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Summary. Let D be either a convex domain in Rd or a domain satisfying the conditions
(A) and (B) considered by Lions and Sznitman (1984) and Saisho (1987). We investigate
convergence in law as well as in Lp for the Euler and Euler–Peano schemes for stochastic
differential equations in D with normal reflection at the boundary. The coefficients are
measurable, continuous almost everywhere with respect to the Lebesgue measure, and the
diffusion coefficient may degenerate on some subsets of the domain.

1. Introduction. In this paper we investigate solutions of d-dimensional
stochastic differential equations (SDEs) on a domain D ⊆ Rd with reflecting
boundary condition of the form

(1.1) Xt = X0 +

t�

0

σ(Xs) dWs +

t�

0

b(Xs) ds+Kt, t ≥ 0.

Here X0 = x0 ∈ D = D∪∂D, X is a reflecting process on D, K is a bounded
variation process with variation |K| increasing only when Xt ∈ ∂D, W is a
d-dimensional standard Wiener process and σ : D → Rd ⊗ Rd, b : D → Rd
are measurable functions. Equation (1.1) is called the Skorokhod SDE by
analogy to the one-dimensional case first investigated by Skorokhod (1961)
for D = R+. The problem of existence, uniqueness and approximation for
solutions of the Skorokhod SDE attracted attention of many researchers who
obtained many deep and important results. Equation (1.1) on a domain more
general than a half-line or a half-space was first discussed by Tanaka (1979)
for D any convex domain in Rd, and then by Lions and Sznitman (1984),
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Saisho (1987), Constantini (1992), Dupuis and Ishii (1993), Storm (1995),
Słomiński (1996) and many others for D satisfying some weaker conditions.

In this paper we assume that D is a convex subset of Rd or satisfies
quite general conditions (A), (B) considered by Lions and Sznitman (1984)
and Saisho (1987) and we discuss the problem of approximating solutions of
(1.1) when the coefficients σ, b are possibly discontinuous. We investigate two
approximations of X: discrete {Xn}n∈N and continuous {Xn}n∈N, defined
to be the solutions of the SDEs with reflecting boundary conditions of the
form

(1.2) Xn
t = X0 +

t�

0

σ(Xn
s−) dW

ρn

s +

t�

0

b(Xn
s−) dρ

n
s +Kn

t , t ∈ R+,

and

(1.3) Xn
t = X0 +

t�

0

σ(Xn,ρn

s− ) dWs +

t�

0

b(Xn,ρn

s− ) ds+Kn
t , t ∈ R+,

respectively, where ρnt = max{k/n : k ∈ N∪{0}, k/n ≤ t} and W ρn

t is a dis-
cretization ofW , i.e.W ρn

t =Wk/n for t ∈ [k/n, (k+1)/n), k ∈ N∪{0}, n ∈ N.
The sequences {Xn}n∈N and {Xn}n∈N are called the Euler and Euler–Peano
schemes for (1.1) respectively. We will see in Section 2 that {Xn}n∈N and in
some cases also {Xn}n∈N can be computed by simple recurrent formulas.

Note that (1.2) is a well known projection scheme considered earlier in
Chitashvili and Lazrieva (1981), Słomiński (1994) and Pettersson (1995).
The approximation (1.3) comes from Słomiński (1994) and Lépingle (1995).
The papers cited above contain some results on Lp convergence of {Xn}n∈N
and {Xn}n∈N to the solution X of (1.1). However, these results are proved
under rather restrictive conditions like boundedness of the domain, condition
(β) introduced by Tanaka (1979) as well as boundedness and Lipschitz con-
tinuity of coefficients. A similar result for {Xn}n∈N under the assumptions
that the coefficients σ, b of (1.1) are continuous and the SDE (1.1) has the
pathwise uniqueness property can be found in Słomiński (2001).

It is worth mentioning some papers on approximations of solutions of
nonreflecting SDEs with discontinuous coefficients. In the multidimensional
case, convergence in probability of {Xn}n∈N is proved in Gyöngy and Krylov
(1996). Approximations of weak solutions, under the assumption that the
coefficients are discontinuous on some sets of Lebesgue measure zero, were
considered by Krylov and Liptser (2002), Yan (2002) and Yamada (1986).
The results in the last paper are only one-dimensional.

To the best of our knowledge, first theorems on approximations for re-
flecting SDEs with discontinuous coefficients appear in Semrau (2007, 2009).
The first paper establishes convergence in law of {Xn}n∈N and {Xn}n∈N to
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a solution of the SDE (1.1) on a convex domain D under the assumptions
that the coefficients σσ∗, b are continuous almost everywhere with respect
to the Lebesgue measure, satisfy the linear growth condition, σσ∗ is uni-
formly elliptic in D and the SDE (1.1) has a unique weak solution. The
same assumptions on the coefficients and the pathwise uniqueness property
of (1.1) give Lp convergence of our schemes. This is announced in the latter
paper.

In the present paper we strengthen and extend those results. First, we
considerably weaken the assumption of uniform ellipticity of σσ∗, and sec-
ondly, we give analogous theorems for D satisfying conditions (A) and (B).

Now we describe briefly the content of the paper. In Section 2 we inves-
tigate convergence in law of {Xn}n∈N and {Xn}n∈N to a weak solution of
(1.1) in a convex domain D. Here we assume that (1.1) has a unique weak
solution and σσ∗, b are measurable functions continuous almost everywhere
with respect to the Lebesgue measure, i.e.

(1.4) l(G) = 0, G = Dσσ∗ ∪Db,

where Dσσ∗ , Db are the sets of discontinuity points of σσ∗ and b respectively.
Moreover, σσ∗ and b have at most linear growth, i.e.

