FIELD THEORY AND POLYNOMIALS

Polynomial Imaginary Decompositions for Finite Separable Extensions

by

Adam GRYGIEL

Presented by Andrzej SCHINZEL

Summary. Let K be a field and let $L = K[\xi]$ be a finite field extension of K of degree m > 1. If $f \in L[Z]$ is a polynomial, then there exist unique polynomials $u_0, \ldots, u_{m-1} \in K[X_0, \ldots, X_{m-1}]$ such that $f(\sum_{j=0}^{m-1} \xi^j X_j) = \sum_{j=0}^{m-1} \xi^j u_j$. A. Nowicki and S. Spodzieja proved that, if K is a field of characteristic zero and $f \neq 0$, then u_0, \ldots, u_{m-1} have no common divisor in $K[X_0, \ldots, X_{m-1}]$ of positive degree. We extend this result to the case when L is a separable extension of a field K of arbitrary characteristic. We also show that the same is true for a formal power series in several variables.

1. Introduction. Throughout the paper, K is a field and $L = K[\xi]$ is a finite field extension of K of degree m > 1. For j = 1, ..., n let $\mathbf{X}_j = (X_{j,0}, \ldots, X_{j,m-1})$ denote a system of variables and set

$$[\mathbf{X}_{j}] = X_{j,0} + \xi X_{j,1} + \dots + \xi^{m-1} X_{j,m-1}.$$

If n = 1, then we write briefly $\mathbf{X} = (X_0, \ldots, X_{m-1})$ instead of $\mathbf{X}_1 = (X_{1,0}, \ldots, X_{1,m-1})$. If $f \in L[Z_1, \ldots, Z_n]$ is a polynomial, then there exist unique polynomials $u_0, \ldots, u_{m-1} \in K[\mathbf{X}_1, \ldots, \mathbf{X}_n]$ such that

$$f([\mathbf{X}_1], \dots, [\mathbf{X}_n]) = u_0 + \xi u_1 + \dots + \xi^{m-1} u_{m-1}.$$

This representation is called the *imaginary decomposition* of f relative to ξ , and the polynomials u_0, \ldots, u_{m-1} are the *imaginary parts* of f (see [1]).

Assume that

$$\phi(t) = t^m - a_{m-1}t^{m-1} - \dots - a_1t - a_0, \quad \text{where } a_0, \dots, a_{m-1} \in K,$$

is the minimal polynomial of ξ over K and let $u = (u_0, \ldots, u_{m-1})$ be a sequence of polynomials belonging to $K[\mathbf{X}]$. Denote by $\overline{u} = (\overline{u}_0, \ldots, \overline{u}_{m-1})$

2000 Mathematics Subject Classification: Primary 12E05, 12F10.

Key words and phrases: polynomial, decomposition, separable extension.

the sequence of polynomials defined by

 $\overline{u}_0 = a_0 u_{m-1}, \quad \overline{u}_1 = a_1 u_{m-1} + u_0, \ \dots, \ \overline{u}_{m-1} = a_{m-1} u_{m-1} + u_{m-2}.$

We say that u is a ξ -sequence if u satisfies the following generalized Cauchy– Riemann equations introduced in [1]:

$$\frac{\partial u}{\partial X_i} = \frac{\partial \overline{u}}{\partial X_{i-1}}, \quad i = 1, \dots, m-1.$$

In 2003, A. Nowicki and S. Spodzieja proved the following theorem.

THEOREM 1 ([1, Theorem 3.8]). Let K be a field of characteristic zero and let $L = K[\xi]$ be a finite field extension of K of degree m > 1. The following two conditions are equivalent:

- (i) u is a ξ -sequence.
- (ii) There exists $f \in L[Z]$ such that u_0, \ldots, u_{m-1} are the imaginary parts of f.

As a consequence of Theorem 1, A. Nowicki and S. Spodzieja also proved the following curious theorem.

THEOREM 2 ([1, Theorem 5.3]). If under the assumptions of Theorem 1, u_0, \ldots, u_{m-1} are the imaginary parts of $f \in L[Z_1, \ldots, Z_n] \setminus \{0\}$, then $gcd(u_0, \ldots, u_{m-1}) = 1$.

The assumption that char K = 0 played an essential role in the proof of Theorem 2. The aim of this paper is to extend this theorem to the case when L is a separable extension of a field K of arbitrary characteristic. More precisely, our main result is the following.

THEOREM 3. Let K be a field and let $L = K[\xi]$ be a finite separable extension of K of degree m > 1. If u_0, \ldots, u_{m-1} are the imaginary parts of $f \in L[Z_1, \ldots, Z_n] \setminus \{0\}$, then $gcd(u_0, \ldots, u_{m-1}) = 1$.

Additionally, in Section 4 we generalize Theorems 1–3 to formal power series (Propositions 4–6, respectively).

2. Some auxiliary results. To prove Theorem 3 we need several known simple facts (see [1]).

PROPOSITION 1. If u_0, \ldots, u_{m-1} are the imaginary parts of a homogeneous polynomial $f \in L[Z_1, \ldots, Z_n]$ of degree s, then u_i is zero or a homogeneous polynomial of degree s for $i = 0, \ldots, m-1$.

