The Diophantine Equation $X^{3}=u+v$ over Real Quadratic Fields

by
Takaaki KAGAWA
Presented by Jerzy KACZOROWSKI
This paper is dedicated to Professor Norio Adachi on the occasion of his seventieth birthday

Summary. Let k be a real quadratic field and let \mathcal{O}_{k} and \mathcal{O}_{k}^{\times}be the ring of integers and the group of units, respectively. A method of solving the Diophantine equation $X^{3}=u+v$ ($X \in \mathcal{O}_{k}, u, v \in \mathcal{O}_{k}^{\times}$) is developed.

1. Let k be a real quadratic field, \mathcal{O}_{k} the ring of integers of k, and \mathcal{O}_{k}^{\times} the group of units of k. We consider the Diophantine equation

$$
\begin{equation*}
X^{3}=u+v \tag{1}
\end{equation*}
$$

in $X \in \mathcal{O}_{k}-\{0\}$ and $u, v \in \mathcal{O}_{k}^{\times}$. The reason why we consider this equation is as follows:

Let E_{1} and E_{2} be elliptic curves defined by Weierstrass equations over \mathcal{O}_{k} with unit discriminants $\Delta\left(E_{1}\right)$ and $\Delta\left(E_{2}\right)$, respectively. Suppose that there exists an isogeny from E_{1} to E_{2} defined over k with degree 3 . Then, by Pinch [6], the j-invariants $j\left(E_{1}\right)$ and $j\left(E_{2}\right)$ can be written as

$$
j\left(E_{1}\right)=J\left(t_{1}\right), \quad j\left(E_{2}\right)=J\left(t_{2}\right), \quad t_{1}, t_{2} \in k, \quad t_{1} t_{2}=3^{6}
$$

where $J(X)=(X+27)(X+3)^{3} / X$. (This is nothing other than a parametrization of the modular curve $\left.Y_{0}(3).\right)$ As explained in [4], $j\left(E_{i}\right) \in \mathcal{O}_{k}, t_{i} \in \mathcal{O}_{k}$

[^0]and the principal ideals $\left(t_{i}\right)$ are 6 th powers $(i=1,2)$. Thus
\[

\left(t_{1}\right)= $$
\begin{cases}(1),\left(3^{6}\right) & \text { when } 3 \text { is inert in } k \\ (1),\left(3^{3}\right),\left(3^{6}\right) & \text { when } 3 \text { is ramified in } k \\ (1), \mathfrak{p}^{6}, \mathfrak{p}^{\prime 6},\left(3^{6}\right) & \text { when }(3)=\mathfrak{p p}, \mathfrak{p} \neq \mathfrak{p}^{\prime}\end{cases}
$$
\]

It depends on k whether \mathfrak{p} and \mathfrak{p}^{\prime} are principal ideals or not, and even if they are, their generators depend on k and hence are difficult to deal with. Thus, in the following, we consider the cases $\left(t_{1}\right)=(1),\left(3^{3}\right)$ and $\left(3^{6}\right)$. If $\left(t_{1}\right)=(1)$, then

$$
\left(\frac{c_{4}\left(E_{1}\right)}{t_{1}+3}\right)^{3}=\Delta\left(E_{1}\right)(1+27 w) \quad\left(w=1 / t_{1} \in \mathcal{O}_{k}^{\times}\right)
$$

If $\left(t_{1}\right)=\left(3^{6}\right)$ then

$$
\left(\frac{3 c_{4}\left(E_{1}\right)}{t_{1}+3}\right)^{3}=\Delta\left(E_{1}\right)(w+27) \quad\left(w=3^{6} / t_{1} \in \mathcal{O}_{k}^{\times}\right)
$$

whence we get the equation

$$
\begin{equation*}
X^{3}=u+27 v \tag{2}
\end{equation*}
$$

in $X \in \mathcal{O}_{k}-\{0\}$ and $u, v \in \mathcal{O}_{k}^{\times}$. Here $c_{4}\left(E_{1}\right)$ is the usual quantity associated with a defining equation of E_{1}. (See [8].) Note that, from Theorem 2.1(a) of [7], $j\left(E_{1}\right) \neq 0$ and thus $c_{4}\left(E_{1}\right) \neq 0$. If $\left(t_{1}\right)=\left(3^{3}\right)$, then we get equation (1) as follows:

$$
\left(\frac{c_{4}\left(E_{1}\right)}{t_{1}+3}\right)^{3}=\Delta\left(E_{1}\right)(1+w) \quad\left(w=3^{3} / t_{1} \in \mathcal{O}_{k}^{\times}\right)
$$

