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by
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Summary. In this note we bind together Wilkie’s complement theorem with Lion’s the-
orem on geometric, regular and O-regular families of functions.

0. Introduction. In [W]| Wilkie proved that every weak o-minimal
structure which has the DSF property (is defined by its smooth functions)
is o-minimal. Karpinski and Macintyre [KM]| gave a generalization of this
result and weakened the assumptions on smoothness for functions, which
determine a weak o-minimal structure. Lion [L] proved that a geometric,
regular and O-regular family has the uniform finiteness property. He men-
tioned without proof that, by a modification of Wilkie’s theorem, such a
family generates an o-minimal structure. The aim of our note is to check
this by proving

THEOREM. Let § = {Fn}tnen be a regular, geometric and 0-regular fa-

mily. Then there exists an o-minimal structure & such that every f € § is
definable in &.

This paper is organized as follows. In the first section we recall Wilkie’s
and Lion’s theorems. The second section is devoted to showing that a geo-
metric, regular family which has the uniform fibre finiteness property satis-
fies the DCN condition for all N (Def.[1.7). Then, the above theorem is an
immediate consequence of Lion’s theorem together with Proposition 2.5

1. Theorems of Lion and Wilkie. Firstly we recall the following def-
initions.
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DEFINITION 1.1 (see [L]). We say that a family & = {&,},en, where
each &, is a set of real valued functions on R", is a geometric family if the
following conditions hold:

(Gl) if f,g € &, then fg and f+ g € &,

(G2) if f € &, and f(z) # 0 for every z € R"™, then 1/f € &,,

(G3) R[X1,...,X,] C &,

(G4) if f € &, and L : R™ — R™ is an affine map, then fo L € &,,.

DEFINITION 1.2 (see [L]). A geometric family & = {&, },en is called
reqular if for every n € N and every g € &,,, there exist a finite number of
affine hyperplanes Hy, ..., H; and n functions g1, ..., g, € &, such that for
U=R"\ (HyU---UH;) the following conditions are satisfied:

(1) g|u is of class C!,
(2) 22 (9lv) =gilv, i=1,...,n.
Let g : R* — R™ and t € R™. By reg g~ *(t) we denote (after Lion [L]) the

set of all z € g~!(¢) for which there exists an open neighbourhood U C R"
of x such that g|y is a submersion of class C!.

DEFINITION 1.3 (see [L]). We say that a geometric family & = {&,, }nen
is 0-regular if for every n € N, every mapping g = (g1,...,9n) : R" = R",
where g; € &, (i = 1,...,n), and for each t € R™, the set reg g~ (t) is finite.

DEFINITION 1.4 (see [L]). We say that a geometric family & = {&,, },en
has the uniform fibre finiteness (UFF) property if for every n,p € N and
g=1(91,...,9p) : R" = RP, where g; € &,, (i =1,...,p), there exists N € N
such that for each t € RP,

#{A C R" | A is a connected component of g~!(t)} < N.

THEOREM 1.5 (Lion [L]). Let & = {®&, },en be a geometric regular fam-
ly. If it is O-regular, then it has the uniform fibre finiteness property.

Now, we turn to the modification of Wilkie’s theorem by Karpinski and
Macintyre. Let AG(R"™) denote the set of all affine subspaces of R". Let
A C R™. Then we put

v(A) :=min{N € N: for all V. e AG(R"),
ANV has at most N connected components}.
If such an N does not exist, then we put v(A) = occ.

DEFINITION 1.6. A sequence § = {Sy, }nen, where S, C P(R"™) for each
n € N, is called a weak o-minimal structure if for every n,m € N, the
following conditions are satisfied:

(W1) if A,B€S,, then ANB € S,

(W2) S, contains all semialgebraic subsets of R”,
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(W3) if A€ S, and B € S, then A X B € Sp,

(W4) if A€ S, and o is a permutation of coordinates, then o(A4) € Sy,
(W5) if A € S, then y(A4) < oo,

(W6) if A € Sy, then there exist m > n and a closed set B € S,
such that A = I, ,(B), where II;,,, : R™ 3 (z1,...,2m) —
(x1,...,2,) € R™.

