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Summary. By an elementary approach, we derive the value of the Gauss sum of a cubic
character over a finite field F2s without using Davenport–Hasse’s theorem (namely, if s is
odd the Gauss sum is −1, and if s is even its value is −(−2)s/2).

1. Introduction. Let F2s be a Galois field over F2, with Trs(x) =∑s−1
j=0 x

2j
being the trace function over F2s , and Trs/r(x) =

∑s/r−1
j=0 x2rj

the
relative trace function over F2s relative to F2r , with r | s [3].

Further let χm be a character of order m defined over F2s and taking
values in Q(ζm), where ζm denotes a primitive mth root of unity and Q(ζm)
the corresponding cyclotomic field.

A Gauss sum of a character χm over F2s is defined as [1]

Gs(β, χm) =
∑
y∈F2s

χm(y)eπiTrs(βy) = χ̄m(β)Gs(1, χm) ∀β ∈ F2s .

A cubic character χ3 is a mapping from F∗2s into the complex numbers
defined as

χ3(αh+3j) = ζh3 , h = 0, 1, 2, j ∈ N,

where ζ3 is a cubic root of unity, and α a primitive element in F∗2s ; further-
more we set by definition χ3(0) = 0.

The values of the Gauss sums of a cubic character over F2s can be found
by computing the Gauss sum over F4 and applying Davenport–Hasse’s the-
orem on the lifting of characters ([1, 2, 3]) for s even (and by computing
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the Gauss sum over F2 and then trivially lifting for s odd). However a more
elementary approach is possible, and this is the subject of the present work.

If s is odd then the cubic character is trivial because every element β in
F2s is a cube, as the following chain of equalities shows:

β · 1 = β · (β2s−1)2 = ββ2s+1−2 = β2s+1−1 = (β
2s+1−1

3 )3,

since β2s−1 = 1, and s+ 1 is even, so that 2s+1 − 1 is divisible by 3. In this
case we have

Gs(1, χ3) =
∑
y∈F2s

χ3(y)eπiTrs(y) =
∑
y∈F∗2s

eπiTrs(y) = −1,

since the number of elements with trace 1 is equal to the number of elements
with trace 0, (Trs(x) ∈ F2; moreover Trs(x) = 1 and Trs(x) = 0 are two
equations of degree 2s−1), and eπi·0 = 1 while eπi·1 = −1.

If s is even, the cubic character is nontrivial, and the computation of
the Gauss sums requires some more effort; before we show how they can be
computed with an elementary approach, we need some preparatory lemmas.

2. Preliminary facts. First of all we recall that, for any nontrivial
character χm over Fq,

∑
x∈Fq

χm(x) = 0. This is used to prove a property
of a sum of characters, already known to Kummer (see [4]), which can be
formulated as follows

Lemma 2.1. Let χm be a nontrivial character and β any element of Fq.
Then ∑

x∈Fq

χm(x)χ̄m(x+ β) =
{
q − 1 if β = 0,
−1 if β 6= 0.

Proof. If β = 0, the summand is χm(x)χ̄m(x) = 1, unless x = 0 in which
case it is 0, so the conclusion is immediate.

When β 6= 0, we can exclude again the term with x = 0, as χm(x) = 0,
so that x is invertible, and the summand can be written as

χm(x)χ̄m(x+ β) = χm(x)χ̄m(x)χ̄m(1 + βx−1) = χ̄m(1 + βx−1).

With the substitution y = 1 + βx−1, the summation becomes∑
y∈F22m

y 6=1

χm(y) = −1 +
∑

y∈F22m

χm(y) = −1,

as χm(y) = 1 for y = 1.

We are now interested in the sum
∑

x∈Fq
χm(x)χm(x+ 1). Note that for

the Gauss sums over F2s we have
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(2.1) Gs(1, χm) =
∑
y∈F2s

Trs(y)=0

χm(y)−
∑
y∈F2s

Trs(y)=1

χm(y).

It follows that, if χm is a nontrivial character, then

Gs(1, χm) = 2
∑
y∈F2s

Trs(y)=0

χm(y).

In fact half of the field elements have trace 0 and the other half 1, so that∑
y∈F2s

Trs(y)=0

χm(y) = −
∑
y∈F2s

Trs(y)=1

χm(y)

as the sum over all field elements is zero, since χm is nontrivial.

