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Summary. Theorems stating su�ient onditions for the inequivalene of the d-variateHaar wavelet system and another wavelet system in the spaes L1(Rd) and BV(Rd) areproved. These results are used to show that the Strömberg wavelet system and the sys-tem of ontinuous Daubehies wavelets with minimal supports are not equivalent to theHaar system in these spaes. A theorem stating that some systems of smooth Daubehieswavelets are not equivalent to the Haar system in L1(Rd) is also shown.1. Introdution1.1. Statement of results. Let Ψ = {ψi}i∈∆ and Ψ = {ψi}i∈∆ be two ol-letions of linearly independent vetors in a normed linear spae (X, ‖ ‖X).We say that Ψ and Ψ are equivalent if the linear mapping A de�ned by
A : ψi 7→ ψi for all i ∈ ∆extends to a linear isomorphism of the losed linear span of Ψ onto the losedlinear span of Ψ .In this paper we are onerned exlusively with the ases whenX is either

L1(Rd) or BV(Rd), Ψ = H = (hλ)λ∈∆ is the d-variate Haar system and Ψ isanother d-variate wavelet system generated by a univariate mother wavelet
ψ1 and saling funtion ψ0. The de�nitions of BV and wavelet systems areprovided in Setion 1.2. Naturally, we assume that Ψ ⊂ X.2000 Mathematis Subjet Classi�ation: 42C40, 46E30, 26A45, 26B30.Key words and phrases: Haar system, wavelets, inequivalene.This researh was supported by the Foundation for Polish Siene and NRC NewInvestigators Twinning Program for Poland and Slovakia 2003-2004. The author wouldalso like to thank Prof. Przemysªaw Wojtaszzyk from the University of Warsaw andProf. Anna Kamont from the IMPAN division in Sopot for disussions about the topi ofthis paper. [25℄
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It is well known (see [8℄ and [12℄) that under some mild assumptions onthe deay and osillation of the wavelets that onstitute Ψ the systems H and

Ψ are equivalent Shauder bases in Lp(Rd) (with 1 < p < ∞) and H1(Rd).From wavelet haraterizations of the Sobolev spaes W s
p in [8℄ (again for

1 < p <∞) the equivalene of wavelet bases follows also for these spaes.The ultimate goal of this paper is to show that no general equivalenetheorem for wavelet systems an hold in the ase of p = 1. The two theoremsbelow state su�ient onditions formulated in terms of linear funtionalsand the mother wavelet ψ1 for the inequivalene of Ψ and H in either L1(Rd)or BV(Rd). (Beause H * W 1
1 , the larger spae BV is onsidered.)Theorem 1. If the mother wavelet ψ1 satis�es(1) ∞\

0

ψ1(t) dt 6= 0,then the Haar system H and the system Ψ are not equivalent in L1(Rd).Condition (1) is satis�ed for the well known Strömberg wavelet (intro-dued in [11℄) as well as for ertain integer shifts of ontinuous (or smoother)ompatly supported Daubehies wavelets (for the simplest example see anelementary onstrution in [9℄). These two laims are veri�ed in Setions 2.2and 2.3 respetively.The system obtained from the Strömberg wavelet an be onsidered areal-line equivalent of the Franklin funtions de�ned on the unit interval. Aninteresting ontext for Theorem 1 is provided by the paper of Sjölin [10℄, inwhih the inequivalene of Haar and Franklin systems in L1([0, 1]) is shown.These two results are ompared brie�y at the end of Setion 2.2.The seond theorem ontains a similar result for the spae BV:Theorem 2. If the mother wavelet ψ1 satis�es(2) \
[1/3,∞)

Dψ1(dt) +
\

[2/3,∞)

Dψ1(dt) 6= 0,

then the Haar system H and the system Ψ are not equivalent in BV(Rd).Spei�ally , there exists a sequene of funtions fn ∈ BV(Rd) suh that
‖fn‖BV ≤ C <∞, but |Afn|BV ≥ c2n for a ertain onstant c2 > 0.Note that the BV seminorm is expliitly responsible for the inequivalene.The assumption (2) in the ase of ontinuous ψ1 whih are 0 at in�nityan be reformulated as(3) ψ1(1/3) + ψ1(2/3) 6= 0.In Setions 3.2 and 3.3 it is veri�ed for the Strömberg wavelet and a ontin-uous Daubehies wavelet supported in the interval [0, 3].
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Interest in the inequivalene of wavelet systems in BV is motivated byresults from [4℄ and [13℄, where it is shown that the Haar oe�ients offuntions from BV(Rd) with d ≥ 2 are in the sequene spae wℓ1, and greedyprojetions with respet to H are bounded in the BV seminorm. In [3℄ and [1℄these results are generalized to any ompatly supported wavelet. Results likeTheorem 2 indiate that one annot use the equivalene of wavelet systems in