PROPOSITION 2. If the polynomials $u_0, \ldots, u_{m-1} \in K[\mathbf{X}_1, \ldots, \mathbf{X}_n]$ are not relatively prime, then their homogeneous components of the highest degree are also not relatively prime. Let $d, n \in \mathbb{Z}, d, n \geq 2$. Consider the Kronecker substitution (cf. [2, 1.6, Definition 5]), i.e. the L-automorphism κ_d of $L[Z_1, \ldots, Z_n]$ defined by

$$\kappa_d(Z_j) = \begin{cases} Z_1 & \text{if } j = 1, \\ Z_j + Z_1^{d^{j-1}} & \text{if } j = 2, \dots, n \end{cases}$$

PROPOSITION 3 ([1, Proposition 5.1]). Let $f \in L[Z_1, \ldots, Z_n]$, and let $d > \max_{j=1,\ldots,n} \deg_{Z_j} f > 0$. Then

$$\kappa_d(f) = aZ_1^N + terms \text{ of degrees lower than } N, \quad N \ge 1, a \in L \setminus \{0\}.$$

Let $P_j = \kappa_d(Z_j) \in L[Z_1, \dots, Z_n]$ for $j = 1, \dots, n$ and

 $P_j([\mathbf{X}_1], \dots, [\mathbf{X}_n]) = v_{j,0} + \xi v_{j,1} + \dots + \xi^{m-1} v_{j,m-1}, \quad v_{j,i} \in K[\mathbf{X}_1, \dots, \mathbf{X}_n].$ Let $\gamma : K[\mathbf{X}_1, \dots, \mathbf{X}_n] \to K[\mathbf{X}_1, \dots, \mathbf{X}_n]$ be the homomorphism such that $\gamma(X_{j,i}) = v_{j,i}.$

LEMMA 1 ([1, Lemma 5.2]). γ is a K-automorphism of $K[\mathbf{X}_1, \ldots, \mathbf{X}_n]$.

3. Proof of Theorem **3.** A crucial role in the proof is played by the following lemma.

LEMMA 2. If under the assumptions of Theorem 3, u_0, \ldots, u_{m-1} are the imaginary parts of $f(Z) = a_0 Z^s$, $a_0 \in L \setminus \{0\}$, then $gcd(u_0, \ldots, u_{m-1}) = 1$.

Proof. Let ϕ be the minimal polynomial of ξ over K and let M be a decomposition field of ϕ . Then $K[\xi] = K(\xi) \subset M$ and $\deg \phi = m > 1$. Consequently, since ξ is a simple root of ϕ , there exists $b \in M$, $b \neq \xi$, such that $\phi(b) = 0$. There is a K-isomorphism $\varphi : K(\xi) \to K(b)$ such that $\varphi(\xi) = b$.

Suppose that there is a polynomial $v \in K[\mathbf{X}]$ of positive degree which is a common divisor of u_0, \ldots, u_{m-1} in $K[\mathbf{X}]$, and so also in $L[\mathbf{X}]$. Since $L[\mathbf{X}]$ is a UFD and $X_0 + \xi X_1 + \cdots + \xi^{m-1} X_{m-1}$ is irreducible in $L[\mathbf{X}]$, there exist $l \in \mathbb{Z}, l \geq 1$, and $a \in L \setminus \{0\}$ such that

$$v(X_0,\ldots,X_{m-1}) = a(X_0 + \xi X_1 + \cdots + \xi^{m-1} X_{m-1})^l.$$

Then $v(-\xi, 1, 0, \dots, 0) = 0$, and so, since $v \in K[\mathbf{X}]$, we get

$$a(-b+\xi)^{l} = v(-b, 1, 0, \dots, 0) = \varphi(v(-\xi, 1, 0, \dots, 0)) = 0,$$

a contradiction. \blacksquare

Using the facts in Section 2 we will extend Lemma 2 so as to obtain Theorem 3.

Proof of Theorem 3. Suppose that u_0, \ldots, u_{m-1} have a common divisor in $K[\mathbf{X}_1, \ldots, \mathbf{X}_n]$ of positive degree. Denote by $f^{(s)}$ the homogeneous part of the highest degree of f and let $u_0^{(s)}, \ldots, u_{m-1}^{(s)}$ be the homogeneous parts of the highest degree of u_0, \ldots, u_{m-1} , respectively. By Proposition 3 and Lemma 1 one can assume that $f^{(s)}(Z_1, \ldots, Z_n) = a_0 Z_1^s, a_0 \in L \setminus \{0\}$, and so $f^{(s)} \in L[Z_1]$. By Propositions 1 and 2, $u_0^{(s)}, \ldots, u_{m-1}^{(s)}$ are the imaginary parts of $f^{(s)}$ and they are not relatively prime. This contradicts Lemma 2 and ends the proof.

The following example, due to the referee, shows that the assumption of Theorem 3 concerning separability of the extension L of K is necessary.

