FIELD THEORY AND POLYNOMIALS

Gauss Sums of the Cubic Character over $GF(2^m)$: an Elementary Derivation

by

Davide SCHIPANI and Michele ELIA

Presented by Jerzy KACZOROWSKI

Summary. By an elementary approach, we derive the value of the Gauss sum of a cubic character over a finite field \mathbb{F}_{2^s} without using Davenport-Hasse's theorem (namely, if s is odd the Gauss sum is -1, and if s is even its value is $-(-2)^{s/2}$).

1. Introduction. Let \mathbb{F}_{2^s} be a Galois field over \mathbb{F}_2 , with $\operatorname{Tr}_s(x) = \sum_{j=0}^{s-1} x^{2^j}$ being the trace function over \mathbb{F}_{2^s} , and $\operatorname{Tr}_{s/r}(x) = \sum_{j=0}^{s/r-1} x^{2^{rj}}$ the relative trace function over \mathbb{F}_{2^s} relative to \mathbb{F}_{2^r} , with $r \mid s$ [3].

Further let χ_m be a character of order m defined over \mathbb{F}_{2^s} and taking values in $\mathbb{Q}(\zeta_m)$, where ζ_m denotes a primitive mth root of unity and $\mathbb{Q}(\zeta_m)$ the corresponding cyclotomic field.

A Gauss sum of a character χ_m over \mathbb{F}_{2^s} is defined as [1]

$$G_s(\beta, \chi_m) = \sum_{y \in \mathbb{F}_{2^s}} \chi_m(y) e^{\pi i \operatorname{Tr}_s(\beta y)} = \bar{\chi}_m(\beta) G_s(1, \chi_m) \quad \forall \beta \in \mathbb{F}_{2^s}.$$

A cubic character χ_3 is a mapping from $\mathbb{F}_{2^s}^*$ into the complex numbers defined as

$$\chi_3(\alpha^{h+3j}) = \zeta_3^h, \quad h = 0, 1, 2, \ j \in \mathbb{N},$$

where ζ_3 is a cubic root of unity, and α a primitive element in $\mathbb{F}_{2^s}^*$; furthermore we set by definition $\chi_3(0) = 0$.

The values of the Gauss sums of a cubic character over \mathbb{F}_{2^s} can be found by computing the Gauss sum over \mathbb{F}_4 and applying Davenport-Hasse's theorem on the lifting of characters ([1, 2, 3]) for s even (and by computing

²⁰¹⁰ Mathematics Subject Classification: Primary 12Y05; Secondary 12E30.

Key words and phrases: Gauss sum, character, binary finite fields.

the Gauss sum over \mathbb{F}_2 and then trivially lifting for s odd). However a more elementary approach is possible, and this is the subject of the present work.

If s is odd then the cubic character is trivial because every element β in \mathbb{F}_{2^s} is a cube, as the following chain of equalities shows:

$$\beta \cdot 1 = \beta \cdot (\beta^{2^{s}-1})^2 = \beta \beta^{2^{s+1}-2} = \beta^{2^{s+1}-1} = (\beta^{\frac{2^{s+1}-1}{3}})^3,$$

since $\beta^{2^s-1} = 1$, and s+1 is even, so that $2^{s+1} - 1$ is divisible by 3. In this case we have

$$G_s(1,\chi_3) = \sum_{y \in \mathbb{F}_{2^s}} \chi_3(y) e^{\pi i \operatorname{Tr}_s(y)} = \sum_{y \in \mathbb{F}_{2^s}^*} e^{\pi i \operatorname{Tr}_s(y)} = -1,$$

since the number of elements with trace 1 is equal to the number of elements with trace 0, $(\operatorname{Tr}_s(x) \in \mathbb{F}_2; \text{ moreover } \operatorname{Tr}_s(x) = 1 \text{ and } \operatorname{Tr}_s(x) = 0 \text{ are two}$ equations of degree 2^{s-1} , and $e^{\pi i \cdot 0} = 1$ while $e^{\pi i \cdot 1} = -1$.

If s is even, the cubic character is nontrivial, and the computation of the Gauss sums requires some more effort; before we show how they can be computed with an elementary approach, we need some preparatory lemmas.