Lemma 2.2. If χm is a nontrivial character over F2s, then∑
x∈F2s

χm(x)χm(x+ 1) = Gs(1, χm).

Proof. We write the above sum as
∑

x∈F2s
χm(x(x+ 1)), since the char-

acter is multiplicative. Now the function f(x) = x(x+ 1) maps F2s onto its
subset of 0-trace elements, as Trs(x) = Trs(x2) for any s, and each image
comes from exactly two elements, x and x+ 1. It follows that

(2.2)
∑
x∈F2s

χm(x)χm(x+ 1) = 2
∑
y∈F2s

Trs(y)=0

χm(y) = Gs(1, χm).

Lemma 2.3. Let χm be a nontrivial character of order m = 2r+1. Then
the Gauss sum Gs(1, χm) is a real number.

Proof. Using (2.2) we have

Ḡs(1, χm) =
∑
x∈F2s

χ̄m(x)χ̄m(x+ 1)

=
∑
x∈F2s

χm(x2r
)χm(x2r

+ 1)

=
∑
x∈F2s

χm(x)χm(x+ 1) = Gs(1, χm),

as χ̄m(x) = χm(x)2
r

= χm(x2r
) and x 7→ x2r

is a field automorphism, so it
just permutes the elements of the field.

3. Main results. The absolute value of Gs(1, χm) can be evaluated
using elementary standard techniques going back to Gauss (see e.g. [1]),
while its argument requires a more subtle analysis. Our main theorems in
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this section yield in an elementary way the exact value of the Gauss sum for
a cubic character χ3 over F2s , s even (the case of s odd is trivial, as shown
above). Before we proceed, we show in a standard way what is its absolute
value.

Since Gs(β, χ3) = χ̄3(β)Gs(1, χ3), on one hand, we have∑
β∈F2s

Gs(β, χ3)Ḡs(β, χ3) =
∑
β∈F2s

χ̄3(β)χ3(β)Gs(1, χ3)Ḡs(1, χ3)(3.1)

=
∑
β∈F∗2s

Gs(1, χ3)Ḡs(1, χ3)

= (2s − 1)Gs(1, χ3)Ḡs(1, χ3).

On the other hand, by the definition of Gauss sum, we have∑
β∈F2s

Gs(β, χ3)Ḡs(β, χ3)

=
∑
β∈F2s

∑
α∈F2s

∑
γ∈F2s

χ̄3(α)eπiTrs(βα)χ3(γ)e−πiTrs(γβ),

and substituting α = γ + θ in the last sum, we have∑
β∈F2s

Gs(β, χ3)Ḡs(β, χ3) =
∑
γ∈F2s

∑
θ∈F2s

χ̄3(γ + θ)χ3(γ)
∑
β∈F2s

eπiTr2s(βθ)(3.2)

= 2s(2s − 1),

as the sum on β is 2s if θ = 0 and is 0 otherwise, since the values of the
trace are equally distributed, as said above; consequently, the sum over γ is
2s − 1 times 2s, as χ3(0) = 0. From the comparison of (3.1) with (3.2) we
get Gs(1, χ3)Ḡs(1, χ3) = 2s, so |Gs(1, χ3)| = 2s/2.

Few initial values are G2(1, χ3) = 2, G4(1, χ3) = −4, G6(1, χ3) = 8,
G8(1, χ3) = −16, and G10(1, χ3) = 32, so a reasonable guess is Gs(1, χ3) =
−(−2)s/2. This guess is correct as proved by the following theorems.

Theorem 3.1. If ` is odd, the value of the Gauss sum G2`(1, χ3) is 2`.

