Gauss Sums of the Cubic Character over GF(2^m):
an Elementary Derivation

by

Davide SCHIPANI and Michele ELIA

Presented by Jerzy KACZOROWSKI

Summary. By an elementary approach, we derive the value of the Gauss sum of a cubic character over a finite field F_{2^s} without using Davenport–Hasse’s theorem (namely, if s is odd the Gauss sum is -1, and if s is even its value is $-(-2)^{s/2}$).

1. Introduction. Let F_{2^s} be a Galois field over F_2, with $\text{Tr}_s(x) = \sum_{j=0}^{s-1} x^{2^j}$ being the trace function over F_{2^s}, and $\text{Tr}_{s/r}(x) = \sum_{j=0}^{s/r-1} x^{2^{rj}}$ the relative trace function over F_{2^s} relative to F_{2^r}, with $r | s$.

Further let χ_m be a character of order m defined over F_{2^s} and taking values in $Q(\zeta_m)$, where ζ_m denotes a primitive mth root of unity and $Q(\zeta_m)$ the corresponding cyclotomic field.

A Gauss sum of a character χ_m over F_{2^s} is defined as $G_s(\beta, \chi_m) = \sum_{y \in F_{2^s}} \chi_m(y) e^{\pi i \text{Tr}_s(\beta y)} = \bar{\chi}_m(\beta) G_s(1, \chi_m)$ for all $\beta \in F_{2^s}$.

A cubic character χ_3 is a mapping from $F_{2^s}^*$ into the complex numbers defined as $\chi_3(\alpha^h + 3j) = \zeta_3^h$, $h = 0, 1, 2$, $j \in \mathbb{N}$, where ζ_3 is a cubic root of unity, and α a primitive element in $F_{2^s}^*$; furthermore we set by definition $\chi_3(0) = 0$.

The values of the Gauss sums of a cubic character over F_{2^s} can be found by computing the Gauss sum over F_4 and applying Davenport–Hasse’s theorem on the lifting of characters (1, 2, 3) for s even (and by computing

2010 Mathematics Subject Classification: Primary 12Y05; Secondary 12E30.
Key words and phrases: Gauss sum, character, binary finite fields.

DOI: 10.4064/ba59-1-2 © Instytut Matematyczny PAN, 2011
the Gauss sum over \mathbb{F}_2 and then trivially lifting for s odd) However a more elementary approach is possible, and this is the subject of the present work.

If s is odd then the cubic character is trivial because every element β in \mathbb{F}_{2s} is a cube, as the following chain of equalities shows:

$$\beta \cdot 1 = \beta \cdot (\beta^{2s-1})^2 = \beta^{2s+1-2} = \beta^{2s+1-1} = (\beta^{2s+1-1})^3,$$

since $\beta^{2s-1} = 1$, and $s+1$ is even, so that $2s+1 - 1$ is divisible by 3. In this case we have

$$G_s(1, \chi_3) = \sum_{y \in \mathbb{F}_{2s}} \chi_3(y)e^{\pi i \operatorname{Tr}_s(y)} = \sum_{y \in \mathbb{F}_{2s}^*} e^{\pi i \operatorname{Tr}_s(y)} = -1,$$

since the number of elements with trace 1 is equal to the number of elements with trace 0, $(\operatorname{Tr}_s(x) \in \mathbb{F}_2$; moreover $\operatorname{Tr}_s(x) = 1$ and $\operatorname{Tr}_s(x) = 0$ are two equations of degree $2s-1$), and $e^{\pi i \cdot 0} = 1$ while $e^{\pi i \cdot 1} = -1$.

If s is even, the cubic character is nontrivial, and the computation of the Gauss sums requires some more effort; before we show how they can be computed with an elementary approach, we need some preparatory lemmas.