2. Preliminary facts. First of all we recall that, for any nontrivial character χ_m over \mathbb{F}_q , $\sum_{x \in \mathbb{F}_q} \chi_m(x) = 0$. This is used to prove a property of a sum of characters, already known to Kummer (see [4]), which can be formulated as follows

LEMMA 2.1. Let χ_m be a nontrivial character and β any element of \mathbb{F}_q . Then

$$\sum_{x \in \mathbb{F}_q} \chi_m(x) \bar{\chi}_m(x+\beta) = \begin{cases} q-1 & \text{if } \beta = 0, \\ -1 & \text{if } \beta \neq 0. \end{cases}$$

Proof. If $\beta = 0$, the summand is $\chi_m(x)\bar{\chi}_m(x) = 1$, unless x = 0 in which case it is 0, so the conclusion is immediate.

When $\beta \neq 0$, we can exclude again the term with x = 0, as $\chi_m(x) = 0$, so that x is invertible, and the summand can be written as

$$\chi_m(x)\bar{\chi}_m(x+\beta) = \chi_m(x)\bar{\chi}_m(x)\bar{\chi}_m(1+\beta x^{-1}) = \bar{\chi}_m(1+\beta x^{-1}).$$

With the substitution $y = 1 + \beta x^{-1}$, the summation becomes

$$\sum_{\substack{y \in \mathbb{F}_{2^{2m}} \\ y \neq 1}} \chi_m(y) = -1 + \sum_{y \in \mathbb{F}_{2^{2m}}} \chi_m(y) = -1,$$

as $\chi_m(y) = 1$ for y = 1.

We are now interested in the sum $\sum_{x \in \mathbb{F}_q} \chi_m(x) \chi_m(x+1)$. Note that for the Gauss sums over \mathbb{F}_{2^s} we have

(2.1)
$$G_s(1,\chi_m) = \sum_{\substack{y \in \mathbb{F}_{2^s} \\ \operatorname{Tr}_s(y) = 0}} \chi_m(y) - \sum_{\substack{y \in \mathbb{F}_{2^s} \\ \operatorname{Tr}_s(y) = 1}} \chi_m(y).$$

It follows that, if χ_m is a nontrivial character, then

$$G_s(1,\chi_m) = 2\sum_{\substack{y \in \mathbb{F}_{2^s} \\ \operatorname{Tr}_s(y) = 0}} \chi_m(y)$$

In fact half of the field elements have trace 0 and the other half 1, so that

$$\sum_{\substack{y \in \mathbb{F}_{2^s} \\ \operatorname{Tr}_s(y)=0}} \chi_m(y) = -\sum_{\substack{y \in \mathbb{F}_{2^s} \\ \operatorname{Tr}_s(y)=1}} \chi_m(y)$$

as the sum over all field elements is zero, since χ_m is nontrivial.

LEMMA 2.2. If χ_m is a nontrivial character over \mathbb{F}_{2^s} , then

$$\sum_{x \in \mathbb{F}_{2^s}} \chi_m(x) \chi_m(x+1) = G_s(1,\chi_m).$$

Proof. We write the above sum as $\sum_{x \in \mathbb{F}_{2^s}} \chi_m(x(x+1))$, since the character is multiplicative. Now the function f(x) = x(x+1) maps \mathbb{F}_{2^s} onto its subset of 0-trace elements, as $\operatorname{Tr}_s(x) = \operatorname{Tr}_s(x^2)$ for any s, and each image comes from exactly two elements, x and x + 1. It follows that

(2.2)
$$\sum_{x \in \mathbb{F}_{2^s}} \chi_m(x) \chi_m(x+1) = 2 \sum_{\substack{y \in \mathbb{F}_{2^s} \\ \operatorname{Tr}_s(y) = 0}} \chi_m(y) = G_s(1, \chi_m). \blacksquare$$

LEMMA 2.3. Let χ_m be a nontrivial character of order $m = 2^r + 1$. Then the Gauss sum $G_s(1, \chi_m)$ is a real number.