BV to obtain this generalization and independent proofs are indeed required.1.2. PreliminariesBV spaes. We say that a distribution f ∈ L1(Rd) belongs to the spae
BV(Rd) if its distributional derivatives Dxi

f , i = 1, . . . , d, are measures of�nite variation. The BV seminorm is de�ned by(4) |f |BV(Rd) :=
( d∑

i=1

VarRd(Dxi
f)2

)1/2
,where VarΩ(µ) denotes the variation of the measure µ on the set Ω. Thenorm on BV(Rd) is then de�ned by

‖f‖BV(Rd) := ‖f‖L1(Rd) + |f |BV(Rd).One an also de�ne BV(Rd) as the spae of all f ∈ L1(Rd) for whihthere is a sequene (fn) of funtions from the Sobolev spae W 1
1 (Rd) suhthat(5) sup

n
‖Dfn‖L1(Rd) <∞ and ‖f − fn‖L1(Rd) → 0 (n→ ∞).The BV seminorm an be de�ned in this ase as

|f |∗BV := inf
(fn)

lim inf
n→∞

‖Dfn‖L1(Rd),where the in�mum is taken over all sequenes (fn) satisfying (5). The semi-norm | |∗BV is equivalent to the seminorm de�ned in (4). More details anbe found in [14, Chapter 5℄.Wavelet systems. By a d-variate wavelet system we mean the systemobtained by taking the tensor produt of a univariate multiresolution analy-sis assoiated with a univariate saling funtion ψ0 with orthogonal integershifts and the related mother wavelet ψ1.For ompleteness, a brief outline of the onstrution is presented below.The reader is referred to [6℄ or [12℄ for details.Let E′ = {(e1, . . . , ed) : ei = 0, 1} and E = E′ \ {(0, . . . , 0)}. For e ∈ Eand x = (x1, . . . , xd) ∈ Rd let
ψe(x1, . . . , xd) :=

d∏

i=1

ψei(xi).
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Now for j ∈ Z, k ∈ Zd and λ := (e, j, k) de�ne the funtions

ψλ(x) := ψe
j,k(x) := 2dj/2ψe(2jx− k).For

∆ = {(e, 0, k) : e ∈ E′, k ∈ Zd} ∪ {(e, j, k) : j > 0, e ∈ E, k ∈ Zd}(6a)or
∆ = {(e, j, k) : e ∈ E, j ∈ Z, k ∈ Zd}(6b)the system Ψ = {ψλ}λ∈∆ is an orthonormal basis in L2(Rd).The orthonormal d-variate Haar system H = (hλ)λ∈∆ is obtained usingthe same onstrution by taking h1 = 1[0,1/2) − 1[1/2,1] instead of ψ1 and

h0 = 1[0,1] in plae of ψ0. If ∆ is de�ned by (6a) and H is ordered so thatthe indies j do not derease, then H onstitutes a basis in L1(Rd). It is nota basis in BV(Rd), but nonetheless partial sum projetions with respet to
H are uniformly bounded in the BV norm (see [13, Corollary 11℄).2. Inequivalene in L1(Rd)2.1. Proof of Theorem 1. For onveniene, we assume that the waveletsare normalized in L1(Rd), i.e. we have ‖ψe‖L1

= 1,
ψe

j,k(x) := ψλ(x) := 2djψe(2jx− k),and similarly for H. Let A be a linear mapping suh that A(hλ) = ψλ forall λ ∈ ∆. We onstrut a bounded sequene of funtions fn ∈ L1(Rd) suhthat ‖Afn‖L1
≥ c1n for a ertain onstant c1 > 0. This implies that A is notontinuous and hene the systems H and Ψ are not equivalent in L1(Rd).Let n ∈ N and Ωn = [0, 2−n] × [0, 1]d−1. We de�ne the funtions

gn := 2n1Ωn
.Observe that ‖gn‖L1

= 1 and gn = 1[0,1]d + fn, where
fn =

n−1∑

j=0

2−j(d−1)
∑

k∈Kj

he0

j,k,with e0 = (1, 0, . . . , 0) and
Kj = {k = (k1, . . . , kd) ∈ Zd : k1 = 0, 0 ≤ k2, . . . , kd ≤ 2j − 1}.We have #Kj = 2j(d−1) and