2. Preliminary facts. First of all we recall that, for any nontrivial character χ_m over \mathbb{F}_q, $\sum_{x \in \mathbb{F}_q} \chi_m(x) = 0$. This is used to prove a property of a sum of characters, already known to Kummer (see [4]), which can be formulated as follows

Lemma 2.1. Let χ_m be a nontrivial character and β any element of \mathbb{F}_q. Then

$$\sum_{x \in \mathbb{F}_q} \chi_m(x)\overline{\chi}_m(x + \beta) = \begin{cases} q - 1 & \text{if } \beta = 0, \\ -1 & \text{if } \beta \ne 0. \end{cases}$$

Proof. If $\beta = 0$, the summand is $\chi_m(x)\overline{\chi}_m(x) = 1$, unless $x = 0$ in which case it is 0, so the conclusion is immediate.

When $\beta \ne 0$, we can exclude again the term with $x = 0$, as $\chi_m(x) = 0$, so that x is invertible, and the summand can be written as

$$\chi_m(x)\overline{\chi}_m(x + \beta) = \chi_m(x)\overline{\chi}_m(x)\overline{\chi}_m(1 + \beta x^{-1}) = \overline{\chi}_m(1 + \beta x^{-1}).$$

With the substitution $y = 1 + \beta x^{-1}$, the summation becomes

$$\sum_{y \in \mathbb{F}_{2m}^*} \chi_m(y) = -1 + \sum_{y \in \mathbb{F}_{2m}^*} \chi_m(y) = -1,$$

as $\chi_m(y) = 1$ for $y = 1$.

We are now interested in the sum $\sum_{x \in \mathbb{F}_q} \chi_m(x)\chi_m(x + 1)$. Note that for the Gauss sums over \mathbb{F}_{2s} we have
(2.1) \[G_s(1, \chi_m) = \sum_{y \in \mathbb{F}_{2^s}} \chi_m(y) - \sum_{y \in \mathbb{F}_{2^s}, \text{Tr}_s(y) = 1} \chi_m(y). \]

It follows that, if \(\chi_m \) is a nontrivial character, then
\[G_s(1, \chi_m) = 2 \sum_{y \in \mathbb{F}_{2^s}, \text{Tr}_s(y) = 0} \chi_m(y). \]

In fact half of the field elements have trace 0 and the other half 1, so that
\[\sum_{y \in \mathbb{F}_{2^s}, \text{Tr}_s(y) = 0} \chi_m(y) = - \sum_{y \in \mathbb{F}_{2^s}, \text{Tr}_s(y) = 1} \chi_m(y). \]

as the sum over all field elements is zero, since \(\chi_m \) is nontrivial.

Lemma 2.2. If \(\chi_m \) is a nontrivial character over \(\mathbb{F}_{2^s} \), then
\[\sum_{x \in \mathbb{F}_{2^s}} \chi_m(x)\chi_m(x + 1) = G_s(1, \chi_m). \]

Proof. We write the above sum as \(\sum_{x \in \mathbb{F}_{2^s}} \chi_m(x(x + 1)) \), since the character is multiplicative. Now the function \(f(x) = x(x + 1) \) maps \(\mathbb{F}_{2^s} \) onto its subset of 0-trace elements, as \(\text{Tr}_s(x) = \text{Tr}_s(x^2) \) for any \(s \), and each image comes from exactly two elements, \(x \) and \(x + 1 \). It follows that
\[\sum_{x \in \mathbb{F}_{2^s}} \chi_m(x)\chi_m(x + 1) = 2 \sum_{y \in \mathbb{F}_{2^s}, \text{Tr}_s(y) = 0} \chi_m(y) = G_s(1, \chi_m). \]

Lemma 2.3. Let \(\chi_m \) be a nontrivial character of order \(m = 2^r + 1 \). Then the Gauss sum \(G_s(1, \chi_m) \) is a real number.

