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Summary. We consider an inhomogeneous measure µ with the inhomogeneous part a
self-similar measure ν, and show that for a given r ∈ (0,∞) the lower and the upper
quantization dimensions of order r of µ are bounded below by the quantization dimension
Dr(ν) of ν and bounded above by a unique number κr ∈ (0,∞), related to the temperature
function of the thermodynamic formalism that arises in the multifractal analysis of µ.

1. Introduction. The term ‘quantization’ in this paper refers to the
process of estimating a given probability by a discrete probability supported
by a finite set. The quantization dimension Dr of order r, where r ∈ (0,∞),
of a probability measure is related to the asymptotic rate at which the
expected distance (raised to the rth power) to the support of the quantized
version of the probability goes to zero as the support is allowed to go to
infinity. This problem originated in information theory and some engineering
technology such as image compression and signal processing (cf. [GN, Za]).
Graf and Luschgy studied this problem systematically and gave a general
mathematical treatment of it (cf. [GL1]).

Given a Borel probability measure µ on Rd, a number r ∈ (0,∞) and a
natural number n, the nth quantization error of order r of µ is defined by

en,r := en,r(µ) = inf
{( �

d(x, α)r dµ(x)
)1/r

: α ⊂ Rd, card(α) ≤ n
}
,

where d(x, α) denotes the distance from the point x to the set α with respect
to a given norm ‖ · ‖ on Rd. We note that if

	
‖x‖r dµ(x) <∞ then there is
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some set α for which the infimum is achieved (cf. [GL1]). The upper and the
lower quantization dimensions of order r of µ are respectively defined by

Dr(µ) := lim sup
n→∞

log n

− log en,r
Dr(µ) := lim inf

n→∞

log n

− log en,r
.

If Dr(µ) and Dr(µ) coincide, we call the common value the quantization
dimension of µ of order r and denote it by Dr(µ).

Let S1, . . . , SN be a set of contractive similarity mappings on Rd with
similarity ratios s1, . . . , sN for N ≥ 2. Then by [H], for a given probability
vector (p1, . . . , pN ) there exist a unique probability measure ν, known as
the self-similar measure, and a unique nonempty compact subset E of Rd,
known as the self-similar set, satisfying the conditions

ν =
N∑
j=1

pjν ◦ S−1j and E =
N⋃
j=1

Sj(E).

The iterated function system {S1, . . . , SN} satisfies the open set condition
(OSC) if there exists a bounded nonempty open set U ⊂ Rd such that⋃N
j=1 Sj(U) ⊂ U and Si(U) ∩ Sj(U) = ∅ for 1 ≤ i 6= j ≤ N . Furthermore,

the system satisfies the strong open set condition (SOSC) if U can be chosen
such that U ∩ E 6= ∅, and the strong separation condition (SSC) if Sj(E)
are pairwise disjoint for j = 1, . . . , N . Note that in the case of similarity
mappings with a finite number of mappings, the open set condition implies
the strong open set condition (cf. [S]). If {S1, . . . , SN} satisfies the strong
separation condition then—as is easily seen—it also satisfies the open set
condition, and hence the strong open set condition.

Under the open set condition, Graf and Luschgy showed that the quanti-
zation dimension function Dr := Dr(ν) of the probability measure ν exists,
and satisfies the following relation (cf. [GL1, GL2]):

(1)
N∑
j=1

(pjs
r
j)
Dr/(r+Dr) = 1.

In addition, they proved a stronger result:

(2) 0 < lim inf neDrn,r(ν) ≤ lim supneDrn,r(ν) <∞.

From (1) it is clear that the quantization dimension function of a self-similar
probability measure is related to the temperature function of the thermo-
dynamic formalism.

Let Sj : Rd → Rd be contractive similarities with similarity ratios sj
for j = 1, . . . , N , N ≥ 2. Also, let 〈pj〉 := (p0, p1, . . . , pN ) be a probability
vector and ν be a probability measure on Rd with compact support E. Then
there exists a unique probability measure µ with compact support KE such
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that

(3) µ = p0ν +

N∑
j=1

pjµ ◦ S−1j and KE =

N⋃
j=1

Sj(KE) ∪ E.

