iii) Eµ(X,T ) ∪ S(µ) ⊂
∞
⋃

n=0
(T × T )−n(R) ⊂ Πµ(T ),

where S(µ) = {(x, x) ∈ X ×X : x ∈ Suppµ}.

Proof. If hµ(T ) = 0 we put R = ∆. Let now µ ∈M+(X,T ) and let ξ be
a perfect partition of (X,B, µ, T ) such that ∆ξ ⊂ A. Since ξ ≥ πµ(T ), we
have ∆ξ ⊂ ∆πµ(T ). It follows from Lemma 6 of [3] that

((µ×
ξ
µ))(∆ξ) = 1.

Let G ⊂ X × X be the set constructed in the proof of Proposition 5
of [3]. To construct it, the authors first show that there exists a sequence
(Uk) of open sets such that λµ(Uk) > 0 for all k ≥ 1, every point of X ×X
belongs to infinitely many Uk, and the diameters of Uk tend to 0 as k →∞.
Next, they take

Vk = Lim
n→∞
(T × T )nUk, k ≥ 1,

and finally define

G =
∞
⋂

k=1

Vk.

Recall that G has the following two properties. For any point (x, x′) ∈ G,
the semiorbit O−T×T (x, x

′), and hence also the orbit OT×T (x, x′), is dense in
Suppλµ, and

((µ×
ξ
µ))(G) = 1.

It follows from Theorem 1 of [6] that

Suppλµ = Eµ(X,T ) ∪ S(µ).

Thus, we have
((µ×

ξ
µ))(∆ξ ∩G) = 1.
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Now we choose an arbitrary pair (x, x′) ∈ ∆ξ∩G and we define a relation
R as follows:

R = O+T×T (x, x
′) ∪O+T×T (x

′, x) ∪∆.

This relation is, of course, reflexive, symmetric and positively invariant.
Since (x, x′) ∈ A, it is closed and the equality (ii) is satisfied. The density
of OT×T (x, x′) in Suppλµ implies the inclusion

Eµ(X,T ) ∪ S(µ) ⊂
∞
⋃

n=0

(T × T )−n(R).

It also follows that the orbits OT (x) and OT (x′) are infinite and disjoint.
Therefore, R is transitive.
Since (x, x′) ∈ ∆ξ, we have (x, x′) ∈ ∆πµ(T ). Now Proposition 4 of [2]

implies that
ξΠµ(T ) ≤ πµ(T )

and thus (x, x′) ∈ Πµ(T ), hence, R ⊂ Πµ(T ). Since Πµ(T ) is closed and
invariant we immediately get

∞
⋃

n=0

(T × T )−n(R) ⊂ Πµ(T ),

i.e. R has all the desired properties.

Corollaries 1 and 2 below immediately follow from the definitions of the
topological Pinsker relation Π(T ), the topological Pinsker relation Πµ(T )
with respect to a measure µ ∈M+(X,T ), and Theorem 9 of [2].

Corollary 1. For any ergodic measure µ ∈ M(X,T ), there exists an
extreme relation with respect to µ. Any uniquely ergodic flow has an extreme
relation.

Recall that a flow (X,T ) is called a topological Kolmogorov flow (or a
K-flow) ([9]) if there exists a relation R ∈ CER(X) with

(i) (T × T )(R) ⊂ R,

(ii)
∞
⋂

n=0
(T × T )n(R) = ∆,

(iii)
∞
⋃

n=0
(T × T )−n(R) = X ×X.

A flow (X,T ) is said to have uniform positive entropy (cf. [1]) if for any
cover α of X by two non-dense open sets we have h(T, α) > 0.

Corollary 2. Any uniquely ergodic flow with uniform positive entropy
is a K-flow.
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A flow (X,T ) is said to be deterministic ([9]) if every positively invariant
relation R ∈ CER(X) is invariant. It has been shown in [9, Theorem 1] that
the topological determinism is a topological analogue of the determinism
considered in ergodic theory (see also [7]).

Corollary 3 ([9]). Every deterministic flow has zero topological en-
tropy.

Proof. Suppose that a flow (X,T ) has positive topological entropy. It fol-
lows from the variational principle that there exists a measure µ∈M+(X,T ).
We take a relation R with the properties (i)–(iii). Observe that (T × T )(R)
6= R. Indeed, otherwise properties (ii) and (iii) imply

Eµ(X,T ) ⊂ ∆,

i.e. Eµ(X,T ) = ∅, which contradicts the positivity of hµ(T ).

Corollary 4. If a flow (X,T ) admits a measure µ ∈ MK(X,T ) with
full support , then (X,T ) is a topological K-flow.

Proof. Since µ ∈ MK(X,T ), the Pinsker partition πµ(T ) is trivial and
so by Glasner’s result ([6])

Eµ(X,T ) ∪∆ = Suppλµ = Suppµ× µ = X ×X,

which means that (X,T ) is a topological K-flow.

It is shown in [10] that

Π(T ) =
⋂

R,

where R runs through the family of all invariant closed equivalence relations
such that hµ(T/R) = 0 for each µ ∈M(X/R, T/R). Using the Theorem, we
can give yet another description of Π(T ).

Corollary 5.

Π(T ) =
〈

⋃

µ∈M+(X,T )

∞
⋃

n=0

(T × T )−n(Rµ)
〉

.

Proof. By (iii) we have

Π(T ) = 〈E(X,T )〉 =
〈

⋃

µ∈M+(X,T )

Eµ(X,T )
〉

⊂
〈

⋃

µ∈M+(X,T )

∞
⋃

n=0

(T × T )−n(Rµ)
〉

⊂
〈

⋃

µ∈M+(X,T )

Πµ(T )
〉

=
〈

⋃

µ∈M+(X,T )

〈Eµ(X,T )〉
〉

=
〈

⋃

µ∈M+(X,T )

Eµ(X,T )
〉

= Π(T ).
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