Proof. Using (2.2) we have
\[\tilde{G}_s(1, \chi_m) = \sum_{x \in \mathbb{F}_{2^s}} \bar{\chi}_m(x)\chi_m(x + 1) \]
\[= \sum_{x \in \mathbb{F}_{2^s}} \chi_m(x^{2^r})\chi_m(x^{2^r} + 1) \]
\[= \sum_{x \in \mathbb{F}_{2^s}} \chi_m(x)\chi_m(x + 1) = G_s(1, \chi_m), \]

as \(\bar{\chi}_m(x) = \chi_m(x^{2^r}) = \chi_m(x^{2^r}) \) and \(x \mapsto x^{2^r} \) is a field automorphism, so it just permutes the elements of the field.

3. Main results. The absolute value of \(G_s(1, \chi_m) \) can be evaluated using elementary standard techniques going back to Gauss (see e.g. [1]), while its argument requires a more subtle analysis. Our main theorems in
this section yield in an elementary way the exact value of the Gauss sum for a cubic character \(\chi_3 \) over \(\mathbb{F}_{2^s} \), \(s \) even (the case of \(s \) odd is trivial, as shown above). Before we proceed, we show in a standard way what is its absolute value.

Since \(G_s(\beta, \chi_3) = \bar{\chi}_3(\beta)G_s(1, \chi_3) \), on one hand, we have

\[
(3.1) \quad \sum_{\beta \in \mathbb{F}_{2^s}} G_s(\beta, \chi_3) \bar{G}_s(\beta, \chi_3) = \sum_{\beta \in \mathbb{F}_{2^s}} \bar{\chi}_3(\beta)\chi_3(\beta)G_s(1, \chi_3)\bar{G}_s(1, \chi_3)
\]

\[
= \sum_{\beta \in \mathbb{F}_{2^s}} G_s(1, \chi_3)\bar{G}_s(1, \chi_3)
\]

\[
= (2^s - 1)G_s(1, \chi_3)\bar{G}_s(1, \chi_3).
\]

On the other hand, by the definition of Gauss sum, we have

\[
\sum_{\beta \in \mathbb{F}_{2^s}} G_s(\beta, \chi_3)\bar{G}_s(\beta, \chi_3)
\]

\[
= \sum_{\beta \in \mathbb{F}_{2^s}} \sum_{\alpha \in \mathbb{F}_{2^s}} \sum_{\gamma \in \mathbb{F}_{2^s}} \bar{\chi}_3(\alpha)e^{\pi i \text{Tr}_s(\beta \alpha)}\chi_3(\gamma)e^{-\pi i \text{Tr}_s(\gamma \beta)},
\]

and substituting \(\alpha = \gamma + \theta \) in the last sum, we have

\[
(3.2) \quad \sum_{\beta \in \mathbb{F}_{2^s}} G_s(\beta, \chi_3)\bar{G}_s(\beta, \chi_3) = \sum_{\gamma \in \mathbb{F}_{2^s}} \sum_{\theta \in \mathbb{F}_{2^s}} \bar{\chi}_3(\gamma + \theta)\chi_3(\gamma) \sum_{\beta \in \mathbb{F}_{2^s}} e^{\pi i \text{Tr}_s(\beta \theta)}
\]

\[
= 2^s(2^s - 1),
\]

as the sum on \(\beta \) is \(2^s \) if \(\theta = 0 \) and is 0 otherwise, since the values of the trace are equally distributed, as said above; consequently, the sum over \(\gamma \) is \(2^s - 1 \) times \(2^s \), as \(\chi_3(0) = 0 \). From the comparison of (3.1) with (3.2) we get \(G_s(1, \chi_3)\bar{G}_s(1, \chi_3) = 2^s \), so \(|G_s(1, \chi_3)| = 2^{s/2} \).

Few initial values are \(G_2(1, \chi_3) = 2 \), \(G_4(1, \chi_3) = -4 \), \(G_6(1, \chi_3) = 8 \), \(G_8(1, \chi_3) = -16 \), and \(G_{10}(1, \chi_3) = 32 \), so a reasonable guess is \(G_s(1, \chi_3) = -(2^s/2) \). This guess is correct as proved by the following theorems.