Proof. Using (2.2) we have

$$\bar{G}_{s}(1,\chi_{m}) = \sum_{x \in \mathbb{F}_{2^{s}}} \bar{\chi}_{m}(x)\bar{\chi}_{m}(x+1)$$
$$= \sum_{x \in \mathbb{F}_{2^{s}}} \chi_{m}(x^{2^{r}})\chi_{m}(x^{2^{r}}+1)$$
$$= \sum_{x \in \mathbb{F}_{2^{s}}} \chi_{m}(x)\chi_{m}(x+1) = G_{s}(1,\chi_{m}),$$

as $\bar{\chi}_m(x) = \chi_m(x)^{2^r} = \chi_m(x^{2^r})$ and $x \mapsto x^{2^r}$ is a field automorphism, so it just permutes the elements of the field.

3. Main results. The absolute value of $G_s(1, \chi_m)$ can be evaluated using elementary standard techniques going back to Gauss (see e.g. [1]), while its argument requires a more subtle analysis. Our main theorems in this section yield in an elementary way the exact value of the Gauss sum for a cubic character χ_3 over \mathbb{F}_{2^s} , s even (the case of s odd is trivial, as shown above). Before we proceed, we show in a standard way what is its absolute value.

Since $G_s(\beta, \chi_3) = \bar{\chi}_3(\beta)G_s(1, \chi_3)$, on one hand, we have

(3.1)
$$\sum_{\beta \in \mathbb{F}_{2^s}} G_s(\beta, \chi_3) \bar{G}_s(\beta, \chi_3) = \sum_{\beta \in \mathbb{F}_{2^s}} \bar{\chi}_3(\beta) \chi_3(\beta) G_s(1, \chi_3) \bar{G}_s(1, \chi_3)$$
$$= \sum_{\beta \in \mathbb{F}_{2^s}^*} G_s(1, \chi_3) \bar{G}_s(1, \chi_3)$$
$$= (2^s - 1) G_s(1, \chi_3) \bar{G}_s(1, \chi_3).$$

On the other hand, by the definition of Gauss sum, we have

$$\sum_{\beta \in \mathbb{F}_{2^s}} G_s(\beta, \chi_3) \bar{G}_s(\beta, \chi_3)$$
$$= \sum_{\beta \in \mathbb{F}_{2^s}} \sum_{\alpha \in \mathbb{F}_{2^s}} \sum_{\gamma \in \mathbb{F}_{2^s}} \bar{\chi}_3(\alpha) e^{\pi i \operatorname{Tr}_s(\beta \alpha)} \chi_3(\gamma) e^{-\pi i \operatorname{Tr}_s(\gamma \beta)},$$

and substituting $\alpha = \gamma + \theta$ in the last sum, we have

(3.2)
$$\sum_{\beta \in \mathbb{F}_{2^s}} G_s(\beta, \chi_3) \bar{G}_s(\beta, \chi_3) = \sum_{\gamma \in \mathbb{F}_{2^s}} \sum_{\theta \in \mathbb{F}_{2^s}} \bar{\chi}_3(\gamma + \theta) \chi_3(\gamma) \sum_{\beta \in \mathbb{F}_{2^s}} e^{\pi i \operatorname{Tr}_{2s}(\beta \theta)} = 2^s (2^s - 1),$$

as the sum on β is 2^s if $\theta = 0$ and is 0 otherwise, since the values of the trace are equally distributed, as said above; consequently, the sum over γ is $2^s - 1$ times 2^s , as $\chi_3(0) = 0$. From the comparison of (3.1) with (3.2) we get $G_s(1,\chi_3)\bar{G}_s(1,\chi_3) = 2^s$, so $|G_s(1,\chi_3)| = 2^{s/2}$.

Few initial values are $G_2(1,\chi_3) = 2$, $G_4(1,\chi_3) = -4$, $G_6(1,\chi_3) = 8$, $G_8(1,\chi_3) = -16$, and $G_{10}(1,\chi_3) = 32$, so a reasonable guess is $G_s(1,\chi_3) = -(-2)^{s/2}$. This guess is correct as proved by the following theorems.

THEOREM 3.1. If ℓ is odd, the value of the Gauss sum $G_{2\ell}(1,\chi_3)$ is 2^{ℓ} .