Here µ is called the inhomogeneous self-similar measure, andKE is called the
inhomogeneous self-similar set associated with the list (S1, . . . , SN , p0, p1,
. . . , pN , ν). For details about inhomogeneous self-similar sets and measures
one could see [OS1, OS2, OS3]. Following [B, L], we also call ({Sj}, 〈pj〉, ν) a
condensation system, µ the attracting measure and the set KE the attractor
of the condensation system ({Sj}, 〈pj〉, ν).

In this paper, we will focus on condensation systems for which ν is a
self-similar measure associated with the system of self-similar mappings
{S1, . . . , SN} and a probability vector (t1, . . . , tN ), i.e., ν satisfies ν =∑N

j=1 tjν ◦ S
−1
j , where tj > 0 for 1 ≤ j ≤ N . Let E be the support of ν.

Then for the support KE of the attracting measure µ, by the uniqueness
of the compact set KE , we must have KE = E . Under the strong separa-
tion condition, Zhu [Zh] determined the lower and the upper quantization
dimensions of the attracting measure µ.

In this paper, under the strong separation condition we prove that for a
given r ∈ (0,∞) there exists a unique κr ∈ (0,∞) such that

Dr(ν) ≤ Dr(µ) ≤ Dr(µ) ≤ κr,
where Dr(µ) and Dr(µ) are respectively the lower and the upper quantiza-
tion dimensions of order r of µ, and Dr(ν) is the quantization dimension
of the associated self-similar measure ν. Moreover, we show that κr is re-
lated to the temperature function β(q) of the thermodynamic formalism that
arises in the multifractal analysis of µ, namely κr = β(qr)/(1− qr) where
β(qr) = rqr.

2. Basic definitions, lemmas and propositions. In this paper, Rd
denotes the d-dimensional Euclidean space equipped with a metric d com-
patible with the Euclidean topology. Let us write

Vn,r(µ) = inf
{ �

d(x, α)r dµ(x) : α ⊂ Rd, card(α) ≤ n
}
,

un,r(µ) = inf
{ �

d(x, α ∪ U c)r dµ(x) : α ⊂ Rd, card(α) ≤ n
}
,

where U is a set which comes from the open set condition and U c denotes
its complement. We see that

u1/rn,r ≤ V 1/r
n,r = en,r.

We call sets αn ⊂ Rd for which the above infimums are achieved n-optimal
sets for en,r, Vn,r or un,r respectively. If n = 1, we simply write er, Vr or ur.
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As stated above, Graf and Luschgy have shown that n-optimal sets exist
when

	
‖x‖r dµ(x) <∞.

Let Ω = {1, . . . , N}. Let Ξ0 denote the set consisting of only the empty
word ∅. We define

Ξn :=
n∏
k=1

Ω, Ξ∗ :=
∞⋃
k=0

Ξk, Ξ :=
∞∏
k=1

Ω.

For any σ ∈ Ξ∗, if σ = σ1 · · ·σk ∈ Ξk we call k the length of σ, denoted
by |σ|; the length of the empty word is zero. If σ ∈ Ξ then |σ| = ∞. For
any σ ∈ Ξ∗ ∪ Ξ with |σ| ≥ n ≥ 1, we write σ|n for the initial segment of
σ of length n, i.e., σ|n := σ1 · · ·σn, and σ|0 = ∅. If σ, τ ∈ Ξ∗ and |σ| ≤ |τ |,
σ = τ ||σ|, we call σ a predecessor of τ and write σ ≺ τ ; if σ 6≺ τ and τ 6≺ σ,
we say σ and τ are incomparable. For any two words σ = σ1 · · ·σk and
τ = τ1 · · · τp in Ξ∗, by σ ∗ τ := στ we mean the concatenation of σ and τ ,
i.e., στ = σ1 · · ·σkτ1 · · · τp. For n ≥ 2 and σ = σ1 · · ·σn ∈ Ξn we define
σ− := σ1σ2 · · ·σn−1.

Throughout the paper, S1, . . . , SN represent self-similar mappings with
similarity ratios s1, . . . , sN respectively. Let ν be the self-similar measure as-
sociated with the probability vector (t1, . . . , tN ), i.e., ν satisfies ν =

∑N
j=1 tjν

◦ S−1j , where tj > 0 for 1 ≤ j ≤ N ; let µ be the attracting measure of the
condensation system ({Sj}, 〈pj〉, ν) as defined in the previous section, and
E be its attractor. Write

smax = max{s1, . . . , sN}.