Theorem 3.1. If \(\ell \) is odd, the value of the Gauss sum \(G_{2\ell}(1, \chi_3) \) is \(2^\ell \).

Proof. Let \(\alpha \) be a primitive cubic root of unity in \(\mathbb{F}_{2^2} \). Then it is a root of \(x^2 + x + 1 \). In other words, a root \(\alpha \) of \(x^2 + x + 1 \), which does not belong to \(\mathbb{F}_{2^\ell} \), as \(\ell \) is odd, can be used to define a quadratic extension of this field, i.e. \(\mathbb{F}_{2^\ell} \), and the elements of this extension can be represented in the form \(x + \alpha y \) with \(x, y \in \mathbb{F}_{2^\ell} \). Furthermore, the two roots \(\alpha \) and \(1 + \alpha \) of \(x^2 + x + 1 \) are either fixed or exchanged by any Frobenius automorphism; in particular the automorphism \(\sigma^\ell(x) = x^{2^\ell} \) necessarily exchanges the two roots as it fixes precisely all the elements of \(\mathbb{F}_{2^\ell} \), while \(\alpha \) does not belong to this field,
so that $\sigma^\ell(\alpha) \neq \alpha$. Now, a Gauss sum $G_{2\ell}(1, \chi_3)$ can be written as

$$G_{2\ell}(1, \chi_3) = 2 \sum_{\substack{z \in \mathbb{F}_{2\ell}^* \\text{Tr}_{2\ell}(z) = 0}} \chi_3(z) = 2 \sum_{\substack{x, y \in \mathbb{F}_{2\ell}^* \\text{Tr}_{2\ell}(x + \alpha y) = 0}} \chi_3(x + \alpha y)$$

$$= 2 \sum_{\substack{x, y \in \mathbb{F}_{2\ell}^* \\text{Tr}_{2\ell}(y) = 0}} \chi_3(x + \alpha y),$$

where we have used the trace property

$$\text{Tr}_{2\ell}(x + \alpha y) = \text{Tr}_{2\ell}(x) + \text{Tr}_{\ell}(x^{2^\ell}) + \text{Tr}_{2\ell}(\alpha y) = \text{Tr}_{2\ell}(\alpha y),$$

and the fact that

$$\text{Tr}_{2\ell}(\alpha y) = \text{Tr}_{\ell}(\alpha y) + \text{Tr}_{\ell}(\alpha y^{2^\ell}) = \text{Tr}_{\ell}(\alpha y) + \text{Tr}_{\ell}((\alpha y)^{2^\ell}) = \text{Tr}_{\ell}(\alpha y) + \text{Tr}_{\ell}((\alpha + 1)y) = \text{Tr}_{\ell}(y),$$

since $\alpha^{2^\ell} = \alpha + 1$ as shown previously. The last sum in (3.3) can be split into three sums by separating the cases $x = 0$ and $y = 0$:

$$2 \sum_{\substack{x, y \in \mathbb{F}_{2\ell}^* \\text{Tr}_{\ell}(y) = 0}} \chi_3(x + \alpha y) = 2 \sum_{\substack{y \in \mathbb{F}_{2\ell}^* \\text{Tr}_{\ell}(y) = 0}} \chi_3(\alpha y) + 2 \sum_{\substack{x \in \mathbb{F}_{2\ell}^* \\text{Tr}_{\ell}(y) = 0}} \chi_3(x)$$

$$+ 2 \sum_{\substack{x, y \in \mathbb{F}_{2\ell}^* \\text{Tr}_{\ell}(y) = 0}} \chi_3(x + \alpha y).$$