(1.5) ‖σσ∗(x)‖+ |b(x)|2 ≤ L(1 + |x|2), x ∈ D,

for some constant L > 0 and G ⊂ H, where H is a closed set in D with an
open neighborhood Hδ in D, for which σσ∗ is uniformly elliptic, i.e.

(1.6) (σσ∗(y)x, x) ≥ λ|x|2, y ∈ Hδ, x ∈ Rd,

for some constant λ > 0.
The conditions ensuring weak uniqueness of the SDE (1.1) in the case

of discontinuous coefficients σ, b were considered by Stroock and Varadhan
(1971) and Schmidt (1989). In the latter paper it is shown that if d = 1
and b ≡ 0, then (1.1) has a weak solution on D = [r1, r2] for every starting
point x0 ∈ D iff the set M of all x ∈ D such that

	
D∩Ux

σ−2(y) dy =∞ for
every open neighbourhood Ux of x is contained in the set N of zeros of σ.
Therefore, if σ is merely bounded and measurable, some additional assump-
tions on boundedness of (σσ∗)−1 are indispensable. Schmidt also proved
that in the above situation the solution of (1.1) is unique if N ⊆ M . In the
multidimensional case, from Stroock and Varadhan (1971) we know that a
sufficient condition for the uniqueness of a weak solution of (1.1) is that σσ∗
is bounded, continuous and uniformly elliptic, b is bounded measurable and
∂D is of class C2b . Such a D satisfies conditions (A) and (B).

Section 3 is devoted to the study of Lp convergence of {Xn}n∈N and
{Xn}n∈N under the same assumptions on the coefficients and D as in Sec-
tion 2 and the pathwise uniqueness property for (1.1).
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From the Yamada–Watanabe theorem (see e.g. Theorem 1.3 in Rong
(2000)) it is well known that (1.5), (1.6) and the pathwise uniqueness prop-
erty imply the existence of a unique strong solution of (1.1).

We do not know any more general conditions that guarantee the path-
wise uniqueness property for multidimensional equations with discontinuous
coefficients. In Semrau (2009) this property is shown for the one-dimensional
reflecting SDEs in the half-line D = R+. This result is proved under the as-
sumptions that σ and b satisfy the linear growth condition (1.5) for d = 1,
σ is uniformly positive and

(σ(x)− σ(y))2 ≤ |f(x)− f(y)|, x, y ≥ 0,

for some increasing and bounded function f : R+ → R. This theorem
generalizes the results of Nakao (1972) and Le Gall (1983) proved for one-
dimensional nonreflecting SDEs and strengthens the result of Zhang (1994),
who requires a stronger condition on σ, namely that σ ∈ C1.

Section 4 deals with the general case of domains satisfying conditions (A)
and (B). Here it is additionally required that the coefficients are bounded,
i.e.

(1.7) ‖σσ∗(x)‖+ |b(x)|2 ≤ L, x ∈ D,

for some constant L > 0. We consider convergence in law and in probability
of {Xn}n∈N and {Xn}n∈N.

An important point to note here is that some new generalized inequalities
of Krylov’s type for stochastic integrals are crucial tools used in the proofs
of theorems on convergence of our approximations.

Let us now introduce some definitions and notations used further on.
D(R+,Rd) is the space of all mappings x : R+ → Rd which are right
continuous and admit left-hand limits, equipped with the Skorokhod topol-
ogy J1. Processes we consider have their trajectories in D(R+,Rd). For a
given process X we denote by ∆Xt the difference Xt − Xt− and by Xρn

the discretization of X, i.e. Xρn

t = Xk/n for t ∈ [k/n, (k + 1)/n), k ∈
N ∪ {0}, n ∈ N. If X = (X1, . . . , Xd) is a local martingale then [X]t
stands for

∑d
i=1[X

i]t, where [Xi] is a quadratic variation process of Xi,
i = 1, . . . , d. If K = (K1, . . . ,Kd) is a process with locally finite variation
then |K|t stands for

∑d
i=1 |Ki|t, where |Ki|t is the total variation of Ki

on [0, t]. Further, Lp(Q), p ≥ 1 is the usual Lp-space with the Lebesgue
measure l on Q. Moreover, Rd ⊗ Rd is the space of d × d-matrices with the
norm ‖σ‖ = (trσσ∗)1/2, where σ∗ is the matrix transpose to σ. We write
B(x,R) = {y ∈ Rd : |y − x| ≤ R}, where | · | denotes the usual Euclidean
norm on Rd. Finally, “→D” and “→P ” denote convergence in law and in
probability respectively.
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2. Weak convergence in convex domains. LetD be a convex domain
in Rd. Define the set Nx of inward normal unit vectors at x ∈ ∂D by

Nx = {n ∈ Rd : |n| = 1, 〈y − x, n〉 ≥ 0 for all y ∈ D}.

Let (Ω,F , P ) be a probability space and (Ft)t∈R+ be a filtration on (Ω,F , P )
satisfying the usual conditions. Let Y be an (Ft)-adapted semimartingale
with initial value in D, i.e.

Yt = Y0 +Mt +At, t ∈ R+,

where Y0 ∈ D,M is an (Ft)-adapted local martingale, A is an (Ft)-adapted
process with locally bounded variation, and M0 = A0 = 0. Recall that a
pair (X,K) of (Ft)-adapted processes is called a solution to the Skorokhod
problem associated with Y if:

(i) Xt = Yt +Kt, t ∈ R+,
(ii) X is D-valued,
(iii) K is a process with locally bounded variation such that K0 = 0 and

Kt =

t�

0

ns d|K|s, |K|t =
t�

0

1{Xs∈∂D} d|K|s, t ∈ R+,

where ns ∈ NXs if Xs ∈ ∂D.