For equation (2), we already have the following:
ThEOREM 1 ([5]). Let p be a prime number with $p \equiv 3(\bmod 4), p \neq 3$, and let $k=\mathbb{Q}(\sqrt{3 p})$. Then equation (2) has a solution if and only if $p=11$, i.e. $k=\mathbb{Q}(\sqrt{33})$.

Thus, in the following, we treat equation (1).
2. In the following, let k be as in Theorem 1 . Then $N_{k / \mathbb{Q}}(w)=1$ for all $w \in \mathcal{O}_{k}^{\times}$.

Multiplying cubes or considering the conjugate of (1), we may assume that $u=1$ or $u=\varepsilon(>1)$ is the fundamental unit of k. Hence we solve

$$
\begin{equation*}
X^{3}=1+v, \quad X \in \mathcal{O}_{k}-\{0\}, v \in \mathcal{O}_{k}^{\times} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
X^{3}=\varepsilon+v, \quad X \in \mathcal{O}_{k}-\{0\}, v \in \mathcal{O}_{k}^{\times} \tag{4}
\end{equation*}
$$

Proposition 2. Equation (3) has no solutions.

Proof. Suppose the contrary. Since $X^{3}-1=(X-1)\left(X^{2}+X+1\right)=v \in$ \mathcal{O}_{k}^{\times}, we have $X-1=: v_{1} \in \mathcal{O}_{k}^{\times}$and $X^{2}+X+1=: v_{2} \in \mathcal{O}_{k}^{\times}$. Eliminating X yields $v_{1}^{2}+3 v_{1}+3=v_{2}$. Noting that the norm of a unit is 1 and taking norms yields

$$
\operatorname{Tr}_{k / \mathbb{Q}}\left(v_{1}\right)^{2}+4 \operatorname{Tr}_{k / \mathbb{Q}}\left(v_{1}\right)+4=0
$$

But from this we get $v_{1}=-1$, i.e. $X=0$, a contradiction.
Thus, from now on, we deal with equation (4).
Lemma 3. εv is a cube in k.
Proof. Let ' be the conjugation of k / \mathbb{Q}. Noting $\varepsilon \varepsilon^{\prime}=N_{k / \mathbb{Q}}(\varepsilon)=1$ and $v v^{\prime}=N_{k / \mathbb{Q}}(v)=1$, we have

$$
\left(\frac{X}{X^{\prime}}\right)^{3}=\frac{\varepsilon+v}{\varepsilon^{\prime}+v^{\prime}}=\frac{\varepsilon v(\varepsilon+v)}{\varepsilon v\left(\varepsilon^{\prime}+v^{\prime}\right)}=\varepsilon v \frac{\varepsilon+v}{\varepsilon \varepsilon^{\prime} v+\varepsilon v v^{\prime}}=\varepsilon v \frac{\varepsilon+v}{v+\varepsilon}=\varepsilon v
$$

From this lemma, the form of the v is restricted. In fact, we have:

$v=$	εv is	Existence of a solution
$\pm \varepsilon^{6 n+1}$	not a cube	\times
$\pm \varepsilon^{6 n+2}$	a cube and not $\mathrm{a} \pm \square_{k}$	$?$
$\pm \varepsilon^{6 n+4}$	not a cube	\times
$\pm \varepsilon^{6 n+5}$	a cube and $\mathrm{a} \pm \square_{k}$	$?$

(where \square_{k} stands for a square element of k).
Lemma 4. $v \neq-\varepsilon^{6 n+5}$.
Proof. Suppose the contrary. Then there exists a $w \in \mathcal{O}_{k}^{\times}$such that $w^{2}=-\varepsilon^{\prime} v$, whence

$$
\begin{aligned}
N_{k / \mathbb{Q}}(X)^{3} & =N_{k / \mathbb{Q}}(\varepsilon+v)=(\varepsilon+v)\left(\varepsilon^{\prime}+v^{\prime}\right) \\
& =2-\left(w^{2}+w^{\prime 2}\right)=2-\left(w+w^{\prime}\right)^{2}+2 \\
& =4-\operatorname{Tr}_{k / \mathbb{Q}}(w)^{2} .
\end{aligned}
$$

It then follows that $X=0$, since the only (affine) \mathbb{Q}-rational points of $y^{2}=x^{3}+4$, which is the curve 108A1 in Table 1 of [1], are $(0, \pm 2)$. This is a contradiction.