Considering the three sums separately, we have:

$$\sum_{x \in \mathbb{F}_{2\ell}^*} \chi_3(x) = 2^\ell - 1,$$

as $\chi_3(x) = 1$ unless $x = 0$ since ℓ is odd;

$$\sum_{y \in \mathbb{F}_{2\ell}^* \\text{Tr}_{\ell}(y) = 0} \chi_3(\alpha y) = \chi_3(\alpha)(2^\ell - 1 - 1),$$

as the character is multiplicative, $\chi_3(y) = 1$ unless $y = 0$, and only the 0-trace elements (which are $2^{\ell-1} - 1$) should be counted; and

$$\sum_{\substack{x, y \in \mathbb{F}_{2\ell}^* \\text{Tr}_{\ell}(y) = 0}} \chi_3(x + \alpha y) = \sum_{\substack{x, y \in \mathbb{F}_{2\ell}^* \\text{Tr}_{\ell}(y) = 0}} \chi_3(y) \chi_3(xy^{-1} + \alpha) = \sum_{\substack{z, y \in \mathbb{F}_{2\ell}^* \\text{Tr}_{\ell}(y) = 0}} \chi_3(z + \alpha)$$

$$= (2^{\ell-1} - 1) \sum_{z \in \mathbb{F}_{2\ell}^*} \chi_3(z + \alpha),$$

as y is invertible, $\chi_3(y) = 1$ since ℓ is odd, z has been substituted for xy^{-1}, and the sum we get in the end, being independent of y, is simply multiplied
by the number of values assumed by \(y \). Altogether we have

\[
G_{2\ell}(1, \chi_3) = 2^{\ell+1} - 2 + \chi_3(\alpha)(2^\ell - 2) + (2^\ell - 2) \sum_{z \in \mathbb{F}_{2^\ell}} \chi_3(z + \alpha)
\]

\[
= 2^{\ell+1} - 2 + (2^\ell - 2) \sum_{z \in \mathbb{F}_{2^\ell}} \chi_3(z + \alpha),
\]

and, for later use, we define \(A(\alpha) = \sum_{z \in \mathbb{F}_{2^\ell}} \chi_3(z + \alpha) \). In order to evaluate \(A(\alpha) \), we consider the sum of \(A(\beta) \) over \(\beta \in \mathbb{F}_{2^\ell} \), and observe that \(A(\beta) = 2^\ell - 1 \) if \(\beta \in \mathbb{F}_{2^\ell} \), while if \(\beta \notin \mathbb{F}_{2^\ell} \) all sums assume the same value \(A(\alpha) \), which is shown as follows. Set \(\beta = u + \alpha v \) with \(v \neq 0 \). Then

\[
\sum_{z \in \mathbb{F}_{2^\ell}} \chi_3(z + u + \alpha v) = \sum_{z \in \mathbb{F}_{2^\ell}} \chi_3(v)\chi_3((z + u)v^{-1} + \alpha) = \sum_{z' \in \mathbb{F}_{2^\ell}} \chi_3(z' + \alpha).
\]

Therefore, the sum

\[
\sum_{\beta \in \mathbb{F}_{2^\ell}} A(\beta) = \sum_{\beta \in \mathbb{F}_{2^\ell}} \sum_{z \in \mathbb{F}_{2^\ell}} \chi_3(z + \beta) = \sum_{z \in \mathbb{F}_{2^\ell}} \sum_{\beta \in \mathbb{F}_{2^\ell}} \chi_3(z + \beta) = 0
\]

yields

\[
2^\ell (2^\ell - 1) + (2^{2\ell} - 2^\ell) A(\alpha) = 0,
\]

which implies \(A(\alpha) = -1 \), and finally

\[
G_{2\ell}(1, \chi_3) = 2^{\ell+1} - 2 - (2^\ell - 2) = 2^\ell.
\]

Remark. The above theorem can also be proved using a theorem by Stickelberger ([3, Theorem 5.16]).