Recall also that the SDE (1.1) is said to have a weak solution if there
exists a filtered probability space (Ω,F , (F t)t∈R+ , P ), an (F t)-adapted Wie-
ner processW and a pair (X,K) of (F t)-adapted processes that is a solution
of the Skorokhod problem associated with

Y t = X0 +

t�

0

σ(Xs) dW s +

t�

0

b(Xs) ds.

If for any two weak solutions (X,K,W ), (Ω,F , (Ft)t∈R+ , P ) and (X,K,W ),
(Ω,F , (F t)t∈R+ , P ) with the same initial distribution, the laws of (X,K) and
(X,K) are the same, then we say that weak uniqueness holds for the SDE
(1.1).

We first consider the discrete Euler approximation {Xn}n∈N given by for-
mula (1.2). Let (Fρ

n

t )t∈R+ denote the discretization of (Ft)t∈R+ , i.e. Fρ
n

t =
Fk/n for t ∈ [k/n, (k+1)/n), k ∈ N∪{0}, n ∈ N. We say that the SDE (1.2)
has a strong solution if there exists a pair (Xn,Kn) of (Fρ

n

t )-adapted pro-
cesses such that (Xn,Kn) is a solution of the Skorokhod problem associated
with

(2.1) Y n
t = X0 +

t�

0

σ(Xn
s−) dW

ρn

s +

t�

0

b(Xn
s−) dρ

n
s .
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It is easy to prove that the solution Xn of the SDE (1.2) is given by the
recurrent formula

Xn
0 = X0,

Xn
(k+1)/n = Π

(
Xn
k/n + b(Xn

k/n)
1

n
+ σ(Xn

k/n)(W(k+1)/n −Wk/n)

)
and Xn

t = Xn
k/n for t ∈ [k/n, (k + 1)/n), k ∈ N ∪ {0}, n ∈ N, where Π(x)

is a projection of x on D.
We can now formulate our main result.

Theorem 2.1. Let {(Xn,Kn)}n∈N be a sequence of solutions of the
SDEs (1.2) with coefficients σ, b satisfying (1.4)–(1.6). If the SDE (1.1) has
a unique weak solution (X,K) then (Xn,Kn)→D (X,K) in D(R+,R2d).

Proof. From the proof of Theorem 2.1 in Semrau (2007) we know that for
every T ∈ R+ the sequences {supt≤T |Xn

t |}n∈N, {|Kn|T }n∈N are bounded in
probability and there exists a subsequence (n′) ⊂ (n) and processes X,K,W
such that

(2.2) (Xn′ ,Kn′ ,W ρn
′
)→
D
(X,K,W )

in D(R+,R3d), where W is a Wiener process with respect to the natural
filtration (FX,K,Wt )t∈R+ .

In the further part of the proof we need an inequality of Krylov’s type
for {Xn}n∈N.

Let

(2.3) ψ(x) =
dist(x,Hc

δ )

dist(x,H) + dist(x,Hc
δ )
, x ∈ D.

It is easy to see that

(i) ψ : D → [0, 1] is continuous,
(ii) ψ(x) = 1 for x ∈ H,
(iii) ψ(x) = 0 for x ∈ Hc

δ .

Lemma 2.2. Let τRn = inf{t : |Xn
t | > R}, R ∈ R+, n ∈ N. Then for all

bounded measurable functions f : D → R+ such that l(Df ) = 0,

lim sup
n→∞

E

T∧τRn�

0

(ψf)(Xn
s−) ds ≤ C‖ψf‖Ld(B(0,R)∩D)

,(2.4)

where C is a positive constant depending only on d, T,R and λ.

Proof. For every n ∈ N set

Ŷ n
t = X0 +

t�

0

σ(Xn
s−) dWs +

t�

0

b(Xn
s−) ds
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and let (X̂n, K̂n) be a solution of the Skorokhod problem associated with Ŷ n.
In the proof of Lemma 2.2 in Semrau (2007) it has been shown that for every
T ∈ R+,
(2.5) lim

n→∞
E sup
t≤T
|X̂n

t −Xn
t |2 = 0.

The semimartingale X̂n is of the form
X̂n
t = X0 + Ânt + M̂n

t + K̂n
t ,

where Ânt =
	t
0 b(X

n
s−) ds and M̂n

t =
	t
0 σ(X

n
s−) dWs. For every n ∈ N let

τ̂R
′

n = inf{t : |X̂n
t | > R′}, where R′ ∈ R+ and R′ > R. According to (2.5),

(2.6) lim
n→∞

P (T ≥ τRn > τ̂R
′

n ) = 0.

We also know that for every T ∈ R+,
sup
n∈N

E|Ân|T∧τ̂R′n
<∞ and sup

n∈N
E|K̂n|T <∞.

Moreover, by (1.6), for every t ≤ τ̂R′n the matrix Qnt defined as

Qnt =

(
(σσ∗)ij(Xn

t−) dt

trσσ∗(Xn
t−) dt

)d
i,j=1

is uniformly elliptic in Hδ, n ∈ N. Hence by the continuity of ψ, (2.5) and
Theorem 6(i) in Melnikov (1983), for every measurable f ,

lim sup
n→∞

E

T∧τ̂R′n�

0

ψ(Xn
s−)f(X̂

n
s ) d[M̂

n]s

≤ C1 lim sup
n→∞

E

T∧τ̂R′n�

0

(detQns )
1/dψ(Xn

s−)f(X̂
n
s ) d[M̂

n]s

= C1 lim sup
n→∞

E

T∧τ̂R′n�

0

(detQns )
1/d(ψf)(X̂n

s ) d[M̂
n]s

≤ C2‖ψf‖Ld(B(0,R′)∩D)
,

where C2 is a constant depending only on d, T,R′. If we assume now that f
is continuous and bounded then by the above and (2.5),

lim sup
n→∞

E

T∧τ̂R′n�

0

(ψf)(Xn
s−) d[M̂

n]s

= lim sup
n→∞

E

T∧τ̂R′n�

0

ψ(Xn
s−)f(X̂

n
s ) d[M̂

n]s

≤ C2‖ψf‖Ld(B(0,R′)∩D)
.
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As in the proof of Lemma 2.2 in Semrau (2007), we obtain the inequality

lim sup
n→∞

E

T∧τ̂R′n�

0

(ψf)(Xn
s−) ds ≤ C3‖ψf‖Ld(B(0,R′)∩D)