If σ is the empty word we write Eσ = E, and if σ = σ1 · · ·σn ∈ Ξn, n ≥ 1,
then

Sσ := Sσ1 ◦ · · · ◦ Sσn , Eσ := Sσ(E), sσ := sσ1 · · · sσn .

Each set Eσ for σ ∈ Ξ∗ is called a cylinder set. If S1, . . . , SN satisfy the
strong separation condition, then it is easy to see that µ(Eσ ∩ Eτ ) = 0 for
any two incomparable words σ and τ in Ξ∗.

Inductively, let us define functions g(1), g(2) : Ξ∗ → R as follows: If σ = i,
where 1 ≤ i ≤ N , set

g(1)(i) := p0ti, g(2)(i) := pi.

Now suppose g(1)(σ) and g(2)(σ) are defined for all words σ ∈ Ξk for some
k ≥ 1. For τ ∈ Ξk+1, we have τ− ∈ Ξk and τ = τ− ∗ i for some i = 1, . . . , N .
We define

(4) g(1)(τ) = g(1)(τ−)ti + g(2)(τ−)p0ti and g(2)(τ) = g(2)(τ−)pi.

Thus g(1)(τ) and g(2)(τ) are well defined for τ ∈ Ξk+1. Hence g(1)(τ) and
g(2)(τ) are well defined for all words τ ∈ Ξ∗. For the attracting measure µ,
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by (3) we have

µ = p0ν +
N∑
j=1

pjµ ◦ S−1j =
N∑
j=1

(p0tjν ◦ S−1j + pjµ ◦ S−1j ).

Then using (4), by induction, for any n ≥ 1 we can prove

µ =
∑
|τ |=n

(
g(1)(τ)ν ◦ S−1τ + g(2)(τ)µ ◦ S−1τ

)
.

Hence for σ ∈ Ξ∗, we have µ(Eσ) = g(1)(σ)+g(2)(σ), and for σ ∈ Ξn, τ ∈ Ξp
with n, p ≥ 1, we have

µ(Eστ ) = g(1)(σ)ν(Eτ ) + g(2)(σ)µ(Eτ ).

Let us now prove the following lemma.

Lemma 2.1. For any σ, τ ∈ Ξ∗, we have

µ(Eστ ) ≤ p−10 µ(Eσ)µ(Eτ ).

Proof. For σ = j where 1 ≤ j ≤ N , since µ(Eσ) = p0tj + pj ≥ p0ν(Eσ),
we have

ν(Eσ) ≤ p−10 µ(Eσ).

For σ = σ1 · · ·σk ∈ Ξ∗ where k > 1, set σ[ = σ2 · · ·σk. Then

µ(Eσ) = g(1)(σ1)ν(Eσ[) + g(2)(σ1)µ(Eσ[) = p0tσ1ν(Eσ[) + pσ1µ(Eσ[),

which implies µ(Eσ) ≥ p0ν(Eσ), i.e., ν(Eσ) ≤ p−10 µ(Eσ). Thus for any two
words σ, τ ∈ Ξ∗, we have

µ(Eστ ) ≤ g(1)(σ)p−10 µ(Eτ ) + g(2)(σ)µ(Eτ )

≤ p−10 (g(1)(σ) + g(2)(σ))µ(Eτ ) ≤ p−10 µ(Eσ)µ(Eτ ).

For q, t ∈ R, let us define the auxiliary function

Zk(q, t) =
∑
|σ|=k

µ(Eσ)qstσ, k ≥ 1.

Then for the condensation system ({Sj}, 〈pj〉, ν) with attracting measure µ,
the topological pressure P (q, t) is defined as follows:

(5) P (q, t) = lim
k→∞

1

k
logZk(q, t) = lim

k→∞

1

k
log

∑
|σ|=k

µ(Eσ)qstσ,

where q, t ∈ R. The limit above exists by the standard theory of subadditive
sequences (cf. [F1]), since for n, p ≥ 1 and q, t ∈ R, by Lemma 2.1, we have

Zn+p(q, t) ≤ p−|t|0 Zn(q, t)Zp(q, t).

The following proposition states the well-known properties of the function
P (q, t) (cf. [F2, P]).
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Proposition 2.2.