When $v=\varepsilon^{6 n+5}$, there exists a $w \in \mathcal{O}_{k}^{\times}$such that $\varepsilon^{\prime} v=w^{2}$. Taking norms, we have

$$
\begin{aligned}
N_{k / \mathbb{Q}}(X)^{3} & =N_{k / \mathbb{Q}}(\varepsilon+v)=(\varepsilon+v)\left(\varepsilon^{\prime}+v^{\prime}\right) \\
& =2+\left(w^{2}+w^{\prime 2}\right)=2+\left(w+w^{\prime}\right)^{2}-2 \\
& =\operatorname{Tr}_{k / \mathbb{Q}}(w)^{2} .
\end{aligned}
$$

Thus $\left(N_{k / \mathbb{Q}}(X), \operatorname{Tr}_{k / \mathbb{Q}}(w)\right)$ is an integer point on the singular cubic $y^{2}=x^{3}$ and thus we cannot handle this case as in Lemma 4. But $\operatorname{Tr}_{k / \mathbb{Q}}(w)$ is a cube in \mathbb{Z}, and the following proposition holds:

Proposition 5. Let $p(\neq 3)$ be a prime $($ not necessarily $p \equiv 3(\bmod 4))$, and let $K:=\mathbb{Q}(\sqrt{3 p})$. If there exist an $a \in \mathbb{Z}$ and $a w \in \mathcal{O}_{K}^{\times}$such that $\operatorname{Tr}_{K / \mathbb{Q}}(w)=a^{3}$, then $p=5$ and $w= \pm 4 \pm \sqrt{15}$.

Proof. Let $w=\left(a^{3}+b \sqrt{3 p}\right) / 2, b \in \mathbb{Z}$. Since $N_{k / \mathbb{Q}}(w)=\left(a^{6}-3 p b^{2}\right) / 4=1$, we have $3 p b^{2}=\left(a^{3}+2\right)\left(a^{3}-2\right)$.
(I) If a is even, then $\left(a^{3}+2, a^{3}-2\right)=2$. Thus one of the following conditions holds:
(a) $a^{3}+2=2 \square, a^{3}-2=6 p \square(\square$ denotes a square element of $\mathbb{Z})$,
(b) $a^{3}+2=-2 \square, a^{3}-2=-6 p \square$,
(c) $a^{3}+2=6 p \square, a^{3}-2=2 \square$,
(d) $a^{3}+2=-6 p \square, a^{3}-2=-2 \square$,
(e) $a^{3}+2=6 \square, a^{3}-2=2 p \square$,
(f) $a^{3}+2=-6 \square, a^{3}-2=-2 p \square$,
(g) $a^{3}+2=2 p \square, a^{3}-2=6 \square$,
(h) $a^{3}+2=-2 p \square, a^{3}-2=-6 \square$.

The following lemma is obtained by using the free soft-ware KASH:
Lemma 6.
(1) $\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 2 y^{2}=x^{3}+2\right\}=\{(0, \pm 1)\}$.
(2) $\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 2 y^{2}=x^{3}-2\right\}=\emptyset$.
(3) $\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 6 y^{2}=x^{3}+2\right\}=\emptyset$.
(4) $\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 6 y^{2}=x^{3}-2\right\}=\{(2, \pm 1)\}$.

Therefore $a= \pm 2,2 p \square= \pm 10$ and $w= \pm 4 \pm \sqrt{15}$.
(II) If a is odd, then $\left(a^{3}+2, a^{3}-2\right)=1$. Thus one of the following conditions holds:
(a) $a^{3}+2=\square, a^{3}-2=3 p \square(\square$ denotes a square element of $\mathbb{Z})$,
(b) $a^{3}+2=-\square, a^{3}-2=-3 p \square$,
(c) $a^{3}+2=3 p \square, a^{3}-2=\square$,
(d) $a^{3}+2=-3 p \square, a^{3}-2=-\square$,
(e) $a^{3}+2=3 \square, a^{3}-2=p \square$,
(f) $a^{3}+2=-3 \square, a^{3}-2=-p \square$,
(g) $a^{3}+2=p \square, a^{3}-2=3 \square$,
(h) $a^{3}+2=-p \square, a^{3}-2=-3 \square$.