,

where C3 is a constant depending only on d, T,R′ and λ. From this and (2.6),
the same reasoning as in the above mentioned lemma gives the inequality

lim sup
n→∞

E

T∧τRn�

0

(ψf)(Xn
s−) ds ≤ C3‖ψf‖Ld(B(0,R)∩D)

.

It remains to prove that the above inequality is true for an arbitrary
nonnegative bounded function f such that l(Df ) = 0. For such an f and for
every ε > 0, there exists a continuous and bounded function f+ε such that
f ≤ f+ε and ‖f+ε − f‖Ld(B(0,R)∩D)

< ε. Since for f+ε the inequality (2.4) is
true,

lim sup
n→∞

E

T∧τRn�

0

(ψf)(Xn
s−) ds ≤ lim sup

n→∞
E

T∧τRn�

0

(ψf+ε )(Xn
s−) ds

≤ C‖ψf+ε ‖Ld(B(0,R)∩D)
.

As
‖ψf+ε ‖Ld(Kd

R∩D) ≤ ‖ψf‖Ld(B(0,R)∩D)
+ ε,

we have the desired conclusion.

For every n ∈ N, let τRn = inf{t ∈ R+ : |Xn
t | ≥ R or |Xn

t−| ≥ R} and
τR = inf{t ∈ R+ : |Xt| ≥ R or |Xt−| ≥ R}, R ∈ R+. In view of (2.2) and
Proposition VI.2.12 from Jacod and Shiryaev (2003), there exists a sequence
{Rk}k∈N with Rk ↑ ∞ such that for every k ∈ N,

(2.7)
(
τRk
n′ , X

n′,τ
Rk
n′ ,Kn′,τ

Rk
n′ ,W ρn

′
,τ

Rk
n′
)
→
D

(
τRk , XτRk ,KτRk ,W τRk

)
in R×D(R+,R3d). We next prove that

(2.8)
(
τRk
n′ , X

n′,τ
Rk
n′ ,

·∧τRk
n′�

0

σ(Xn′
s−) dW

ρn
′

s ,

·∧τRk
n′�

0

b(Xn′
s−) dρ

n′
s ,K

n′,τ
Rk
n′
)

→
D

(
τRk , XτRk ,

·∧τRk�

0

σ(Xs) dW s,

·∧τRk�

0

b(Xs) ds,K
τRk
)

in R×D(R+,R4d). To see this, it is convenient to define functions

σ̂(x) = (ψσ)(x), σ̃(x) = ((1− ψ)σ)(x),
b̂(x) = (ψb)(x), b̃(x) = ((1− ψ)b)(x).
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Since σ̃ and b̃ are continuous, from (2.7) and Theorem 2.6 of Jakubowski,
Mémin and Pages (1989), it follows that for every k ∈ N,

(2.9) V n′ =
(
τRk
n′ , X

n′,τ
Rk
n′ ,

·∧τRk
n′�

0

σ̃(Xn′
s−) dW

ρn
′

s ,

·∧τRk
n′�

0

b̃(Xn′
s−) dρ

n′
s ,K

n′,τ
Rk
n′
)

→
D
V =

(
τRk , XτRk ,

·∧τRk�

0

σ̃(Xs) dW s,

·∧τRk�

0

b̃(Xs) ds,K
τRk
)

in R×D(R+,R4d).
To show (2.8), we use mollification. We construct sequences {σi}i∈N and

{bi}i∈N of continuous functions σi : D → Rd ⊗ Rd, bi : D → Rd such that
‖σiσ∗i (x)‖ + |bi(x)|2 ≤ L(1 + |x|2), x ∈ Rd, and σk,ji → σk,j and bli → bl in
Ld(K), k, j, l = 1, . . . , d, for every compact subset K ⊂ D.

Let σ̂i := ψσi, b̂i := ψbi, i ∈ N. By (2.7), (2.9) and Theorem 2.6 from
Jakubowski, Mémin and Pages (1989), for every i ∈ N,

(2.10)
(
V n′ ,

·∧τRk
n′�

0

σ̂i(X
n′
s−) dW

ρn
′

s ,

·∧τRk
n′�

0

b̂i(X
n′
s−) dρ

n′
s

)

→
D

(
V,

·∧τRk�

0

σ̂i(Xs) dW s,

·∧τRk�

0

b̂i(Xs) ds
)

in R×D(R+,R6d).
Since τRn ≤ τRn and σi → σ in Ldloc, Lemma 2.2 and the Lebesgue domi-

nated convergence theorem show that for every k ∈ N and every T ∈ R+,

lim
i→∞

lim sup
n′→∞

E
[ ·�
0

(σ̂i − σ̂)(Xn′
s−) dW

ρn
′

s

]
T∧τRk

n′

≤ lim
i→∞

lim sup
n′→∞

E

T∧τRk
n′�

0

‖(σ̂i − σ̂)(σ̂i − σ̂)∗(Xn′
s−)‖2 ds

= lim
i→∞

lim sup
n′→∞

E

T∧τRk
n′�

0

ψ2(Xn′
s−)‖(σi − σ)(σi − σ)∗(Xn′

s−)‖2 ds

≤ C lim
i→∞

∥∥ψ2‖(σi − σ)(σi − σ)∗‖2
∥∥
Ld(B(0,Rk)∩D)

= 0.