Proof. Let α be a primitive cubic root of unity in $\mathbb{F}_{2^{2\ell}}$. Then it is a root of $x^2 + x + 1$. In other words, a root α of $x^2 + x + 1$, which does not belong to $\mathbb{F}_{2^{\ell}}$, as ℓ is odd, can be used to define a quadratic extension of this field, i.e. $\mathbb{F}_{2^{2\ell}}$, and the elements of this extension can be represented in the form $x + \alpha y$ with $x, y \in \mathbb{F}_{2^{\ell}}$. Furthermore, the two roots α and $1 + \alpha$ of $x^2 + x + 1$ are either fixed or exchanged by any Frobenius automorphism; in particular the automorphism $\sigma^{\ell}(x) = x^{2^{\ell}}$ necessarily exchanges the two roots as it fixes precisely all the elements of $\mathbb{F}_{2^{\ell}}$, while α does not belong to this field,

so that $\sigma^{\ell}(\alpha) \neq \alpha$. Now, a Gauss sum $G_{2\ell}(1,\chi_3)$ can be written as

(3.3)
$$G_{2\ell}(1,\chi_3) = 2 \sum_{\substack{z \in \mathbb{F}_{2^{2\ell}} \\ \operatorname{Tr}_{2\ell}(z) = 0}} \chi_3(z) = 2 \sum_{\substack{x,y \in \mathbb{F}_{2^\ell} \\ \operatorname{Tr}_{2\ell}(x+\alpha y) = 0}} \chi_3(x+\alpha y)$$
$$= 2 \sum_{\substack{x,y \in \mathbb{F}_{2^\ell} \\ \operatorname{Tr}_{\ell}(y) = 0}} \chi_3(x+\alpha y),$$

where we have used the trace property

 $\operatorname{Tr}_{2\ell}(x+\alpha y) = \operatorname{Tr}_{2\ell}(x) + \operatorname{Tr}_{2\ell}(\alpha y) = \operatorname{Tr}_{\ell}(x) + \operatorname{Tr}_{\ell}(x^{2^{\ell}}) + \operatorname{Tr}_{2\ell}(\alpha y) = \operatorname{Tr}_{2\ell}(\alpha y),$ and the fact that

$$Tr_{2\ell}(\alpha y) = Tr_{\ell}(\alpha y) + Tr_{\ell}(\alpha y)^{2^{\ell}} = Tr_{\ell}(\alpha y) + Tr_{\ell}((\alpha y)^{2^{\ell}})$$
$$= Tr_{\ell}(\alpha y) + Tr_{\ell}(\alpha^{2^{\ell}}y) = Tr_{\ell}(\alpha y) + Tr_{\ell}((\alpha + 1)y) = Tr_{\ell}(y),$$

since $\alpha^{2^{\ell}} = \alpha + 1$ as shown previously. The last sum in (3.3) can be split into three sums by separating the cases x = 0 and y = 0:

$$2\sum_{\substack{x,y\in\mathbb{F}_{2^{\ell}}\\\operatorname{Tr}_{\ell}(y)=0}}\chi_{3}(x+\alpha y)=2\sum_{\substack{y\in\mathbb{F}_{2^{\ell}}\\\operatorname{Tr}_{\ell}(y)=0}}\chi_{3}(\alpha y)+2\sum_{x\in\mathbb{F}_{2^{\ell}}}\chi_{3}(x)$$
$$+2\sum_{\substack{x,y\in\mathbb{F}_{2^{\ell}}^{*}\\\operatorname{Tr}_{\ell}(y)=0}}\chi_{3}(x+\alpha y).$$

Considering the three sums separately, we have:

$$\sum_{x \in \mathbb{F}_{2^{\ell}}} \chi_3(x) = 2^{\ell} - 1,$$

as $\chi_3(x) = 1$ unless x = 0 since ℓ is odd;

$$\sum_{y \in \mathbb{F}_{2^{\ell}} \operatorname{Tr}_{\ell}(y) = 0} \chi_3(\alpha y) = \chi_3(\alpha)(2^{\ell-1} - 1),$$

as the character is multiplicative, $\chi_3(y) = 1$ unless y = 0, and only the 0-trace elements (which are $2^{\ell-1} - 1$) should be counted; and