By using KASH again, we obtain the following:

Lemma 7.
(1) $\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid y^{2}=x^{3}+2\right\}=\{(-1, \pm 1)\}$.
(2) $\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid y^{2}=x^{3}-2\right\}=\{(3, \pm 5)\}$.
(3) $\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 3 y^{2}=x^{3}-2\right\}=\emptyset$.
(4) $\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 3 y^{2}=x^{3}+2\right\}=\{(1, \pm 1)\}$.

Therefore $w=(\pm 27 \pm 5 \sqrt{29}) / 2$ or $(\pm 1 \pm \sqrt{-3}) / 2$, none of which is in K.
Thus, if there exists a solution (X, v) of (4), then there exists an $n \in \mathbb{Z}$ such that $v= \pm \varepsilon^{6 n+2}$. In the + case and in the - case, there may exist a solution. Indeed, we have:

p	$p \bmod 3$	v	X	$N_{k / \mathbb{Q}}(X)$
23	2	ε^{2}	$(9+\sqrt{69}) / 2$	3
31	1	$-\varepsilon^{2}$	$(-9-\sqrt{93}) / 2$	-3
431	2	ε^{2}	$72+2 \sqrt{1293}$	$12=3 \times 2^{2}$
439	1	$-\varepsilon^{2}$	$(-5625-155 \sqrt{1317}) / 2$	$-75=-3 \times 5^{2}$

From this table, we find interesting things. If $p \equiv 1(\bmod 3)$, then $N_{K / \mathbb{Q}}(X)$ $=-3 \square$ and v is of the form $-\varepsilon^{6 n+2}$ (in fact, $n=0$), while if $p \equiv 2(\bmod 3)$, then $N_{K / \mathbb{Q}}(X)=3 \square$ and v is of the form $\varepsilon^{6 n+2}$ (in fact, $n=0$). We will show that these assertions are always true. (See Theorem 10 below.)

Lemma 8. Let $k=\mathbb{Q}(\sqrt{3 p})$, ε be as above, and let w be an odd power of ε.
(a) If $p \equiv 1(\bmod 3)$, then $\operatorname{Tr}_{k / \mathbb{Q}}(w)+2=p \square$ and $\operatorname{Tr}_{k / \mathbb{Q}}(w)-2=3 \square$.
(b) If $p \equiv 2(\bmod 3)$, then $\operatorname{Tr}_{k / \mathbb{Q}}(w)+2=3 \square$ and $\operatorname{Tr}_{k / \mathbb{Q}}(w)-2=p \square$.

Proof. Let $w=(a+b \sqrt{3 p}) / 2$, where a, b are odd. Since $N_{k / \mathbb{Q}}(\varepsilon)=$ $\left(a^{2}-3 p b^{2}\right) / 4=1$, we obtain $3 p b^{2}=(a+2)(a-2)$.

It follows from $(a+2, a-2)=1$ that $\{a+2, a-2\}=\{\square, 3 p \square\}$ or $\{p \square, 3 \square\}$. Supposing $\{a+2, a-2\}=\{\square, 3 p \square\}=\left\{x^{2}, 3 p y^{2}\right\}$, we obtain $(a+b \sqrt{3 p}) / 2=\{(x+y \sqrt{3 p}) / 2\}^{2}$, which contradicts our hypothesis. Thus $\{a+2, a-2\}=\{p \square, 3 \square\}$.

If $a+2=p \square, a-2=3 \square$, then $p \square-4=3 \square$ and $p \equiv 1(\bmod 3)$, and if $a+2=3 \square, a-2=p \square$, then $p \equiv 2(\bmod 3)$.