Similarly, by the definition of variation,
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lim
i→∞

lim sup
n′→∞

E
∣∣∣ ·�
0

(b̂i − b̂)(Xn′
s−) dρ

n′
s

∣∣∣
T∧τRk

n′

≤ d1/2 lim
i→∞

lim sup
n′→∞

E

T∧τRk
n′�

0

|(b̂i − b̂)(Xn′
s−)| ds

= d1/2 lim
i→∞

lim sup
n′→∞

E

T∧τRk
n′�

0

ψ(Xn′
s−)|(bi − b)(Xn′

s−)| ds

≤ d1/2C lim
i→∞

∥∥ψ|bi − b|∥∥Ld(B(0,Rk)∩D)
= 0.

Hence, for every k ∈ N and every ε > 0,

(2.11)

lim
i→∞

lim sup
n′→∞

P
(
sup
t≤T

∣∣∣ t∧τ
Rk
n′�

0

σ̂i(X
n′
s−) dW

ρn
′

s −
t∧τRk

n′�

0

σ̂(Xn′
s−) dW

ρn
′

s

∣∣∣ ≥ ε) = 0

and

(2.12)

lim
i→∞

lim sup
n′→∞

P
(
sup
t≤T

∣∣∣ t∧τ
Rk
n′�

0

b̂i(X
n′
s−) dρ

n′
s −

t∧τRk
n′�

0

b̂(Xn′
s−) dρ

n′
s

∣∣∣ ≥ ε) = 0.

Using (2.4), in a similar way to the proof of Theorem 2.1 in Semrau (2007),
we can show that for every measurable function f : D → R+,

(2.13) E

T∧τRk�

0

(ψf)(Xs) ds ≤ C‖ψf‖Ld(B(0,R)∩D)
.

By the above, in much the same way as for Xn′ and W ρn
′
, we show that for

every T ∈ R+,

lim
i→∞

E
[ ·�
0

(σ̂i − σ̂)(Xs) dW s

]
T∧τRk

= 0,

lim
i→∞

E
∣∣∣ ·�
0

(b̂i − b̂)(Xs) ds
∣∣∣
T∧τRk

= 0.

Therefore, in view of (2.10)–(2.12) and Theorem 3.2 from Billingsley (1999),

(2.14)
(
V n′ ,

·∧τRk
n′�

0

σ̂(Xn′
s−) dW

ρn
′

s ,

·∧τRk
n′�

0

b̂(Xn′
s−) dρ

n′
s

)
→
D

(
V,

·∧τRk�

0

σ̂(Xs) dW s,

·∧τRk�

0

b̂(Xs) ds
)
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in R×D(R+,R6d). But σ = σ̃+ σ̂ and b = b̃+ b̂, therefore (2.8) follows from
(2.14) and Proposition VI.2.2 in Jacod and Shiryaev (2003).

The rest of the proof runs as in the proof of Theorem 2.1 in Semrau
(2007).

Remark 2.3. Theorem 2.1 is a generalization of Theorem 2.1 in Semrau
(2007).

Consider now the continuous approximation {Xn}n∈N of X defined as
the solutions of the SDEs (1.3). We say that the SDE (1.3) have a strong
solution if there exists a pair (Xn,Kn) of (Ft)-adapted processes such that
(Xn,Kn) is a solution of the Skorokhod problem associated with

(2.15) Y n
t = X0 +

t�

0

σ(Xn,ρn

s− ) dWs +

t�

0

b(Xn,ρn

s− ) ds, t ∈ R+.

It is worth pointing out that we can give a simple simulation scheme asso-
ciated with this approximation in the case D = Rd−1 × R+ (see Lépingle
(1995)).

For such approximation one can obtain a similar result as for {Xn}n∈N.
It is described in the following theorem.

Theorem 2.4. Let {(Xn,Kn)}n∈N be a sequence of solutions of the
SDEs (1.3) with coefficients σ, b satisfying (1.4)–(1.6). If the SDE (1.1) has
a unique weak solution (X,K) then (Xn,Kn)→D (X,K) in D(R+,R2d).

This result may be proved in much the same way as Theorem 2.1 because
Lemma 2.2 holds true with Xn replaced by Xn,ρn .

Remark 2.5. Theorem 2.4 is a generalization of Theorem 3.1 in Semrau
(2007).

3. Lp convergence in convex domains. This section contains some
results on approximations of the strong solution of (1.1).

Let W be an (Ft)-adapted Wiener process. Recall that the SDE (1.1)
has a strong solution if there exists a pair (X,K) of (Ft)-adapted processes
that is a solution of the Skorokhod problem associated with

Yt = X0 +

t�

0

σ(Xs) dWs +

t�

0

b(Xs) ds, t ≥ 0.

In the proofs of the results on Lp convergence for the Euler and Euler–
Peano schemes for the SDE (1.1) in Semrau (2009) we used techniques from
the proofs of the respective theorems on weak convergence in Semrau (2007).
The same methods work for the results mentioned below. Using some steps
from the proofs in the previous section, in a similar way to Theorems 2.1
and 3.1 from Semrau (2009) we can obtain the following theorems.
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Theorem 3.1. Let {(Xn,Kn)}n∈N be a sequence of solutions of the
SDEs (1.2) with coefficients σ, b satisfying (1.4)–(1.6). If the solution to the
SDE (1.1) is pathwise unique, then for every p ∈ N,

E sup
t≤T
|Xn

t −Xt|2p → 0, T ≥ 0.