Proof. Let α be a primitive cubic root of unity in F22` . Then it is a root
of x2 + x+ 1. In other words, a root α of x2 + x+ 1, which does not belong
to F2` , as ` is odd, can be used to define a quadratic extension of this field,
i.e. F22` , and the elements of this extension can be represented in the form
x+αy with x, y ∈ F2` . Furthermore, the two roots α and 1 +α of x2 +x+ 1
are either fixed or exchanged by any Frobenius automorphism; in particular
the automorphism σ`(x) = x2`

necessarily exchanges the two roots as it
fixes precisely all the elements of F2` , while α does not belong to this field,
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so that σ`(α) 6= α. Now, a Gauss sum G2`(1, χ3) can be written as

G2`(1, χ3) = 2
∑
z∈F

22`

Tr2`(z)=0

χ3(z) = 2
∑

x,y∈F
2`

Tr2`(x+αy)=0

χ3(x+ αy)(3.3)

= 2
∑

x,y∈F
2`

Tr`(y)=0

χ3(x+ αy),

where we have used the trace property

Tr2`(x+αy) = Tr2`(x)+Tr2`(αy) = Tr`(x)+Tr`(x2`
)+Tr2`(αy) = Tr2`(αy),

and the fact that

Tr2`(αy) = Tr`(αy) + Tr`(αy)2
`

= Tr`(αy) + Tr`((αy)2
`
)

= Tr`(αy) + Tr`(α2`
y) = Tr`(αy) + Tr`((α+ 1)y) = Tr`(y),

since α2`
= α + 1 as shown previously. The last sum in (3.3) can be split

into three sums by separating the cases x = 0 and y = 0:

2
∑

x,y∈F
2`

Tr`(y)=0

χ3(x+ αy) = 2
∑
y∈F

2`

Tr`(y)=0

χ3(αy) + 2
∑
x∈F

2`

χ3(x)

+ 2
∑

x,y∈F∗
2`

Tr`(y)=0

χ3(x+ αy).

Considering the three sums separately, we have:∑
x∈F

2`

χ3(x) = 2` − 1,

as χ3(x) = 1 unless x = 0 since ` is odd;∑
y∈F

2`Tr`(y)=0

χ3(αy) = χ3(α)(2`−1 − 1),

as the character is multiplicative, χ3(y) = 1 unless y = 0, and only the
0-trace elements (which are 2`−1 − 1) should be counted; and∑

x,y∈F∗
2`

Tr`(y)=0

χ3(x+ αy) =
∑

x,y∈F∗
2`

Tr`(y)=0

χ3(y)χ3(xy−1 + α) =
∑

z,y∈F∗
2`

Tr`(y)=0

χ3(z + α)

= (2`−1 − 1)
∑
z∈F∗

2`

χ3(z + α),

as y is invertible, χ3(y) = 1 since ` is odd, z has been substituted for xy−1,
and the sum we get in the end, being independent of y, is simply multiplied
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by the number of values assumed by y. Altogether we have

G2`(1, χ3) = 2`+1 − 2 + χ3(α)(2` − 2) + (2` − 2)
∑
z∈F∗

2`

χ3(z + α)

= 2`+1 − 2 + (2` − 2)
∑
z∈F

2`

χ3(z + α),

and, for later use, we define A(α) =
∑

z∈F
2`
χ3(z + α). In order to evaluate

A(α), we consider the sum of A(β) over β ∈ F22` , and observe that A(β) =
2` − 1 if β ∈ F2` , while if β 6∈ F2` all sums assume the same value A(α),
which is shown as follows. Set β = u+ αv with v 6= 0. Then∑
z∈F

2`

χ3(z + u+ αv) =
∑
z∈F

2`

χ3(v)χ3((z + u)v−1 + α) =
∑
z′∈F

2`

χ3(z′ + α).

Therefore, the sum∑
β∈F

22`

A(β) =
∑

β∈F
22`

∑
z∈F

2`

χ3(z + β) =
∑
z∈F

2`

∑
β∈F

22`

χ3(z + β) = 0

yields
2`(2` − 1) + (22` − 2`)A(α) = 0,

which implies A(α) = −1, and finally

G2`(1, χ3) = 2`+1 − 2− (2` − 2) = 2`.

Remark. The above theorem can also be proved using a theorem by
Stickelberger ([3, Theorem 5.16]).

Theorem 3.2. If ` is even, then the Gauss sum G2`(1, χ3) is equal to
(−2)`/2G`(1, χ3).