When $w=a+b \sqrt{3 p}(a, b \in \mathbb{Z})$, a similar proof works.
Lemma 9. Let $K=\mathbb{Q}(\sqrt{m})$ be a real quadratic field (where m is a square-free integer), and let $\varepsilon(>1)$ be the fundamental unit of K.
(a) If $\operatorname{Tr}_{K / \mathbb{Q}}(\varepsilon)$ is odd, then $m \equiv 5(\bmod 8)$.
(b) Suppose that $\operatorname{Tr}_{K / \mathbb{Q}}(\varepsilon)$ is odd. Then $\operatorname{Tr}_{K / \mathbb{Q}}\left(\varepsilon^{n}\right)$ is even if and only if $3 \mid n$.

Proof. (a) If $\varepsilon=(a+b \sqrt{m}) / 2$ (where $a=\operatorname{Tr}_{K / \mathbb{Q}}(\varepsilon)$ and $b \in \mathbb{N}$ are odd), then $a^{2}-m b^{2}= \pm 4$. Since $a^{2} \equiv b^{2} \equiv 1(\bmod 8)$, we have $m \equiv m b^{2}=$ $a^{2} \mp 4 \equiv 5(\bmod 8)$.
(b) The assertion follows easily from $\left(\mathcal{O}_{K} /(2)\right)^{\times}=\mathbb{F}_{4}^{\times} \cong \mathbb{Z} / 3 \mathbb{Z}$.

The next theorem is our main result:
Theorem 10. Let X, v be a solution of equation (4).
(a) If $p \equiv 1(\bmod 3)$, then:

- There exists an $n \in \mathbb{Z}$ such that $v=-\varepsilon^{6 n+2}$.
- Letting $\varepsilon^{6 n+1}=(a+b \sqrt{3 p}) / 2(a, b \in \mathbb{N})$ and $c=N_{k / \mathbb{Q}}(X)$, we have $c^{3}=2-a=-3 \square$ and c is odd, $3 p b^{2}=c^{6}-4 c^{3}=a^{2}-4$, and $c^{3}-4=-p \square$.
- $p \equiv 7(\bmod 8)$.
(b) If $p \equiv 2(\bmod 3)$ then:
- There exists an $n \in \mathbb{Z}$ such that $v=\varepsilon^{6 n+2}$.
- Letting $\varepsilon^{6 n+1}=(a+b \sqrt{3 p}) / 2(a, b \in \mathbb{N})$ and $c=N_{k / \mathbb{Q}}(X)$, we have $c^{3}=2+a=3 \square, 3 p b^{2}=c^{6}-4 c^{3}=a^{2}-4$, and $c^{3}-4=p \square$.
- $p \equiv 7(\bmod 8)$.

Proof. (a) Suppose that $v=\varepsilon^{6 n+2}$. Taking the norm of $X^{3}=\varepsilon+\varepsilon^{6 n+2}$, we have

$$
\begin{aligned}
c^{3} & =N_{k / \mathbb{Q}}(X)^{3}=\left(\varepsilon+\varepsilon^{6 n+2}\right)\left(\varepsilon^{-1}+\varepsilon^{-6 n-2}\right) \\
& =2+\operatorname{Tr}_{k / \mathbb{Q}}\left(\varepsilon^{6 n+1}\right)=2+a .
\end{aligned}
$$

Since $a^{2}-3 p b^{2}=4$, we have $3 p b^{2}=c^{6}-4 c^{3}$. From Lemma 8, $c^{3}-4=$ $a-2=3 \square$, but $\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 3 y^{2}=x^{3}-4\right\}=\emptyset$. Thus it is impossible. Therefore $v=-\varepsilon^{6 n+2}$, and from Lemma 8, $c^{3}=2-a=-3 \square, c^{3}-4=$ $-2-a=-p \square$. Suppose that c is even. Then, of course, $a=2-c^{3}$ is even. From $c^{3}=-3 \square$, we have $c=-3 \square$. Thus $-p \square=c^{3}-4 \equiv-4(\bmod 64)$, and thus $-p \square / 4=c^{3} / 4-1 \equiv 3(\bmod 4), p \equiv 1(\bmod 4)$, which is impossible. Hence c is odd. Since $a=\operatorname{Tr}_{K / \mathbb{Q}}\left(\varepsilon^{6 n+1}\right)$ is odd, it follows from Lemma 9 that $p \equiv 7(\bmod 8)$.
(b) Arguing similarly to (a), we have $v=\varepsilon^{6 n+2}, a=c^{3}-2, c^{3}=3 \square$ and $c^{3}-4=p \square$ (where a, b, c are integers as in the statement). If c is odd, then a is odd and thus, from Lemma 9 , we obtain $p \equiv 7(\bmod 8)$. Supposing c is even, it follows from $c^{3}=3 \square$ that $c=3 \square$. Thus $p \square=c^{3}-4 \equiv-4$ $(\bmod 64)$ and so $p \square / 4=c^{3} / 4-1 \equiv 7(\bmod 8)$, or $p \equiv 7(\bmod 8)$.