Theorem 3.2. Let {(Xn,Kn)}n∈N be a sequence of solutions of the
SDEs (1.3) with coefficients σ, b satisfying (1.4)–(1.6). If the solution to the
SDE (1.1) is pathwise unique, then for every p ∈ N,

E sup
t≤T
|Xn

t −Xt|2p → 0, T ≥ 0.

Remark 3.3. The above theorems generalize Theorems 2.1 and 3.1 in
Semrau (2009).

4. General domains. In this section we discuss the case of a domain
satisfying the following conditions:

(A) There exists a constant r0 > 0 such that Nx = Nx,r0 6= ∅ for every
x ∈ ∂D, where

Nx,r = {n ∈ Rd : |n| = 1, B(x− rn, r) ∩D = ∅}, Nx,∞ =
⋂
r>0

Nx,r.

(B) There exist constants δ > 0 and β ≥ 1 such that for every x ∈ ∂D
there is a unit vector lx with

〈lx, n〉 ≥
1

β
for every n ∈

⋃
y∈B(x,δ)∩∂D

Ny,

where 〈·, ·〉 denotes the usual inner product in Rd.
Remark 4.1. (i) If condition (A) is satisfied and dist(x,D) < r0, x /∈ D,

then there exists a unique Π(x) ∈ D such that |x−Π(x)| = dist(x,D) and
moreover (Π(x)− x)/|Π(x)− x| ∈ NΠ(x).

(ii) If D is a convex domain in Rd with nonempty interior then r0 = ∞
and assumptions (A), (B) are satisfied for d = 1, 2. For d > 2 there exists
a sequence {Dk}n∈N of bounded convex sets satisfying conditions (A), (B)
such that Dk ↑ D (e.g. Dk = B(0, k) ∩D, k ∈ N).

In the case when D satisfies the above conditions, if r0 <∞, the random
variables Xt, X

n
t , X

n
t are not necessarily integrable. In order to get conver-

gence results, it is necessary to put some restriction on the coefficients. It is
additionally required that they are bounded.

First we will look more closely at weak convergence of our schemes.

Theorem 4.2. Let {(Xn,Kn)}n∈N be a sequence of solutions of the
SDEs (1.2) with coefficients σ, b satisfying (1.4), (1.6) and (1.7). If the SDE
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(1.1) has a unique weak solution (X,K) then (Xn,Kn) →D (X,K) in
D(R+,R2d).

Proof. Our proof starts with the observation that {(Xn,Kn,W %n)}n∈N
is tight in D(R+,R3d). Indeed, let

τkn = inf

{
t ∈ R+ : |Kn|t > k ∨ |∆W %n

t |+
1

n
≥ r0

4L

}
, k, n ∈ N.

On account of Theorem 7.2 in Słomiński (1996), for every T ∈ R+ the
sequence {|Kn|T }n∈N is bounded in probability. Moreover,

sup
t≤T
|∆W %n

t | → 0 a.s., T ∈ R+,

and consequently

(4.1) lim
k→∞

lim sup
n→∞

P (τkn ≤ T ) = 0, T ∈ R+.

Let {γn}n∈N be a sequence of (Fρ
n

t ) stopping times and let {δn}n∈N be a
sequence of positive constants such that δn ↓ 0 and γn + δn ≤ T , n ∈ N,
T ∈ R+. In order to get tightness of {Xn}n∈N, it will be necessary to check
that

Xn
γn+δn −X

n
γn→P 0.

Having (4.1), it is sufficient to show that for every k ∈ N,

lim
n→∞

E|Xn,τkn−
γn+δn

−Xn,τkn−
γn |2 = 0.

According to Theorem 1 from Słomiński (1994), Schwarz’s inequality and
(1.7),

E|Xn,τkn−
γn+δn

−Xn,τkn−
γn |2 = E|Xn

(γn+δn)∧τkn−
−Xn

γn∧τkn−
|2

≤ C1E
([ ·�

0

σ(Xn
s−) dW

ρn

s

](γn+δn)∧τkn−
γn∧τkn−

+
〈 ·�

0

σ(Xn
s−) dW

ρn

s

〉(γn+δn)∧τkn−
γn∧τkn−

+
(∣∣∣ ·�

0

b(Xn
s−) dρ

n
s

∣∣∣(γn+δn)∧τkn−
γn∧τkn−

)2)

≤ C1E
(
2d

(γn+δn)∧τkn−�

γn∧τkn−

‖σσ∗(Xn
s−)‖ ds+ dδn

(γn+δn)∧τkn−�

γn∧τkn−

|b(Xn
s−)|2 ds

)
≤ dLC1(2 + δn)δn −−−→

n→∞
0.

It can be similarly shown that

lim
n→∞

E|Kn,τkn−
γn+δn

−Kn,τkn−
γn |2 = 0.
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Consequently, by the criterion given by Aldous (1978), {(Xn,Kn,W %n)}n∈N
is tight in D(R+,R3d).

Our next goal is again to obtain a suitable Krylov type inequality for
{Xn}n∈N, which is necessary to finish this proof.

Lemma 4.3. Let τRn = inf{t : |Xn
t | > R}, R ∈ R+, n ∈ N. Then for all

bounded measurable functions f : D → R+ such that l(Df ) = 0,

(4.2) lim sup
n→∞

E

T∧τRn�

0

(ψf)(Xn
s−) ds ≤ C‖ψf‖Ld(B(0,R)∩D)

,

where C is a positive constant depending only on d, T , R and λ.