‖fn‖L1(Rd) ≤ 2.Beause e0 6= 0, this sequene is a good example for ∆ de�ned by both (6a)and (6b).
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Now onsider the following linear funtional F ∈ L1(Rd)∗:

F (f) :=
\
Γ

f(x) dx, Γ = [0,∞) × Rd−1.We alulate
F (Afn) =

\
Γ

n−1∑

j=0

2−j(d−1)
∑

l∈Kj

ψe0

j,k(x) dx

=
n−1∑

j=0

2−j(d−1)
∑

k∈Kj

2dj
\

[0,∞)

ψ1(2jx1) dx1 ·
d∏

i=2

\
R

ψ0(2jxi − ki) dxi

=

n−1∑

j=0

2−j(d−1)
∑

k∈Kj

\
[0,∞)

ψ1(t) dt ·
(\

R

ψ0(t) dt
)d−1

= nc̃1,where c̃1 =
T
[0,∞) ψ

1(t) dt·
(T

R
ψ0(t) dt

)d−1 is not zero by (1) and the fat thatthe integral of a saling funtion ψ0 ∈ L1 annot vanish (see for example [12,Proposition 3.17℄). Beause F is bounded, this implies that ‖Afn‖L1
≥ c1nfor a ertain positive onstant c1.2.2. Strömberg wavelet in L1. The Strömberg wavelet S, disovered byStrömberg in [11℄, is a ontinuous, pieewise linear funtion with knots atthe points . . . ,−3/2,−1,−1/2, 0, 1/2, 1, 2, 3, . . . . Its values at the knots areas follows:

(7) S(−k/2) = S(1)(2
√

3 − 2)(
√

3 − 2)k for k = 1, 2, 3, . . . ,

S(0) = S(1)(2
√

3 − 2), S(1/2) = −S(1)(
√

3 + 1/2),

S(k) = S(1)(
√

3 − 2)k−1 for k = 1, 2, 3, . . . .Obviously, S ∈ L1(Rd), as it has exponential deay.Theorem 3. The d-variate Haar and Strömberg wavelet systems are notequivalent in L1(Rd).Proof. We need to show that T∞0 S(t) dt 6= 0. Using (7) we get
∞\
0

S(t) dt =
1

4
(S(0) + S(1/2)) +

1

4
(S(1/2) + S(1)) +

1

2

∞∑

k=1

(S(k) + S(k + 1))

= S(1)

(
−1

2
+

1

2
(
√

3 − 1)
∞∑

k=0

(
√

3 − 2)k

)
= −3 −

√
3

6
S(1) 6= 0.Comparison with Sjölin's result. Let {hn}∞n=1 and {fn}∞n=0 be respe-tively the Haar and Franklin systems on the unit interval [0, 1], as de�nedin [2℄. In [10℄ Sjölin shows that a linear mapping suh that fn−1 7→ hn
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for n = 1, 2, 3, . . . is not ontinuous in L1([0, 1]). The major di�erene be-tween his result and the result proved here is the following: the mapping
hλ 7→ ψλ preserves the loation of the wavelets (where the loation of ψλ,
λ = (e, j, k), is the dyadi ube 2−j([0, 1]d+k)). On the other hand, the map-ping fn−1 7→ hn shifts the loation by one dyadi interval or even hangesthe dyadi level of the funtion (for n = 2j + k, k = 1, . . . , 2j, the funtions
hn and fn are loated on the dyadi interval [(k−1)2−j, k2−j]). In partiular,the sequene {f2l+1−1}∞l=1 of Franklin funtions with disjoint dyadi loations
[1− 2 · 2−l, 1− 2−l] is mapped to the sequene {h2l+1} of Haar funtions thesupports of whih form a desending sequene of dyadi intervals [1−2−l, 1].A situation like this is not possible in the ase of the mapping onsideredhere.2.3. Daubehies wavelets in L1. The wavelet ψ disussed in the �rst partof this subsetion belongs to the famous lass of ompatly supported Daube-hies wavelets introdued in [5℄. The Haar wavelet is the simplest, althoughlaking smoothness, wavelet of this kind. The funtion ψ is a minimallysupported ontinuous wavelet from this lass. Here we show the system gen-erated by ψ(· + 1) or ψ(· + 2) is not equivalent to H in L1(Rd). (Beause
ψ = ψ(· + 0) is supported in [0, 3] and T