(i) P (q, t) : R× R→ R is continuous.
(ii) P (q, t) is strictly decreasing in each variable separately.

(iii) For fixed q we have

lim
t→∞

P (q, t) = −∞ and lim
t→−∞

P (q, t) =∞.

(iv) P (q, t) is convex: if q1, q2, t1, t2 ∈ R, a1, a2 ≥ 0, a1 + a2 = 1, then

P (a1q1 + a2q2, a1t1 + a2t2) ≤ a1P (q1, t1) + a2P (q2, t2).

For a given q ∈ R, P (q, t) is a continuous function of t. Its value ranges
from −∞ (when t → ∞) to ∞ (when t → −∞). Therefore, by the inter-
mediate value theorem there is a real number β such that P (q, β) = 0. The
solution β is unique, since P (q, ·) is strictly decreasing. This defines β im-
plicitly as a function of q: for each q there is a unique β = β(q) such that
P (q, β(q)) = 0.

The following proposition gives the well-known properties of the function
β(q) (cf. [F2, P]).

Proposition 2.3. Let β = β(q) be defined by P (q, β(q)) = 0. Then

(i) β is a continuous function of the real variable q.
(ii) β is strictly decreasing: if q1 < q2, then β(q1) > β(q2).
(iii) limq→−∞ β(q) =∞ and limq→∞ β(q) = −∞.
(iv) β is convex: if q1, q2, a1, a2 ∈ R with a1, a2 ≥ 0 and a1 + a2 = 1,

then
β(a1q1 + a2q2) ≤ a1β(q1) + a2β(q2).

The function β(q) is sometimes denoted by T (q) and called the temper-
ature function. A more general discussion of this function can be found in
[HJKPS], where our β(q) corresponds to −τ(q) in their notation.

Remark 2.4. If q = 0, then P (q, β(q)) = 0 implies

0 = lim
k→∞

1

k
log

∑
|σ|=k

sβ(0)σ = lim
k→∞

1

k
log
( N∑
j=1

s
β(0)
j

)k
= log

N∑
j=1

s
β(0)
j ,

and so
N∑
j=1

s
β(0)
j = 1.

Hence, β(0) gives the Hausdorff dimension dimH(E) of the inhomogeneous
self-similar set E. Note that

P (1, 0) = lim
k→∞

1

k
log

∑
|σ|=k

µ(Eσ) = lim
k→∞

1

k
log 1 = 0,

and hence β(1) = 0.

In the next section we state and prove the main result of the paper.
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3. Main result. The following theorem gives the bounds of the lower
and the upper quantization dimensions of the attracting measure µ in terms
of the quantization dimension of the self-similar measure ν and the temper-
ature function β(q).

Theorem 3.1. Let µ be the attracting measure of the condensation sys-
tem ({Sj}, 〈pj〉, ν), where {S1, . . . , SN} satisfies the strong separation con-
dition, and ν is a self-similar measure. Let β = β(q) be the temperature
function of the thermodynamic formalism for the attracting measure µ. For
each r ∈ (0,∞) choose qr such that β(qr) = rqr. Then the lower and the
upper quantization dimensions Dr(µ) and Dr(µ) of order r of the attracting
measure µ satisfy

Dr(ν) ≤ Dr(µ) ≤ Dr(µ) ≤ β(qr)

1− qr
,

where Dr(ν) is the quantization dimension of order r of ν.

To prove the theorem we need some lemmas and propositions. The fol-
lowing lemma plays a vital role.

Lemma 3.2. Let 0 < r < ∞ be fixed. Then there exists exactly one
κr ∈ (0,∞) such that

lim
k→∞

1

k
log

∑
|σ|=k

(µ(Eσ)srσ)κr/(r+κr) = 0.

Proof. By (5) we have

P (t, rt) = lim
k→∞

1

k
log

∑
|σ|=k

(µ(Eσ)srσ)t.

If t = 0, then

P (0, 0) = lim
k→∞

1

k
log

∑
|σ|=k

1 = lim
k→∞

1

k
logNk = logN > 0;

and if t = 1,

P (1, r1) = lim
k→∞

1

k
log

∑
|σ|=k

µ(Eσ)srσ ≤ lim
k→∞

1

k
log

∑
|σ|=k

µ(Eσ)skrmax

= lim
k→∞

1

k
log

∑
|σ|=k

µ(Eσ) + r log smax

= r log smax < 0.