Corollary 11. If $p \equiv 3(\bmod 8)$ and $p \neq 3$, then equation (1) has no solutions.

Theorem 10 tells us how to solve equation (4). We give two examples.

Example 1. $p=23(\equiv 2(\bmod 3))$.
From Theorem 10, v must be of the form $\varepsilon^{6 n+2}(n \in \mathbb{Z})$. Let a, b and c be rational integers as in Theorem 10. Then we have

$$
\begin{aligned}
c^{3} & =a+2=3 \square \\
69 b^{2} & =c^{6}-4 c^{3}=a^{2}-4, \\
c^{3}-4 & =23 \square
\end{aligned}
$$

Using KASH, we find that the only integer solutions of $23 y^{2}=x^{3}-4$ are $(3, \pm 1)$, whence $c=3, a=c^{3}-2=25, b^{2}=\left(25^{2}-4\right) / 69=3^{2}, \varepsilon^{6 n+1}=$ $(25+3 \sqrt{69}) / 2=\varepsilon$, and $X^{3}=\varepsilon+\varepsilon^{2}=((9+\sqrt{69}) / 2)^{3}$. Therefore the only solution of (4) is $(X, v)=\left((9+\sqrt{69}) / 2, \varepsilon^{2}\right)$.

Example 2. $p=199(\equiv 1(\bmod 3))$.
From Theorem 10, v must be of the form $-\varepsilon^{6 n+2}(n \in \mathbb{Z})$. Let c be a rational integer as in Theorem 10. Then we have

$$
c^{3}-4=199 \square .
$$

But $199 y^{2}=x^{3}-4$ has no integer solutions (this is checked by KASH again). Therefore, equation (4) and hence (1) has no solutions.

Using a computer, we obtain the following:
(a) For $p \equiv 7(\bmod 8), 7 \leq p \leq 500$, equation (4) has a solution if and only if $p=23,31,431,439$.
(b) For the above p, the number of solutions of equation (4) is 1 . (See the table above.)
It would be interesting to show the number of solutions of (4) is always at most 1 , or to find p such that (4) has two or more solutions.
3. We give some applications to elliptic curves with everywhere good reduction.

Theorem 12. Let p be a prime number such that $p \equiv 3(\bmod 4)$ and $p \neq 3,11$, and let $k:=\mathbb{Q}(\sqrt{3 p})$. Let $\varepsilon(>1)$ be the fundamental unit of k and let $\mathfrak{P}_{\infty}^{(1)}$ and $\mathfrak{P}_{\infty}^{(2)}$ be the real primes of $k(\sqrt[3]{\varepsilon})$. If the following three conditions hold, then there are no elliptic curves with everywhere good reduction over k :
(a) $3 \nmid h_{k}$, where h_{k} is the class number of k.
(b) $4 \nmid h_{k(\sqrt[3]{\varepsilon})}\left((3) \mathfrak{P}_{\infty}^{(1)} \mathfrak{P}_{\infty}^{(2)}\right)$ or $4 \nmid h_{k(\sqrt[3]{\varepsilon}, \sqrt{-3})}((3))$ (where, for a number field K and a divisor \mathfrak{m} of $K, h_{K}(\mathfrak{m})$ denotes the ray class number of K modulo \mathfrak{m}).
(c) Equation (4) has no solutions.

Proof. Let E be an elliptic curve with everywhere good reduction over k. Combining our assumption (a) and the fact that the class number is odd (see for example [2]), E is defined by a global minimal equation. From (b), there is an isogeny of degree 3 defined over k from E to another elliptic curve ([3], [4]). Then, as proved above, there exist solutions of $X^{3}=u+27 v$ or $X^{3}=u+v$ in $X \in \mathcal{O}_{k}-\{0\}$ and $u, v \in \mathcal{O}_{k}^{\times}$. These are impossible from Theorem 1 and our hypothesis (c). Therefore, there are no such elliptic curves.