R
ψ = 0, it does not satisfy theassumption (1).)Below is a list of properties of the saling funtion φ assoiated with thewavelet ψ. All of these are taken from [9℄, where an elementary bakward-engineered onstrution of φ is presented. The same material an also befound in [12, Setion 5.3℄.Let(8) a :=

1 +
√

3

4
and b :=

1 −
√

3

4
.The saling funtion φ assoiated with the wavelet ψ is supported on [0, 3]and satis�es the saling equation(9) φ(t) = aφ(2t) + (1 − b)φ(2t− 1) + (1 − a)φ(2t− 2) + bφ(2t− 3).From the general onstrution of wavelets we obtain a formula for ψ:(10) ψ(t) = −bφ(2t) + (1 − a)φ(2t− 1) − (1 − b)φ(2t− 2) + aφ(2t− 3).For t ∈ [0, 1] we have

2φ(t) + φ(t+ 1) = t+
1 +

√
3

2
,(11a)

φ(t) − φ(t+ 2) = t+
−1 +

√
3

2
,(11b)
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as well as

φ
(

1
2 t

)
= aφ(t),(12a)

φ
(

1
2(1 + t)

)
= bφ(t) + at+

2 +
√

3

4
.(12b)Theorem 4. Let Ψ be the wavelet system on Rd generated by ψ0 = φand ψ1 = ψ(· + l) with l = 1 or l = 2. Then Ψ is not equivalent to H in

L1(Rd).Proof. Beause T30 ψ dt = 0, it su�es to show that T10 ψ dt 6= 0 andT2
0 ψ dt 6= 0. We use (10) to ompute these integrals. First we will �nd thevalues of

Ii :=

i+1\
i

φ(t) dt, i = 0, 1, 2.

Integrating both sides of (12a) and (12b) over [0, 1] and adding the resultingequalities leads to
2I0 = (a+ b)I0 +

a

2
+

2 +
√

3

4
,whih gives

I0 =
5 + 3

√
3

12
.We now integrate the identities in (11) over [0, 1] to obtain

I1 =
1

6
and I2 =

5 − 3
√

3

12
.Using (10) and the values of I0, I1 and I2 we get

1\
0

ψ(t) dt =
1 +

√
3

12
and 2\

0

ψ(t) dt =
1 −

√
3

12
.Both integrals are non-zero.It would be interesting to know whether a fat similar to Theorem 4 anbe shown for any smooth ompatly supported wavelet. While a ompleteanswer to this question is not known to the author, one an in fat show thefollowing:Theorem 5. Assume that the wavelet ψ1 is ompatly supported andontinuous. For k ∈ Z de�ne ψk = ψ1(· − k) and let Ψk be the d-variatewavelet system generated using ψk as the mother wavelet. Then there exists

k ∈ Z suh that Ψk is not equivalent to H in L1(Rd).
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The only di�erene between the systems Ψk and Ψ0 is in how their el-ements are indexed. From the proof it also follows that for a given ψ1 thesame k works for all d.Proof. By Theorem 1, it su�es to show that for a ertain k ∈ Z we have

∞\
0

ψ1
k(t) dt 6= 0.Indeed, if this was not the ase, then the wavelet expansion of the funtion

f = 1[0,1] with respet to the system generated by ψ1 (with ∆ de�ned by(6a)) would be �nite, whih would imply that f is ontinuous. See [7, Lemma3, p. 41℄ for an appliation of the same trik.3. Inequivalene in BV(Rd)3.1. Proof of Theorem 2. This time we assume that the wavelets arenormalized in Ld∗(Rd) with d∗ = d/(d − 1), i.e. ‖ψe‖Ld∗
= 1, ψe

j,k(x) :=

2(d−1)jψe(2jx − k) and similarly for H. This normalization is equivalent tothe normalization in the BV seminorm.Again let A be de�ned by A : hλ 7→ ψλ (λ ∈ ∆). As in the proof ofTheorem 1 we will onstrut a sequene {fn} bounded in BV(Rd) suh thatthe BV seminorms of the funtions Afn will be unbounded.Let
g := 1Ω with Ω = [0, 1/3] × [0, 1]d−1,