Since P (t, rt) is continuous and strictly decreasing, the unique t ∈ R for
which P (t, rt) = 0 must lie between 0 and 1. Then κr = rt/(1− t) satisfies
the conclusion of the lemma.
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Let us now give the following lemma.

Lemma 3.3. For any τ, σ ∈ Ξ∗, we have

µ(Eτσ) ≥ p0µ(Eτ )ν(Eσ).

Proof. As shown in the proof of Lemma 2.1, we have µ(Eσ) ≥ p0ν(Eσ)
for all σ ∈ Ξ∗. Thus,

µ(Eτσ) = g(1)(τ)ν(Eσ) + g(2)(τ)µ(Eσ) ≥ g(1)(τ)ν(Eσ) + g(2)(τ)p0ν(Eσ),

which implies

µ(Eτσ) ≥ p0(g(1)(τ) + g(2)(τ))ν(Eσ) = p0µ(Eτ )ν(Eσ).

From the above lemma the following corollary can easily be deduced.

Corollary 3.4 (cf. [Zh, Lemma 1]). Let 0 < r < ∞ be fixed. Then
there exists a constant 0 < C < 1 such that for all σ ∈ Ξ∗, we have

µ(Eσ)srσ ≥ Cµ(Eσ−)srσ− .

Proof. Let L = min{t1sr1, . . . , tNsrN}. Write C = p0L; then 0 < C < 1.
Using the above lemma, we have

µ(Eσ)srσ ≥ p0µ(Eσ−)ν(Eσ|σ|)s
r
σ−s

r
σ|σ|
≥ Cµ(Eσ−)srσ− .

We call Γ ⊂ Ξ∗ a finite maximal antichain if Γ is a finite set of words
in Ξ∗ such that every sequence in Ξ is an extension of some word in Γ , but
no word of Γ is an extension of another word in Γ . Of course, this requires
that the index set {1, . . . , N} is finite. We will make this assumption in the
remainder of this paper. By |Γ | we denote the cardinality of Γ . Note that
from the definition of Γ it follows that no finite maximal antichain contains
the empty word ∅ as all words are extensions of ∅.

Let us now state the following two lemmas.

Lemma 3.5 (cf. [Zh, Lemma 4]). Let Γ ⊂ Ξ∗ be a finite maximal an-
tichain, n ∈ N with n ≥ |Γ |, and 0 < r < ∞. Then for any sequence
{nσ : σ ∈ Γ} of natural numbers satisfying nσ ≥ 1,

∑
σ∈Γ nσ ≤ n, we have

V2n,r(µ) ≤
∑
σ∈Γ

(
g(1)(σ)srσVnσ ,r(ν) + g(2)(σ)srσVnσ ,r(µ)

)
.

Lemma 3.6 (cf. [Zh, Lemma 5]). There exists a constant D > 1 such
that Vn,r(ν) ≤ DVn,r(µ) for all n ≥ 1.

Remark 3.7. Let 0 < r < ∞ be fixed and κr be as in Lemma 3.2. We
assume that there exists a constant Cr > 1 such that for any finite maximal
antichain Γ , ∑

σ∈Γ
(µ(Eσ)srσ)κr/(r+κr) ≤ Cr.

This assumption is needed to prove the following proposition.
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Proposition 3.8. Let 0 < r < ∞ be fixed and κr be as in Lemma 3.2.
Then under the assumption of Remark 3.7, we have

lim sup
n→∞

nV κr/r
n,r (µ) <∞.

Proof. Let 0 < C < 1 be the constant as defined in Corollary 3.4, and Cr
be as in Remark 3.7. Fix m ∈ N. Choose any n ∈ N so that m/n < CC−1r ,
and set ε = CrC

−1m/n. Then 0 < ε < 1. Let

Γ = Γ (ε) = {σ ∈ Ξ∗ : (µ(Eσ)srσ)κr/(r+κr) < ε ≤ (µ(Eσ−)srσ−)κr/(r+κr)}.
Then by Remark 3.7 and Corollary 3.4, we have