Corollary 13. If $p=43,47,59,67,71$ or 83 , then there are no elliptic curves with everywhere good reduction over $k:=\mathbb{Q}(\sqrt{3 p})$.

Proof. Using KASH, the class numbers and ray class numbers appearing in Theorem 12 are computed as follows:

p	$3 p$	h_{k}	$h_{k(\sqrt[3]{\varepsilon})}\left((3) \mathfrak{P}_{\infty}^{(1)} \mathfrak{P}_{\infty}^{(2)}\right)$	$h_{k(\sqrt[3]{\varepsilon}, \sqrt{-3})}((3))$
43	129	$\mathbf{1}$	$2^{2} \cdot 3$	$\mathbf{2} \cdot \mathbf{3}^{\mathbf{3}}$
47	141	$\mathbf{1}$	$\mathbf{2} \cdot \mathbf{3}^{\mathbf{3}}$	
59	177	$\mathbf{1}$	$\mathbf{2} \cdot \mathbf{3}$	
67	201	$\mathbf{1}$	$2^{2} \cdot 3$	$\mathbf{2} \cdot \mathbf{3}^{\mathbf{3}}$
71	213	$\mathbf{1}$	$2^{2} \cdot 3$	$\mathbf{2} \cdot \mathbf{3}^{\mathbf{2}}$
83	249	$\mathbf{1}$	$\mathbf{2} \cdot \mathbf{3}$	

(the bold-faced numbers are those which meet the assumptions of Theorem $12(\mathrm{a})$, (b)). Thus, conditions (a) and (b) are satisfied. For these p, equation (4) has no solutions.

We give another corollary which is already stated in [5].
Corollary 14. Let p be a prime number such that $p \equiv 3(\bmod 8)$ and $p \neq 3,11$, and let $k:=\mathbb{Q}(\sqrt{3 p})$. Let $\varepsilon(>1)$ be the fundamental unit of k and let $\mathfrak{P}_{\infty}^{(1)}$ and $\mathfrak{P}_{\infty}^{(2)}$ be the real primes of $k(\sqrt[3]{\varepsilon})$. If the following two conditions hold, then there are no elliptic curves with everywhere good reduction over k :
(a) $3 \nmid h_{k}$,
(b) $4 \nmid h_{k(\sqrt[3]{\varepsilon})}\left((3) \mathfrak{P}_{\infty}^{(1)} \mathfrak{P}_{\infty}^{(2)}\right)$ or $4 \nmid h_{k(\sqrt[3]{\varepsilon}, \sqrt{-3})}((3))$.

References

[1] J. E. Cremona, Algorithms for Modular Elliptic Curves, 2nd ed., Cambridge Univ. Press, 1997.
[2] A. Fröhlich, Central Extensions, Galois Groups, and Ideal Class Groups of Number Fields, Contemp. Math. 24, Amer. Math. Soc., 1983.
[3] T. Kagawa, Nonexistence of elliptic curves having everywhere good reduction and cubic discriminant, Proc. Japan Acad. Ser. A 76 (2000), 141-142.
[4] -, Determination of elliptic curves with everywhere good reduction over real quadratic fields $\mathbb{Q}(\sqrt{3 p})$, Acta Arith. 96 (2001), 231-245.
[5] -, The Diophantine equation $X^{3}=u+27 v$ over real quadratic fields, Tokyo J. Math. 33 (2010), 159-163.
[6] R. G. E. Pinch, Elliptic curves with good reduction away from 3, Math. Proc. Cambridge Philos. Soc. 101 (1987), 451-459.
[7] B. Setzer, Elliptic curves with good reduction everywhere over quadratic fields and having rational j-invariant, Illinois J. Math. 25 (1981), 233-245.
[8] J. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Nath. 106, Springer, 1986.

Takaaki Kagawa
Department of Mathematical Sciences
Ritsumeikan University
Kusatsu, Shiga 525-8577, Japan
E-mail: kagawa@se.ritsumei.ac.jp

[^0]: 2010 Mathematics Subject Classification: 11D99, 11G05.
 Key words and phrases: Diophantine equation over real quadratic fields, elliptic curves with everywhere good reduction.