fn :=
1

3

2n−1∑

j=0

2−(d−1)j
∑

k∈Kj

he0

k,j ,

gn :=
1

3
1[0,1]d + fn,where again e0 := (1, 0, . . . , 0) and

Kj :=

{
k = (k1, . . . , kd) ∈ Zd :

k1

2j
<

1

3
<
k1 + 1

2j
, 0 ≤ k2, . . . , kd ≤ 2j − 1

}
.Note again that for eah j ≥ 0 we have #Kj = 2(d−1)j. Moreover, all k ∈ Kjhave the same �rst oordinate k1 =: k1(j). As the binary expansion of thefration 1/3 is 2-periodi (1/3 = 0.010101 . . . in the binary notation) we alsohave(13) 2j

3
− k1(j) =

{
1/3 for even j,
2/3 for odd j.The funtions gn are partial sums of the Haar expansion of g down tothe dyadi level 2n−1. Hene, they are uniformly bounded in the BV norm,
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whih implies that fn are bounded as well. As in the proof of Theorem 1,this sequene is a good example for ∆ de�ned either by (6a) or (6b).We now onsider the following linear funtional, bounded in the BVseminorm:

F (f) :=
\
Γ

Dx1
f(dx), Γ = [1/3,∞) × Rd−1.We will use the notation

V (t0) :=
\

[t0,∞)

Dψ1(dt).

First we observe that for k ∈ Kj ,
F (ψe0

j,k) = V (2j/3 − k1(j)) ·
(\

R

ψ0(t) dt
)d−1

= c̃2 · V
(

1

3
· 3 + (−1)j

2

) by (13)with c̃2 = (
T
R
ψ0(t) dt)d−1. From this we get

F

(
A

(
1

3
· 2−(d−1)j

∑

k∈Kj

he0

j,k

))
=

1

3
· 2−(d−1)j

∑

k∈Kj

F (ψe0

j,k)

=
1

3
· 2−(d−1)j

∑

k∈Kj

c̃2V

(
1

3
· 3 + (−1)j

2

)

=
1

3
· c̃2V

(
1

3
· 3 + (−1)j

2

)
.Finally, the above gives

F (Afn) =
1

3
·c̃2

2n−1∑

j=0

V

(
1

3
· 3 + (−1)j

2

)
=

1

3
·c̃2

n−1∑

j=0

(
V

(
1

3

)
+V

(
2

3

))
= c2nwith c2 = 1

3(
T
R
ψ0(t) dt)d−1(V (1/3) + V (2/3)) 6= 0 by (2) and the alreadymentioned fat that the integral of ψ0 annot vanish. This implies that thereexists a onstant c2 > 0 suh that |Afn|BV ≥ c2n.The partiular hoie for the funtion g was inspired by a one-dimensionalexample in [3, p. 259℄.3.2. Strömberg wavelet in BV. By (7), the distributional derivative ofthe Strömberg wavelet S is a pieewise onstant funtion with exponentialdeay, so obviously S ∈ BV(R). Here we show that it generates a waveletsystem not equivalent to H in BV(Rd).Theorem 6. The d-variate Haar and Strömberg systems are not equiv-alent in BV(Rd).
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Proof. It su�es to hek that S(1/3) + S(2/3) 6= 0. Using (7) we get

S(1/3) + S(2/3) = −S(1) − 2
√

3

3
S(1) 6= 0.3.3. Continuous Daubehies wavelet in BV. The di�erentiability prop-erties of the minimally supported ontinuous Daubehies wavelet ψ are an-alyzed in [9℄. However, the question whether ψ ∈ BV(R) is not onsideredthere. The answer is given below.Proposition 7. The wavelet ψ belongs to the spae BV(R).Proof. It su�es to show that the orresponding saling funtion φ be-longs to BV(R). In [9℄ the funtion φ is onstruted as the L∞-limit of asequene (gn) of ontinuous pieewise linear funtions over inreasingly �nerdyadi meshes. We use the same onstrution to show that φ ∈ BV(R).Firstly, a non-linear operator K is de�ned (a and b are de�ned in (8)):