Proof. We proceed analogously to the proof of Lemma 2.2, but in the
different manner we show that for every T ∈ R,

(4.3) sup
t≤T
|X̂n

t −Xn
t |2→P 0.

First note that similar arguments to that used in the proof of Lemma 2.2
in Semrau (2007) can be applied to get the estimates

(4.4) E sup
t≤T
|Ŷ n
t − Y n

t |2 = E sup
t≤T
|σ(Xn

ρnt −)(Wt −Wρnt
) + b(Xn

ρnt −)(t− ρ
n
t )|2

≤ 2LE
{
d sup
t≤T
|Wt −Wρnt

|2 + sup
t≤T
|t− ρnt |2

}
≤ 2L

{
dE

{
ωW

(
1

n
, T

)}2

+

(
1

n

)2}
≤ C3

lnn

n
, n > 1.

Let

τkn = inf

{
t ∈ R+ : |Kn|t + |K̂n|t > k ∨ |∆W %n

t |+
1

n
≥ r0

4L

}
, k, n ∈ N.

Since supt≤T |∆W
%n

t | → 0 a.s. and {|Kn|T }n∈N, {|K̂n|T }n∈N are bounded in
probability, it follows that for every T ∈ R+,

(4.5) lim
k→∞

lim sup
n→∞

P (τkn ≤ T ) = 0.

On account of Lemma 2.3 in Saisho (1987), for every t ≤ T ,

|X̂n,τkn
t −Xn,τkn−

t |2 ≤ |Ŷ n,τkn
t − Y n,τkn−

t |2

+
1

r0

t�

0

|X̂n,τkn
s −Xn,τkn−

s |2 d(|K̂n,τkn |s + |Kn,τkn−|s)

+ 2

t�

0

(Ŷ
n,τkn
t − Y n,τkn−

t − Ŷ n,τkn
s + Y n,τkn−

s ) d(K̂n,τkn
s −Kn,τkn−

s ).
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Moreover, for every stopping time τ , we have |∆Kn,τkn−
τ | ≤ |∆Y n,τkn−

τ | ≤ r0/4.
Consequently, using the estimates from the proof of Lemma 2.2 in Semrau
(2007) and (4.4), we get

E sup
t≤T∧τ

|X̂n,τkn
t −Xn,τkn−

t |2 ≤ E sup
t≤T∧τ

|Ŷ n,τkn
t − Y n,τkn−

t |2

+ 4
√
2
(
E sup
t≤T∧τ

|Ŷ n,τkn
t − Y n,τkn−

t |2
)1/2

(E|K̂n,τkn |2T + E|Kn,τkn−|2T )1/2

+
1

r0
E

τ−�

0

sup
u≤T∧s

|X̂n,τkn
u −Xn,τkn−

u |2 d(|K̂n,τkn |s + |Kn,τkn−|s)

+
1

r0
E sup
t≤T∧τ

|X̂n,τkn
t −Xn,τkn−

t |2(|∆K̂n,τkn
τ |+ |∆Kn,τkn−

τ |)

≤ C3
lnn

n
+ 8k

(
C3

lnn

n

)1/2

+
1

r0
E

τ−�

0

sup
u≤T∧s

|X̂n,τkn
u −Xn,τkn−

u |2 d(|K̂n,τkn |s + |Kn,τkn−|s)

+
1

r0
· r0
4
E sup
t≤T∧τ

|X̂n,τkn
t −Xn,τkn−

t |2, n > 1.

By Lemma C.1 of Słomiński (1996), for every T ∈ R+ and every k ∈ N,

E sup
t≤T
|X̂n,τkn

t −Xn,τkn−
t |2 ≤ C2

(
lnn

n

)1/2

, n > 1.

Combining this inequality with (4.5) gives (4.3). This finishes the proof.

The rest of the proof runs as in the proof of Theorem 2.1.

We can now state the analogue of Theorem 4.2 for the approximation
{Xn}n∈N. It may be proved in much the same way.

Theorem 4.4. Let {(Xn,Kn)}n∈N be a sequence of solutions of the
SDEs (1.3) with coefficients σ, b satisfying (1.4), (1.6) and (1.7). If the SDE
(1.1) has a unique weak solution (X,K) then (Xn,Kn) →D (X,K) in
D(R+,R2d).

The remainder of this section will be devoted to theorems on conver-
gence of {Xn}n∈N and {Xn}n∈N to a strong solution of SDE (1.1). Since
the random variables Xt, X

n
t and Xn

t are not necessarily integrable, the re-
sults are weaker than their analogues in Section 3. Here only convergence in
probability is obtained.
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Theorem 4.5. Let {(Xn,Kn)}n∈N be a sequence of solutions of the
SDEs (1.2) with coefficients σ, b satisfying (1.4), (1.6) and (1.7). If the solu-
tion to the SDE (1.1) is pathwise unique, then for every p ∈ N,

sup
t≤T
|Xn

t −Xt|→
P
0, T ∈ R+.

Proof. This can be shown by making slight changes in the proof of The-
orem 2.1 in Semrau (2009). We use results from the proof of Theorem 4.2
instead of the respective results from the proof of Theorem 2.1 in Semrau
(2007).

In a similar way we can obtain the following result.

Theorem 4.6. Let {(Xn,Kn)}n∈N be a sequence of solutions of the
SDEs (1.3) with coefficients σ, b satisfying (1.4), (1.6) and (1.7). If the solu-
tion to the SDE (1.1) is pathwise unique, then for every p ∈ N,

sup
t≤T
|Xn

t −Xt|→
P
0, T ∈ R+.
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via approximations, Probab. Theory Related Fields 105, 143–158.