DEFINITION 1.7. Let N € N. A weak o-minimal structure S = {S,, }nen
satisfies the DCN condition for all N if for each A € S, there exists p > n,
such that for each N € N, A is equal to II,,,({ fxv = 0}), where

(1) fn :RP = R is of class CV,

(2) graph fy € Spia.

THEOREM 1.8 (Wilkie, Karpinski, Macintyre). Suppose S = {Sy, }nen s
a weak o-minimal structure satisfying DCN for all N. Then there exists an
o-minimal structure S = {Sy }nen which contains S.

It is not difficult to check that if & = {&,},en is a regular geometric
family with the uniform fibre finiteness property, then defining S, to be the
family of all subsets of R™ of the form f~!(0), where f € &, we obtain
a weak o-minimal structure. It is less obvious that this structure satisfies the
DCV condition for all N € N. We will check this in detail.

2. DCVN condition

LEMMA 2.1. Let § = {Sn}tnen be a geometric family with the uniform
fibre finiteness property. Then

(1) for every k € N,

Sy = {g:R¥ - R | there ezist n € N, f € §,, and a semialgebraic
map ¥ : R¥ — R™ such that g = f o ¥}

1S a Ting, _

(2) the family & = {Gy}ren, where &y is the ring of fractions of Sy
with respect to the multiplicative set of nowhere vanishing functions,
is a geometric family with the UFF property.

Proof. (1) Let f :RP - R, g:R* - R, ¢ : RF¥ - RP, ¢ : RF — R?,
where f € §p, g € §s, and v, ¢ are semialgebraic maps. Then the function

h:RP xRY> (u,v) = f(u)g(v) € R
belongs to &4, by (G1) and (G4). Consequently,
(Fouw)-(god) =ho(u,¢) € &y
In a similar way we can show that foy +go¢ € ék
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(2) The family & = {S }ren satisfies conditions (G1)—-(G4) in the obvi-
ous way. To check the UFF property, take
F,:Ri 5R, G;:Ri >R, G, F e i=1,...k
¥ : R® - RI, ¢ R" - RY, 4y, ¢; semialgebraic maps, i = 1,...,k,

and
H:<F10¢1 Fkoll}k)
Giog1’ " Grodr)’
where Gio¢i(x) #0,...,Grooi(x) # 0, for every z € R™. By (G4) we may
assume that s = j; = [; and £ = ¢; = ¢; for i = 1,..., k. There exist (see
[BCR], 2.2]) m € N and a polynomial P : R” x R®* x R™ — R such that

graph{ = {(z,y) e R" xR* | 3z € R™ : P(x,y,z2) = 0}.

Define
O :R" x RF x RF x R®* x R™ — R¥ x R* x R x R,
by

9(:]3, (al, .. .,ak), (bl, .. .,bk),y,z)
= ((arb1, ..., axby), (Fi(y) — a1, ..., Fe(y) — ax),
(1Gi(y) — 1,...,bkGy(y) — 1), P(z,y, 2)).

There exists N € N such that the number of connected components of
67(t,0,0,0,), for every t € R¥, is not greater than N. It is easy to see
that

H~\(t) = 11(671(t,0,0,0)),

where II is the projection on the first n coordinates. Since the image of a
connected set under a continuous map is connected, the map H has the UFF
property. m

DEFINITION 2.2. We say that a geometric family & = {8, },en is semi-
algebraically reqular if for every n € N and g € &,,, there exists a semialge-
braic, closed, nowhere dense subset A C R™ and functions ¢1,...,9, € &,
such that, for U = R™ \ A:

(1) glu is of class C!,

(2) 9%1(9|U) =gilv,i=1,...,n

This is a generalization of the notion of a regular geometric family.
Lemma [2.7] easily implies

LEMMA 2.3. Any geometric reqular family § = {Fn}nen with the UFF
property generates a semialgebraically regular geometric family with the UFF
property, closed with respect to compositions on the right with semialgebraic
maps.
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Proof. Tt is enough to show that every composition f o ¢ of f € §, and
a semialgebraic map ¢ : R™ — R" is of class C! except on a closed, nowhere
dense semialgebraic set A C R™.