Theorem 3.2. If \(\ell \) is even, then the Gauss sum \(G_{2\ell}(1, \chi_3) \) is equal to \((-2)^{\ell/2} G_{\ell}(1, \chi_3)\).

Proof. The relative trace of the elements of \(\mathbb{F}_{2^\ell} \) over \(\mathbb{F}_{2^\ell} \), which is

\[
\text{Tr}_{2^\ell/\ell}(x) = x + x^{2^\ell},
\]

introduces the polynomial \(x + x^{2^\ell} \) which defines a mapping from \(\mathbb{F}_{2^\ell} \) onto \(\mathbb{F}_{2^\ell} \) with kernel \(\mathbb{F}_{2^\ell} \) ([3]). The equation \(x^{2^\ell} + x = y \) has in fact exactly \(2^\ell \) roots in \(\mathbb{F}_{2^\ell} \) for every \(y \in \mathbb{F}_{2^\ell} \).

By definition we have

\[
G_{2\ell}(1, \chi_3) = 2 \sum_{\substack{z \in \mathbb{F}_{2^\ell} \\ \text{Tr}_{2^\ell}(z) = 0}} \chi_3(z) = 2 \sum_{\substack{x, y \in \mathbb{F}_{2^\ell} \\ \text{Tr}_{2^\ell}(x + \alpha y) = 0}} \chi_3(x + \alpha y),
\]

where \(\alpha \) is a root of an irreducible quadratic polynomial \(x^2 + x + b \) over \(\mathbb{F}_{2^\ell} \), i.e. \(\text{Tr}_{\ell}(b) = 1 \) ([3, Corollary 3.79]) and \(\text{Tr}_{2^\ell/\ell}(\alpha) = 1 \), which can be seen from the coefficient of \(x \) of the polynomial. Now

\[
\text{Tr}_{2^\ell}(x + \alpha y) = \text{Tr}_{2^\ell}(x) + \text{Tr}_{2^\ell}(\alpha y) = \text{Tr}_{\ell}(\alpha y) = \text{Tr}_{\ell}(\alpha y) + \text{Tr}_{\ell}(\alpha^{2^\ell} y),
\]
but $\alpha^{2\ell} = 1 + \alpha$, so that $\text{Tr}_{2\ell}(x + \alpha y) = \text{Tr}_{\ell}(y)$, and we have

$$G_{2\ell}(1, \chi_3) = 2 \sum_{x, y \in \mathbb{F}_{2\ell}^*} \chi_3(x + \alpha y)$$

$$= 2 \sum_{x \in \mathbb{F}_{2\ell}^*} \chi_3(x) + 2 \sum_{y \in \mathbb{F}_{2\ell}^*} \chi_3(\alpha y) + 2 \sum_{x, y \in \mathbb{F}_{2\ell}^*} \chi_3(x + \alpha y),$$

where the summation has been split into three sums, by separating the cases $y = 0$ and $x = 0$. We observe that, since the character over $\mathbb{F}_{2\ell}$ is not trivial, the first sum is 0 and the second is $\chi_3(\alpha)G_{\ell}(1, \chi_3)$, while the third can be written as follows:

$$2 \sum_{x, y \in \mathbb{F}_{2\ell}^*} \chi_3(x + \alpha y) = 2 \sum_{x, y \in \mathbb{F}_{2\ell}^*} \chi_3(y)\chi_3(xy^{-1} + \alpha)$$

$$= 2 \sum_{y \in \mathbb{F}_{2\ell}^*} \chi_3(y) \sum_{z \in \mathbb{F}_{2\ell}^*} \chi_3(z + \alpha).$$

Putting all together, we obtain

$$G_{2\ell}(1, \chi_3) = G_{\ell}(1, \chi_3) \sum_{z \in \mathbb{F}_{2\ell}} \chi_3(z + \alpha) = G_{\ell}(1, \chi_3)A_{\ell}(\alpha),$$

which shows that $|A_{\ell}(\alpha)| = 2^{\ell/2}$ and that $A_{\ell}(\alpha)$ is real, as both $G_{2\ell}(1, \chi_3)$ and $G_{\ell}(1, \chi_3)$ are real. Note that this holds for any α with $\text{Tr}_{2\ell/\ell}(\alpha) = 1$.