J. Jacod and A. N. Shiryaev (2003), Limit Theorems for Stochastic Processes, Springer,
Berlin.

A. Jakubowski, J. Mémin et G. Pages (1989), Convergence en loi des suites d’intégrales
stochastiques sur l’espace D1 de Skorokhod, Probab. Theory Related Fields 81, 111–137.

N. V. Krylov and R. Liptser (2002), On diffusion approximation with discontinuous coef-
ficients, Stoch. Process. Appl. 102, 235–264.

J. F. Le Gall (1983), Applications du temps local aux équations différentielles stochastiques
unidimensionnelles, in: Sém. de Probab. XVII, Lecture Notes in Math. 986, Springer,
Berlin, 15–31.

D. Lépingle (1995), Euler scheme for reflected stochastic differential equations, Math.
Comput. Simulation 38, 119–126.

P. L. Lions and A. S. Sznitman (1984), Stochastic differential equations with reflecting
boundary conditions, Comm. Pure Appl. Math. 37, 511–537.

A. V. Melnikov (1983), Stochastic equations and Krylov’s estimates for semimartingales,
Stochastics 10, 81–102.

http://dx.doi.org/10.1214/aop/1176995579
http://dx.doi.org/10.1007/BF01194489
http://dx.doi.org/10.1214/aop/1176989415
http://dx.doi.org/10.1007/BF01203833
http://dx.doi.org/10.1007/BF00343739
http://dx.doi.org/10.1016/S0304-4149(02)00181-3
http://dx.doi.org/10.1016/0378-4754(93)E0074-F
http://dx.doi.org/10.1002/cpa.3160370408
http://dx.doi.org/10.1080/17442508308833265


Euler’s Approximations of Reflecting SDEs 95

S. Nakao (1972), On the pathwise uniqueness of solutions of one-dimensional stochastic
differential equations, Osaka J. Math. 9, 513–518.

R. Pettersson (1995), Approximations for stochastic differential equations with reflecting
convex boundaries, Stoch. Process. Appl. 59, 295–308.

S. Rong (2000) Reflecting Stochastic Differential Equations with Jumps and Applications,
Chapman & Hall/CRC Res. Notes in Math. Ser. 408.

A. Rozkosz and L. Słomiński (1997) On stability and existence of solutions of SDEs with
reflection at the boundary, Stoch. Process. Appl. 68, 285–302.

Y. Saisho (1987), Stochastic differential equations for multi-dimensional domain with re-
flecting boundary, Probab. Theory Related Fields 74, 455–477.

W. Schmidt (1989), On stochastic differential equations with reflecting barriers, Math.
Nachr. 142, 135–148.

A. Semrau (2007), Euler’s approximations of weak solutions of reflecting SDEs with dis-
continuous coefficients, Bull. Polish Acad. Sci. Math. 55, 171–182.

A. Semrau (2009), Discrete approximations of strong solutions of reflecting SDEs with
discontinuous coefficients, Bull. Polish Acad. Sci. Math. 57, 169–180.

A. V. Skorokhod (1961), Stochastic equations for diffusion processes in a bounded region,
Theory Probab. Appl. 6, 264–274.

L. Słomiński (1994), On approximation of solutions of multidimensional SDEs with re-
flecting boundary conditions, Stoch. Process. Appl. 50, 197–219.

L. Słomiński (1996), Stability of stochastic differential equations driven by general semi-
martingales, Dissertationes Math. 349, 113 pp.

L. Słomiński (2001), Euler’s approximations of solutions of SDEs with reflecting boundary,
Stoch. Process. Appl. 94, 317–337.

A. Storm (1995), Stochastic differential equations with convex constraint, Stoch. Stoch.
Rep. 53, 241–274.

D. W. Stroock and S. R. S. Varadhan (1971), Diffusion processes with boundary conditions,
Comm. Pure Appl. Math. 24, 147–225.

H. Tanaka (1979), Stochastic differential equations with reflecting boundary condition in
convex regions, Hiroshima Math. J. 9, 163–177.

K. Yamada (1986), A stability theorem for stochastic differential equations with applica-
tion to storage processes, random walks and optimal stochastic control problems, Stoch.
Process. Appl. 23, 199–220.

L. Yan (2002), The Euler scheme with irregular coefficients, Ann. Probab. 30, 1172–1194.
T. S. Zhang (1994), On the strong solutions of one-dimensional stochastic differential

equations with reflecting boundary, Stoch. Process. Appl. 50, 135–147.

Alina Semrau-Giłka
Institute of Mathematics and Physics
University of Technology and Life Sciences
Kaliskiego 7
85-796 Bydgoszcz, Poland
E-mail: alucha@utp.edu.pl

Received January 25, 2012;
received in final form November 27, 2012 (7871)

http://dx.doi.org/10.1016/0304-4149(95)00040-E
http://dx.doi.org/10.1016/S0304-4149(97)00025-2
http://dx.doi.org/10.1007/BF00699100
http://dx.doi.org/10.1002/mana.19891420109
http://dx.doi.org/10.4064/ba55-2-8
http://dx.doi.org/10.4064/ba57-2-10
http://dx.doi.org/10.1137/1106035
http://dx.doi.org/10.1016/0304-4149(94)90118-X
http://dx.doi.org/10.1016/S0304-4149(01)00087-4
http://dx.doi.org/10.1002/cpa.3160240206
http://dx.doi.org/10.1016/0304-4149(86)90036-0
http://dx.doi.org/10.1214/aop/1029867124
http://dx.doi.org/10.1016/0304-4149(94)90152-X



	1 Introduction
	2 Weak convergence in convex domains
	3 Lp convergence in convex domains
	4 General domains