$$\sum_{\substack{x,y \in \mathbb{F}_{2^{\ell}}^{*} \\ \operatorname{Tr}_{\ell}(y) = 0}} \chi_{3}(x + \alpha y) = \sum_{\substack{x,y \in \mathbb{F}_{2^{\ell}}^{*} \\ \operatorname{Tr}_{\ell}(y) = 0}} \chi_{3}(xy^{-1} + \alpha) = \sum_{\substack{z,y \in \mathbb{F}_{2^{\ell}}^{*} \\ \operatorname{Tr}_{\ell}(y) = 0}} \chi_{3}(z + \alpha)$$

$$= (2^{\ell - 1} - 1) \sum_{z \in \mathbb{F}_{2^{\ell}}^{*}} \chi_{3}(z + \alpha),$$

as y is invertible, $\chi_3(y) = 1$ since ℓ is odd, z has been substituted for xy^{-1} , and the sum we get in the end, being independent of y, is simply multiplied by the number of values assumed by y. Altogether we have

$$G_{2\ell}(1,\chi_3) = 2^{\ell+1} - 2 + \chi_3(\alpha)(2^{\ell} - 2) + (2^{\ell} - 2) \sum_{z \in \mathbb{F}_{2^{\ell}}^*} \chi_3(z + \alpha)$$
$$= 2^{\ell+1} - 2 + (2^{\ell} - 2) \sum_{z \in \mathbb{F}_{2^{\ell}}} \chi_3(z + \alpha),$$

and, for later use, we define $A(\alpha) = \sum_{z \in \mathbb{F}_{2^{\ell}}} \chi_3(z + \alpha)$. In order to evaluate $A(\alpha)$, we consider the sum of $A(\beta)$ over $\beta \in \mathbb{F}_{2^{2\ell}}$, and observe that $A(\beta) = 2^{\ell} - 1$ if $\beta \in \mathbb{F}_{2^{\ell}}$, while if $\beta \notin \mathbb{F}_{2^{\ell}}$ all sums assume the same value $A(\alpha)$, which is shown as follows. Set $\beta = u + \alpha v$ with $v \neq 0$. Then

$$\sum_{z \in \mathbb{F}_{2^{\ell}}} \chi_3(z+u+\alpha v) = \sum_{z \in \mathbb{F}_{2^{\ell}}} \chi_3(v)\chi_3((z+u)v^{-1}+\alpha) = \sum_{z' \in \mathbb{F}_{2^{\ell}}} \chi_3(z'+\alpha).$$

Therefore, the sum

$$\sum_{\beta \in \mathbb{F}_{2^{2\ell}}} A(\beta) = \sum_{\beta \in \mathbb{F}_{2^{2\ell}}} \sum_{z \in \mathbb{F}_{2^\ell}} \chi_3(z+\beta) = \sum_{z \in \mathbb{F}_{2^\ell}} \sum_{\beta \in \mathbb{F}_{2^{2\ell}}} \chi_3(z+\beta) = 0$$

yields

$$2^{\ell}(2^{\ell} - 1) + (2^{2\ell} - 2^{\ell})A(\alpha) = 0,$$

which implies $A(\alpha) = -1$, and finally

$$G_{2\ell}(1,\chi_3) = 2^{\ell+1} - 2 - (2^{\ell} - 2) = 2^{\ell}.$$

REMARK. The above theorem can also be proved using a theorem by Stickelberger ([3, Theorem 5.16]).

THEOREM 3.2. If ℓ is even, then the Gauss sum $G_{2\ell}(1,\chi_3)$ is equal to $(-2)^{\ell/2}G_{\ell}(1,\chi_3)$.

Proof. The relative trace of the elements of $\mathbb{F}_{2^{2\ell}}$ over $\mathbb{F}_{2^{\ell}}$, which is

$$\operatorname{Tr}_{2\ell/\ell}(x) = x + x^{2^{\ell}},$$

introduces the polynomial $x + x^{2^{\ell}}$ which defines a mapping from $\mathbb{F}_{2^{2\ell}}$ onto $\mathbb{F}_{2^{\ell}}$ with kernel $\mathbb{F}_{2^{\ell}}$ ([3]). The equation $x^{2^{\ell}} + x = y$ has in fact exactly 2^{ℓ} roots in $\mathbb{F}_{2^{2\ell}}$ for every $y \in \mathbb{F}_{2^{\ell}}$.