Proof. The relative trace of the elements of F22` over F2` , which is

Tr2`/`(x) = x+ x2`
,

introduces the polynomial x + x2`
which defines a mapping from F22` onto

F2` with kernel F2` ([3]). The equation x2`
+ x = y has in fact exactly 2`

roots in F22` for every y ∈ F2` .
By definition we have

G2`(1, χ3) = 2
∑
z∈F

22`

Tr2`(z)=0

χ3(z) = 2
∑

x,y∈F
2`

Tr2`(x+αy)=0

χ3(x+ αy),

where α is a root of an irreducible quadratic polynomial x2 +x+ b over F2` ,
i.e. Tr`(b) = 1 ([3, Corollary 3.79]) and Tr2`/`(α) = 1, which can be seen
from the coefficient of x of the polynomial. Now

Tr2`(x+ αy) = Tr2`(x) + Tr2`(αy) = Tr2`(αy) = Tr`(αy) + Tr`(α2`
y),
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but α2`
= 1 + α, so that Tr2`(x+ αy) = Tr`(y), and we have

G2`(1, χ3) = 2
∑

x,y∈F
2`

Tr`(y)=0

χ3(x+ αy)

= 2
∑
x∈F

2`

χ3(x) + 2
∑
y∈F∗

2`

Tr`(y)=0

χ3(αy) + 2
∑

x,y∈F∗
2`

Tr`(y)=0

χ3(x+ αy),

where the summation has been split into three sums, by separating the cases
y = 0 and x = 0. We observe that, since the character over F2` is not trivial,
the first sum is 0 and the second is χ3(α)G`(1, χ3), while the third can be
written as follows:

2
∑

x,y∈F∗
2`

Tr`(y)=0

χ3(x+ αy) = 2
∑

x,y∈F∗
2`

Tr`(y)=0

χ3(y)χ3(xy−1 + α)

= 2
∑
y∈F∗

2`

Tr`(y)=0

χ3(y)
∑
z∈F∗

2`

χ3(z + α).

Putting all together, we obtain

G2`(1, χ3) = G`(1, χ3)
∑
z∈F

2`

χ3(z + α) = G`(1, χ3)A`(α),

which shows that |A`(α)| = 2`/2 and that A`(α) is real, as both G2`(1, χ3)
and G`(1, χ3) are real. Note that this holds for any α with Tr2`/`(α) = 1.
We will show now that A`(α) = (−2)`/2. Consider the sum of A`(γ) over
all γ with relative trace equal to 1, which is on one hand 2`A`(α), as the
polynomial x2`

+ x = 1 has exactly 2` roots in F22` , and on the other hand,
explicitly we have∑

γ∈F∗
22`

Tr2`/`(γ)=1

A`(γ) =
∑
z∈F

2`

∑
γ∈F∗

22`

Tr2`/`(γ)=1

χ3(z + γ) =
∑
z∈F

2`

∑
γ′∈F∗

22`

Tr2`/`(γ
′)=1

χ3(γ′)

= 2`
∑

γ′∈F∗
22`

Tr2`/`(γ
′)=1

χ3(γ′),

where the summation order has been reversed, and Tr2`/`(γ) = Tr2`/`(γ′) as
Tr2`/`(z) = 0 for any z ∈ F2` . Comparing the two results, we have

A`(α) =
∑

γ′∈F∗
22`

Tr2`/`(γ
′)=1

χ3(γ′) = M0 +M1ζ3 +M2ζ
2
3 ,
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where M0 is the number of γ′ with Tr2`/`(γ′) = 1 that are cubic residues,
i.e. they have character χ3(γ′) equal to 1, M1 is the number of γ′ with
Tr2`/`(γ′) = 1 that have character ζ3, and M2 is the number of γ′ with
Tr2`/`(γ′) = 1 that have character ζ2

3 . Then M0 + M1 + M2 = 2`, and
M1 = M2 since A`(α) is real. Therefore, A`(α) = M0 − M1, and so we
consider two equations for M0 and M1,{

M0 + 2M1 = 2`,
M0 −M1 = ±2`/2.

Solving for M1 we have M1 = 1
3(2`∓ 2`/2). Since M1 must be an integer, we

obtain {
M0 −M1 = 2`/2 if `/2 is even,
M0 −M1 = −2`/2 if `/2 is odd.

Corollary 3.3. For ` even, the value of the Gauss sum G2`(1, χ3)
is −2`.

Proof. This is a direct consequence of the two theorems above.
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