We will show now that $A_{\ell}(\alpha) = (-2)^{\ell/2}$. Consider the sum of $A_{\ell}(\gamma)$ over all γ with relative trace equal to 1, which is on one hand $2^{\ell}A_{\ell}(\alpha)$, as the polynomial $x^{2\ell} + x = 1$ has exactly 2^{ℓ} roots in $\mathbb{F}_{2\ell}$, and on the other hand, explicitly we have

$$\sum_{\gamma \in \mathbb{F}_{2\ell}^*} A_{\ell}(\gamma) = \sum_{z \in \mathbb{F}_{2\ell}^*} \sum_{\gamma \in \mathbb{F}_{2\ell}^*} \chi_3(z + \gamma) = \sum_{z \in \mathbb{F}_{2\ell}^*} \sum_{\gamma' \in \mathbb{F}_{2\ell}^*} \chi_3(\gamma')$$

$$= 2^{\ell} \sum_{\gamma' \in \mathbb{F}_{2\ell}^*} \chi_3(\gamma'),$$

where the summation order has been reversed, and $\text{Tr}_{2\ell/\ell}(\gamma) = \text{Tr}_{2\ell/\ell}(\gamma')$ as $\text{Tr}_{2\ell/\ell}(z) = 0$ for any $z \in \mathbb{F}_{2\ell}$. Comparing the two results, we have

$$A_{\ell}(\alpha) = \sum_{\gamma' \in \mathbb{F}_{2\ell}^*} \chi_3(\gamma') = M_0 + M_1\zeta_3 + M_2\zeta_3^2,$$
where M_0 is the number of γ' with $\text{Tr}_{2\ell/\ell}(\gamma') = 1$ that are cubic residues, i.e. they have character $\chi_3(\gamma')$ equal to 1, M_1 is the number of γ' with $\text{Tr}_{2\ell/\ell}(\gamma') = 1$ that have character ζ_3, and M_2 is the number of γ' with $\text{Tr}_{2\ell/\ell}(\gamma') = 1$ that have character ζ_3^2. Then $M_0 + M_1 + M_2 = 2^\ell$, and $M_1 = M_2$ since $A_{\ell}(\alpha)$ is real. Therefore, $A_{\ell}(\alpha) = M_0 - M_1$, and so we consider two equations for M_0 and M_1,

$$\begin{align*}
M_0 + 2M_1 &= 2^\ell, \\
M_0 - M_1 &= \pm 2^{\ell/2}.
\end{align*}$$

Solving for M_1 we have $M_1 = \frac{1}{3}(2^\ell \mp 2^{\ell/2})$. Since M_1 must be an integer, we obtain

$$\begin{align*}
M_0 - M_1 &= 2^{\ell/2} & \text{if } \ell/2 \text{ is even}, \\
M_0 - M_1 &= -2^{\ell/2} & \text{if } \ell/2 \text{ is odd}.\n\end{align*}$$

Corollary 3.3. For ℓ even, the value of the Gauss sum $G_{2\ell}(1, \chi_3)$ is -2^ℓ.

Proof. This is a direct consequence of the two theorems above. $lacksquare$

Acknowledgements. This research was partly supported by the Swiss National Science Foundation (grants No. 126948 and No. 132256).

References

Davide Schipani
Institute of Mathematics
University of Zurich
8057 Zürich, Switzerland
E-mail: davide.schipani@math.uzh.ch

Michele Elia
Department of Electronics
Politecnico di Torino
10129 Torino, Italy
E-mail: michele.elia@polito.it

Received March 31, 2011 (7823)