By definition we have

$$G_{2\ell}(1,\chi_3) = 2\sum_{\substack{z \in \mathbb{F}_{2^{2\ell}} \\ \operatorname{Tr}_{2\ell}(z) = 0}} \chi_3(z) = 2\sum_{\substack{x,y \in \mathbb{F}_{2^{\ell}} \\ \operatorname{Tr}_{2\ell}(x+\alpha y) = 0}} \chi_3(x+\alpha y),$$

where α is a root of an irreducible quadratic polynomial $x^2 + x + b$ over $\mathbb{F}_{2^{\ell}}$, i.e. $\operatorname{Tr}_{\ell}(b) = 1$ ([3, Corollary 3.79]) and $\operatorname{Tr}_{2\ell/\ell}(\alpha) = 1$, which can be seen from the coefficient of x of the polynomial. Now

$$\operatorname{Tr}_{2\ell}(x + \alpha y) = \operatorname{Tr}_{2\ell}(x) + \operatorname{Tr}_{2\ell}(\alpha y) = \operatorname{Tr}_{2\ell}(\alpha y) = \operatorname{Tr}_{\ell}(\alpha y) + \operatorname{Tr}_{\ell}(\alpha^{2^{\mathfrak{c}}}y),$$

- 0

but $\alpha^{2^{\ell}} = 1 + \alpha$, so that $\operatorname{Tr}_{2\ell}(x + \alpha y) = \operatorname{Tr}_{\ell}(y)$, and we have

$$G_{2\ell}(1,\chi_3) = 2 \sum_{\substack{x,y \in \mathbb{F}_{2^{\ell}} \\ \operatorname{Tr}_{\ell}(y) = 0}} \chi_3(x + \alpha y)$$

= $2 \sum_{x \in \mathbb{F}_{2^{\ell}}} \chi_3(x) + 2 \sum_{\substack{y \in \mathbb{F}_{2^{\ell}}^* \\ \operatorname{Tr}_{\ell}(y) = 0}} \chi_3(\alpha y) + 2 \sum_{\substack{x,y \in \mathbb{F}_{2^{\ell}}^* \\ \operatorname{Tr}_{\ell}(y) = 0}} \chi_3(x + \alpha y),$

where the summation has been split into three sums, by separating the cases y = 0 and x = 0. We observe that, since the character over $\mathbb{F}_{2^{\ell}}$ is not trivial, the first sum is 0 and the second is $\chi_3(\alpha)G_{\ell}(1,\chi_3)$, while the third can be written as follows:

$$2\sum_{\substack{x,y\in\mathbb{F}_{2^{\ell}}^{*}\\\mathrm{Tr}_{\ell}(y)=0}}\chi_{3}(x+\alpha y) = 2\sum_{\substack{x,y\in\mathbb{F}_{2^{\ell}}^{*}\\\mathrm{Tr}_{\ell}(y)=0}}\chi_{3}(y)\chi_{3}(xy^{-1}+\alpha)$$
$$= 2\sum_{\substack{y\in\mathbb{F}_{2^{\ell}}^{*}\\\mathrm{Tr}_{\ell}(y)=0}}\chi_{3}(y)\sum_{z\in\mathbb{F}_{2^{\ell}}^{*}}\chi_{3}(z+\alpha).$$

Putting all together, we obtain

$$G_{2\ell}(1,\chi_3) = G_{\ell}(1,\chi_3) \sum_{z \in \mathbb{F}_{2^\ell}} \chi_3(z+\alpha) = G_{\ell}(1,\chi_3) A_{\ell}(\alpha)$$

which shows that $|A_{\ell}(\alpha)| = 2^{\ell/2}$ and that $A_{\ell}(\alpha)$ is real, as both $G_{2\ell}(1,\chi_3)$ and $G_{\ell}(1,\chi_3)$ are real. Note that this holds for any α with $\operatorname{Tr}_{2\ell/\ell}(\alpha) = 1$. We will show now that $A_{\ell}(\alpha) = (-2)^{\ell/2}$. Consider the sum of $A_{\ell}(\gamma)$ over all γ with relative trace equal to 1, which is on one hand $2^{\ell}A_{\ell}(\alpha)$, as the polynomial $x^{2^{\ell}} + x = 1$ has exactly 2^{ℓ} roots in $\mathbb{F}_{2^{2\ell}}$, and on the other hand, explicitly we have