We prove this by induction on n. For n = 1 it is obvious. Let n > 1, and
assume that the statement is true for every m < n. There exist hyperplanes
Hy, ..., Hy such that f|y is of class C', where U = R\ (H;U---UHj},). Also
¢ is of class C' outside a closed, nowhere dense semialgebraic set D C R™.
Let B= ¢ '(H; U---UHy). If dim B < n, there is nothing to prove. When

int B # (), then it suffices to consider the maps g; = f|m, o qz~5i, where

o el we o (H),
¢i (l’) - n -1

a;, rzeR \ gf) (Hl),
and a; is arbirarily chosen from H;. By the inductive hypothesis g; is of class
C! except a closed, nowhere dense semialgebraic set C;. It follows that f o ¢
is of class C! outside the set C = C1U---UCLUD. =

LEMMA 2.4. If C is a semialgebraic cell in R™ of dimension k, then there
exists a semialgebraic C>®°-mapping ¢c : R¥ — R™ such that C' = im ¢¢.

Proof. Use Proposition 2.9.10 from [BCR] and the C*°-diffeomorphism

1 T 1 Tk
@k:RkB(xl,...,xk)%(<>,...,<>>
2\Viva) U e
onto (0,1)%. =
Now we can state

PROPOSITION 2.5. Let & = {&,, },en be a semialgebraically regular ge-
ometric family with the uniform fibre finiteness property, closed with re-
spect to compositions on the right with semialgebraic maps. Then, for each
n € N, there exists | € N such that if F = (Fy,...,Fy) : R = R¥, where
F, e &, i=1,....,k, A:= F10), then for every N € N there exists
F:R" 4R of class CN such that F; e B4y foreveryi=1,... ., n+1 and
A= I 1,(F71(0)).

Proof. We will prove the proposition by induction on n. For n = 1 it
is obvious, because sets on the real line are finite sums of points and inter-
vals.

Now assume the conclusion is true for every m < n + 1. Take F :
R**! — RF, where F; € &,,1, and let A = F~1(0). Let V c R**! be
a closed, nowhere dense semialgebraic set such that F|ga+1\y is of class cN.
Take a cell decomposition B of R"™! compatible with V. Then B =
BoU---UBpyt1, where

Bi={BeB;|dmB=i}, i=01,....,n+1.
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Let B € B. Consider two cases:
(1) B € Bp41. There exists a semialgebraic diffeomorphism
¢B=(pps-- ¥ ) R = B
of class C*°. Then
ANB = {z e R |32 ¢ R"" : yp(z,2) = 0},

where g (z,2) = (Fopp)?(z) + erll(go%(z) — ;)2 is a function of
class C and ¢p € Bonto.

(2) B € B; for some j = 1,...,n . There exists a semialgebraic diffeo-

morphism g = (¢k,..., go%“) : R/ — B of class C*°. By induction

hypothesis there exist /; € N and CN-maps Fg : RIt — R such
that 1141, ;(F5'(0)) = (F 0 9z)~1(0). Now

ANB={z e R"" |3t/ e R/ 3/ € RY : ¢op(x, !, u/) = 0},

where ¢ (z, 9, ul) = F2(t9,u?) + SNl (1) — 24)? is a function
of class CV and 5 € Grtjitl;+1-

Define By = UBeBO B and Ay = By N A. Consider the CV-function

R xR xR x R x ... x R x R —5 R

given by
n
W (z, 2t ul .t ) = H z/JB(ZL‘,z)H H Yp(z,t!,u’)
n+1
T (e —?).
aEA() =1

Let | =2n+2+n(n+1)/24 31 [;. It is easy to see that A = II(w=1(0)),
where IT : R! — R™*! is the projection onto the first n + 1 coordinates. m
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