EXAMPLE 1. Let $K = \mathbb{F}_2(t^2)$, $L = \mathbb{F}_2(t)$ and let $\xi = t$. Consider the polynomial $f(Z) = Z^2$. Then

$$f(X_0 + \xi X_1) = X_0^2 + t^2 X_1^2 \in K[X_0, X_1].$$

Hence $u_0 = X_0^2 + t^2 X_1^2$ and $u_1 = 0$ are the imaginary parts of f and they are not relatively prime.

4. Generalizations to formal power series. In this section we generalize Theorems 1–3 to formal power series.

Let $f \in L[[Z_1, \ldots, Z_n]]$ be a formal power series of the form $f = \sum_{r=d}^{\infty} f^{(r)}$, where $f^{(r)}$ is zero or a homogeneous polynomial of degree r for $r \geq d$, and let $u_0, \ldots, u_{m-1} \in K[[\mathbf{X}_1, \ldots, \mathbf{X}_n]]$ be formal power series of the form $u_j = \sum_{r=d}^{\infty} u_j^{(r)}$, where $u_j^{(r)}$ is zero or a homogeneous polynomial of degree rfor $r \geq d$, $j = 0, \ldots, m-1$. By Proposition 1 we get immediately

COROLLARY 1. $u_0^{(r)}, \ldots, u_{m-1}^{(r)}$ are the imaginary parts of $f^{(r)}$ for $r \ge d$ if and only if

$$f([\mathbf{X}_1], \dots, [\mathbf{X}_n]) = u_0 + \xi u_1 + \dots + \xi^{m-1} u_{m-1}.$$

We call this representation the *imaginary decomposition* of f relative to ξ , and the power series u_0, \ldots, u_{m-1} the *imaginary parts* of f.

Similarly to Lemma 3.5 in [1] we obtain a version of that lemma for power series.

LEMMA 3. (u_0, \ldots, u_{m-1}) is a ξ -sequence if and only if $(u_0^{(r)}, \ldots, u_{m-1}^{(r)})$ is a ξ -sequence for $r \ge d$.

Now we show the following generalizations of Theorems 1 and 2.

PROPOSITION 4. Under the assumptions of Theorem 1 on K and L, if $u_0, \ldots, u_{m-1} \in K[[\mathbf{X}]]$ are power series, then the following two conditions are equivalent:

- (i) (u_0, \ldots, u_{m-1}) is a ξ -sequence.
- (ii) There exists $f \in L[[Z]]$ such that u_0, \ldots, u_{m-1} are the imaginary parts of f.

Proof. By Lemma 3 and Theorem 1, (u_0, \ldots, u_{m-1}) is a ξ -sequence if and only if there exist $f^{(d)}, f^{(d+1)}, \ldots \in L[Z]$ such that $u_0^{(r)}, \ldots, u_{m-1}^{(r)}$ are the imaginary parts of $f^{(r)}$ for $r \geq d$. By Corollary 1 this is equivalent to the fact that u_0, \ldots, u_{m-1} are the imaginary parts of $f := \sum_{r=d}^{\infty} f^{(r)}$. Thus, the proof is finished.

PROPOSITION 5. Under the assumptions of Theorem 1 on K and L, if the power series u_0, \ldots, u_{m-1} are the imaginary parts of $f \in L[[Z_1, \ldots, Z_n]] \setminus \{0\}$, then $gcd(u_0, \ldots, u_{m-1}) = 1$.

Proof. If u_0, \ldots, u_{m-1} have a common divisor in $K[[\mathbf{X}_1, \ldots, \mathbf{X}_n]]$ of positive order, then by Corollary 1, $u_0^{(d)}, \ldots, u_{m-1}^{(d)}$ are the imaginary parts of $f^{(d)}$ and they have a common divisor in $K[\mathbf{X}_1, \ldots, \mathbf{X}_n]$ of positive degree. This contradicts Theorem 2 and ends the proof.

Analogously we obtain the following generalization of Theorem 3.

PROPOSITION 6. Under the assumptions of Theorem 3 on K and L, if the power series u_0, \ldots, u_{m-1} are the imaginary parts of $f \in L[[Z_1, \ldots, Z_n]] \setminus \{0\}$, then $gcd(u_0, \ldots, u_{m-1}) = 1$.

Acknowledgments. I would like to thank the anonymous referee for his remarks improving the paper, and Professors Andrzej Schinzel and Stanisław Spodzieja for their valuable comments and advice. I am also grateful to my colleague Krzysztof Kamiński for pointing out a few mistakes in the paper.

References

- A. Nowicki and S. Spodzieja, Polynomial imaginary decompositions for finite extensions of fields of characteristic zero, Bull. Polish Acad. Sci. Math. 51 (2003), 157–168.
- [2] A. Schinzel, *Polynomials with Special Regard to Reducibility*, Cambridge Univ. Press, Cambridge, 2000.

Adam Grygiel Faculty of Mathematics and Computer Science University of Łódź Banacha 22 90-238 Łódź, Poland E-mail: adamgry@op.pl

> Received March 15, 2008; received in final form March 21, 2008 (7652)