$$\sum_{\substack{\gamma \in \mathbb{F}_{22\ell}^* \\ \operatorname{Tr}_{2\ell/\ell}(\gamma) = 1}} A_{\ell}(\gamma) = \sum_{z \in \mathbb{F}_{2\ell}} \sum_{\substack{\gamma \in \mathbb{F}_{22\ell}^* \\ \operatorname{Tr}_{2\ell/\ell}(\gamma) = 1}} \chi_3(z+\gamma) = \sum_{z \in \mathbb{F}_{2\ell}} \sum_{\substack{\gamma' \in \mathbb{F}_{22\ell}^* \\ \operatorname{Tr}_{2\ell/\ell}(\gamma') = 1}} \chi_3(\gamma')$$

$$= 2^{\ell} \sum_{\substack{\gamma' \in \mathbb{F}_{22\ell}^* \\ \operatorname{Tr}_{2\ell/\ell}(\gamma') = 1}} \chi_3(\gamma'),$$

where the summation order has been reversed, and $\operatorname{Tr}_{2\ell/\ell}(\gamma) = \operatorname{Tr}_{2\ell/\ell}(\gamma')$ as $\operatorname{Tr}_{2\ell/\ell}(z) = 0$ for any $z \in \mathbb{F}_{2^{\ell}}$. Comparing the two results, we have

$$A_{\ell}(\alpha) = \sum_{\substack{\gamma' \in \mathbb{F}^*_{2^{2\ell}} \\ \operatorname{Tr}_{2^{\ell/\ell}}(\gamma') = 1}} \chi_3(\gamma') = M_0 + M_1 \zeta_3 + M_2 \zeta_3^2,$$

where M_0 is the number of γ' with $\operatorname{Tr}_{2\ell/\ell}(\gamma') = 1$ that are cubic residues, i.e. they have character $\chi_3(\gamma')$ equal to 1, M_1 is the number of γ' with $\operatorname{Tr}_{2\ell/\ell}(\gamma') = 1$ that have character ζ_3 , and M_2 is the number of γ' with $\operatorname{Tr}_{2\ell/\ell}(\gamma') = 1$ that have character ζ_3^2 . Then $M_0 + M_1 + M_2 = 2^{\ell}$, and $M_1 = M_2$ since $A_{\ell}(\alpha)$ is real. Therefore, $A_{\ell}(\alpha) = M_0 - M_1$, and so we consider two equations for M_0 and M_1 ,

$$\begin{cases} M_0 + 2M_1 = 2^{\ell}, \\ M_0 - M_1 = \pm 2^{\ell/2} \end{cases}$$

Solving for M_1 we have $M_1 = \frac{1}{3}(2^{\ell} \mp 2^{\ell/2})$. Since M_1 must be an integer, we obtain

$$\begin{cases} M_0 - M_1 = 2^{\ell/2} & \text{if } \ell/2 \text{ is even,} \\ M_0 - M_1 = -2^{\ell/2} & \text{if } \ell/2 \text{ is odd.} \end{cases}$$

COROLLARY 3.3. For ℓ even, the value of the Gauss sum $G_{2\ell}(1,\chi_3)$ is -2^{ℓ} .

Proof. This is a direct consequence of the two theorems above.

Acknowledgements. This research was partly supported by the Swiss National Science Foundation (grants No. 126948 and No. 132256).

References

- B. Berndt, R. J. Evans and H. Williams, *Gauss and Jacobi Sums*, Wiley, New York, 1998.
- [2] D. Jungnickel, Finite Fields, Structure and Arithmetics, Wissenschaftsverlag, Mannheim, 1993.
- [3] R. Lidl and H. Niederreiter, *Finite Fields*, Cambridge Univ. Press, Cambridge, 1986.
- [4] A. Winterhof, On the distribution of powers in finite fields, Finite Fields Appl. 4 (1998), 43–54.

Davide Schipani Institute of Mathematics University of Zurich 8057 Zürich, Switzerland E-mail: davide.schipani@math.uzh.ch Michele Elia Department of Electronics Politecnico di Torino 10129 Torino, Italy E-mail: michele.elia@polito.it

Received March 31, 2011 (7823)

18