Cr≥
∑
σ∈Γ

(µ(Eσ)srσ)κr/(r+κr)≥Cκr/(r+κr)
∑
σ∈Γ

(µ(Eσ−)srσ−)κr/(r+κr) > Cε|Γ |,

which implies |Γ | < Cr(Cε)
−1 = n/m < ∞, i.e., Γ is a finite maximal

antichain and n > |Γ |m. Hence by Lemmas 3.5 and 3.6, we have

V2n,r(µ) ≤
∑
σ∈Γ

(
g(1)(σ)srσVm,r(ν) + g(2)(σ)srσVm,r(µ)

)
≤ D

∑
σ∈Γ

µ(Eσ)srσVm,r(µ)

= D
∑
σ∈Γ

(µ(Eσ)srσ)κr/(r+κr)(µ(Eσ)srσ)r/(r+κr)Vm,r(µ),

which implies

V2n,r(µ) ≤ D
∑
σ∈Γ

(µ(Eσ)srσ)κr/(r+κr)εr/κrVm,r(µ) ≤ DCrεr/κrVm,r(µ)

= DCr(CrC
−1)r/κr

(
m

n

)r/κr
Vm,r(µ),

yielding

2nV
κr/r
2n,r (µ) ≤ 2(DCr)

κr/rCrC
−1mV κr/r

m,r (µ).

Since for fixed m, this inequality holds for all but a finite number of n, we
have

lim sup
n→∞

2nV
κr/r
2n,r (µ) ≤ 2(DCr)

κr/rCrC
−1mV κr/r

m,r (µ) <∞.

Let us now prove the following proposition.

Proposition 3.9. Let the similarity mappings {Sj : 1 ≤ j ≤ N} satisfy
the strong separation condition and let 0 < r < ∞. Moreover, let Dr(ν) be
the quantization dimension of order r of the self-similar measure ν. Then

lim inf
n→∞

neDr(ν)n,r (µ) > 0.
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Proof. Since Dr(ν) is the quantization dimension of order r of the self-

similar measure ν, by (2) it follows that lim infn→∞ ne
Dr(ν)
n,r (ν) > 0. By

Lemma 3.6, for any n ≥ 1, we have

en,r(ν) = V 1/r
n,r (ν) ≤ D1/rV 1/r

n,r (µ) = D1/ren,r(µ).

Hence,

lim inf
n→∞

neDr(ν)n,r (µ) ≥ D−Dr(ν)/r lim inf
n→∞

neDr(ν)n,r (ν) > 0.

Proof of Theorem 3.1. By Proposition 11.3 of [GL1], we know that:

(a) If 0 ≤ t < Dr < s then

lim
n→∞

netn,r =∞ and lim inf
n→∞

nesn,r = 0.

(b) If 0 ≤ t < Dr < s then

lim sup
n→∞

netn,r =∞ and lim
n→∞

nesn,r = 0.

By (a) and Proposition 3.9, we have Dr(ν) ≤ Dr(µ). By (b) and Propo-
sition 3.8, we have Dr(µ) ≤ κr. Hence, Dr(ν) ≤ Dr(µ) ≤ Dr(µ) ≤ κr. Note
that if qr = κr/(r + κr) then by Lemma 3.2, β(qr) = rqr. Thus it follows
that κr = β(qr)/(1− qr), proving the theorem.

Remark 3.10. If p0tj + pj = tj for 1 ≤ j ≤ N , then the inhomogeneous
self-similar measure µ reduces to the self-similar measure ν, i.e., µ = ν (for
the proof see [Zh, Proposition 1]). Then by Lemma 3.2, we have

0 = lim
k→∞

1

k
log

∑
|σ|=k

(tσs
r
σ)κr/(r+κr) = lim

k→∞

1

k
log
( N∑
j=1

(tjs
r
j)
κr/(r+κr)

)k
= log

( N∑
j=1

(tjs
r
j)
κr/(r+κr)

)
,

and so
N∑
j=1

(tjs
r
j)
κr/(r+κr) = 1.

Graf and Luschgy showed that the above κr is the quantization dimension
of order r of the self-similar measure ν, i.e., Dr(ν) = κr (cf. [GL1, GL2]).
Thus, if p0tj + pj = tj for 1 ≤ j ≤ N , then our result reduces to Dr(ν) =
Dr(µ) = Dr(µ) = κr, i.e., Dr(ν) = Dr(µ) = κr.
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