(14) K(f)(t) :=





af(2t), t ∈ [0, 1/2),
bf(2t− 1) + 2at+ 1/4, t ∈ [1/2, 1),
af(2t− 1) + 2bt− (2−

√
3)/4, t ∈ [1, 3/2),

bf(2t− 2)− 2at+ (4 +
√

3)/4, t ∈ [3/2, 2),
af(2t− 2)− 2bt+ (7− 6

√
3)/4, t ∈ [2, 5/2),

bf(2t− 3), t ∈ [5/2, 3),
0, t ∈ (−∞, 0)∪ [3,∞).The funtion g0 is ontinuous and pieewise linear with knots in Z, suh that

g0(t) = φ(t) for all t ∈ Z. Next,
gn := K(gn−1) for n = 1, 2, 3, . . . .The funtions gn are ontinuous with supports in [0, 3]. Eah gn is pieewiselinear with knots at the points {k2−n}k∈Z. This in partiular implies that

gn ∈ W 1
1 (R) for all n. Moreover, it an be shown that ‖ψ − gn‖L∞

→ 0,whih means that ‖ψ − gn‖L1
→ 0 as well.Lemma 8. Let f be a ontinuous funtion with support in [0, 3] suh that

f ∈W 1
1 (R) and K(f) is also ontinuous. Then(15) ‖D(K(f))‖L1

≤
√

3

2
‖Df‖L1

+
√

3.Proof. We use (14) to estimate
Ik :=

(k+1)/2\
(k)/2

|D(K(f))(t)| dt
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for k = 0, 1, . . . , 5:

I0 ≤ |a|
1\
0

|Df(t)| dt, I1 ≤ |b|
1\
0

|Df(t)| dt+ |a|,

I2 ≤ |a|
2\
1

|Df(t)| dt+ |b|, I3 ≤ |b|
2\
1

|Df(t)| dt+ |a|,

I4 ≤ |a|
3\
2

|Df(t)| dt+ |b|, I5 ≤ |b|
3\
2

|Df(t)| dt.This gives
3\
0

|D(K(f))(t)| dt ≤ (|a| + |b|)
( 3\

0

|Df(t)| dt+ 2
)

=

√
3

2

3\
0

|Df(t)| dt+
√

3.Iterating (15) for f = gn, . . . , g0 we obtain
‖Dgn‖L1

≤
(√

3

2

)n

‖Dg0‖L1
+

√
3

(
1 +

√
3

2
+ · · · +

(√
3

2

)n−1)
,whih implies that ‖Dgn‖L1

< M for a ertain M < ∞ and all n. By theseond de�nition of the spaes BV in Setion 1.2, this implies that φ (i.e.the L1-limit of gn) belongs to BV(R).Having established that ψ ∈ BV(R), we may now show the following:Theorem 9. Let Ψ be the wavelet system on Rd generated by ψ0 = φand ψ1 = ψ. Then Ψ and H are not equivalent in BV(Rd).Proof. By Theorem 2, we need to show that
ψ(1/3) + ψ(2/3) 6= 0.Using (10) and (12b) we get

ψ(1/3) = −bφ(2/3) = −bφ
(

1

2

(
1 +

1

3

))
= −b

(
bφ(1/3) +

a

3
+

2 +
√

3

4

)
,while (10) and (11a) give

ψ(2/3) = −bφ(4/3) + (1 − a)φ(1/3)

= −b
(
−2φ(1/3) +

1

3
+

1 +
√

3

2

)
+ (1 − a)φ(1/3).Hene(16) ψ(1/3) + ψ(2/3) =

8 − 5
√

3

8
φ(1/3) +

13 + 7
√

3

48
.Now we need to �nd the value of ψ(1/3). By ontinuity of φ, we have

φ(1/3) = lim
k→∞

φ(xk)
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for x0 := 0 and xk := 1

4xk−1 + 1
4 for k = 1, 2, 3, . . . . Observe that xk ր 1/3.Using the identities in (12) we get

φ(xk) = φ

(
1

2

(
1

2
xk−1 +

1

2

))
= aφ

(
1

2
(xk−1 + 1)

)

= a

(
bφ(xk−1) + axk−1 +

2 +
√

3

4

)

= −1

8
φ(xk−1) +

2 +
√

3

8
xk−1 +

5 + 3
√

3

16
,whih yields

φ(1/3) =
19 + 11

√
3

54
.Substituting this in (16) leads to

ψ(1/3) + ψ(2/3) =
13 + 7

√
3

54
6= 0.
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