Gauss Sums of the Cubic Character over GF(2^{m}): an Elementary Derivation

by

Davide SCHIPANI and Michele ELIA
Presented by Jerzy KACZOROWSKI

Summary. By an elementary approach, we derive the value of the Gauss sum of a cubic character over a finite field $\mathbb{F}_{2^{s}}$ without using Davenport-Hasse's theorem (namely, if s is odd the Gauss sum is -1 , and if s is even its value is $\left.-(-2)^{s / 2}\right)$.

1. Introduction. Let $\mathbb{F}_{2^{s}}$ be a Galois field over \mathbb{F}_{2}, with $\operatorname{Tr}_{s}(x)=$ $\sum_{j=0}^{s-1} x^{2^{j}}$ being the trace function over $\mathbb{F}_{2^{s}}$, and $\operatorname{Tr}_{s / r}(x)=\sum_{j=0}^{s / r-1} x^{2^{r j}}$ the relative trace function over $\mathbb{F}_{2^{s}}$ relative to $\mathbb{F}_{2^{r}}$, with $r \mid s$ [3].

Further let χ_{m} be a character of order m defined over $\mathbb{F}_{2^{s}}$ and taking values in $\mathbb{Q}\left(\zeta_{m}\right)$, where ζ_{m} denotes a primitive m th root of unity and $\mathbb{Q}\left(\zeta_{m}\right)$ the corresponding cyclotomic field.

A Gauss sum of a character χ_{m} over $\mathbb{F}_{2^{s}}$ is defined as [1]

$$
G_{s}\left(\beta, \chi_{m}\right)=\sum_{y \in \mathbb{F}_{2^{s}}} \chi_{m}(y) e^{\pi i \operatorname{Tr}_{s}(\beta y)}=\bar{\chi}_{m}(\beta) G_{s}\left(1, \chi_{m}\right) \quad \forall \beta \in \mathbb{F}_{2^{s}} .
$$

A cubic character χ_{3} is a mapping from \mathbb{F}_{2}^{*} into the complex numbers defined as

$$
\chi_{3}\left(\alpha^{h+3 j}\right)=\zeta_{3}^{h}, \quad h=0,1,2, j \in \mathbb{N},
$$

where ζ_{3} is a cubic root of unity, and α a primitive element in \mathbb{F}_{2}^{*}; furthermore we set by definition $\chi_{3}(0)=0$.

The values of the Gauss sums of a cubic character over $\mathbb{F}_{2^{s}}$ can be found by computing the Gauss sum over \mathbb{F}_{4} and applying Davenport-Hasse's theorem on the lifting of characters ([1, 2, 3) for s even (and by computing

[^0]the Gauss sum over \mathbb{F}_{2} and then trivially lifting for s odd). However a more elementary approach is possible, and this is the subject of the present work.

If s is odd then the cubic character is trivial because every element β in $\mathbb{F}_{2^{s}}$ is a cube, as the following chain of equalities shows:

$$
\beta \cdot 1=\beta \cdot\left(\beta^{2^{s}-1}\right)^{2}=\beta \beta^{2^{s+1}-2}=\beta^{2^{s+1}-1}=\left(\beta^{\frac{2^{s+1}-1}{3}}\right)^{3},
$$

since $\beta^{2^{s}-1}=1$, and $s+1$ is even, so that $2^{s+1}-1$ is divisible by 3 . In this case we have

$$
G_{s}\left(1, \chi_{3}\right)=\sum_{y \in \mathbb{F}_{2^{s}}} \chi_{3}(y) e^{\pi i \operatorname{Tr}_{s}(y)}=\sum_{y \in \mathbb{F}_{2}^{* s}} e^{\pi i \operatorname{Tr}_{s}(y)}=-1,
$$

since the number of elements with trace 1 is equal to the number of elements with trace $0,\left(\operatorname{Tr}_{s}(x) \in \mathbb{F}_{2} ;\right.$ moreover $\operatorname{Tr}_{s}(x)=1$ and $\operatorname{Tr}_{s}(x)=0$ are two equations of degree 2^{s-1}), and $e^{\pi i \cdot 0}=1$ while $e^{\pi i \cdot 1}=-1$.

If s is even, the cubic character is nontrivial, and the computation of the Gauss sums requires some more effort; before we show how they can be computed with an elementary approach, we need some preparatory lemmas.
2. Preliminary facts. First of all we recall that, for any nontrivial character χ_{m} over $\mathbb{F}_{q}, \sum_{x \in \mathbb{F}_{q}} \chi_{m}(x)=0$. This is used to prove a property of a sum of characters, already known to Kummer (see [4), which can be formulated as follows

Lemma 2.1. Let χ_{m} be a nontrivial character and β any element of \mathbb{F}_{q}. Then

$$
\sum_{x \in \mathbb{F}_{q}} \chi_{m}(x) \bar{\chi}_{m}(x+\beta)= \begin{cases}q-1 & \text { if } \beta=0 \\ -1 & \text { if } \beta \neq 0\end{cases}
$$

Proof. If $\beta=0$, the summand is $\chi_{m}(x) \bar{\chi}_{m}(x)=1$, unless $x=0$ in which case it is 0 , so the conclusion is immediate.

When $\beta \neq 0$, we can exclude again the term with $x=0$, as $\chi_{m}(x)=0$, so that x is invertible, and the summand can be written as

$$
\chi_{m}(x) \bar{\chi}_{m}(x+\beta)=\chi_{m}(x) \bar{\chi}_{m}(x) \bar{\chi}_{m}\left(1+\beta x^{-1}\right)=\bar{\chi}_{m}\left(1+\beta x^{-1}\right) .
$$

With the substitution $y=1+\beta x^{-1}$, the summation becomes

$$
\sum_{\substack{y \in \mathbb{F}_{22 m} \\ y \neq 1}} \chi_{m}(y)=-1+\sum_{y \in \mathbb{F}_{22} 2 m} \chi_{m}(y)=-1,
$$

as $\chi_{m}(y)=1$ for $y=1$.
We are now interested in the sum $\sum_{x \in \mathbb{F}_{q}} \chi_{m}(x) \chi_{m}(x+1)$. Note that for the Gauss sums over $\mathbb{F}_{2^{s}}$ we have

$$
\begin{equation*}
G_{s}\left(1, \chi_{m}\right)=\sum_{\substack{y \in \mathbb{F}_{2^{s}} \\ \operatorname{Tr}_{s}(y)=0}} \chi_{m}(y)-\sum_{\substack{y \in \mathbb{F}_{2^{s}} \\ \operatorname{Tr}_{s}(y)=1}} \chi_{m}(y) \tag{2.1}
\end{equation*}
$$

It follows that, if χ_{m} is a nontrivial character, then

$$
G_{s}\left(1, \chi_{m}\right)=2 \sum_{\substack{y \in \mathbb{F}_{2 s} \\ \operatorname{Tr}_{s}(y)=0}} \chi_{m}(y)
$$

In fact half of the field elements have trace 0 and the other half 1 , so that

$$
\sum_{\substack{y \in \mathbb{F}_{2}^{s} \\ \operatorname{Tr}_{s}(y)=0}} \chi_{m}(y)=-\sum_{\substack{y \in \mathbb{F}_{2}^{s} \\ \operatorname{Tr}_{s}(y)=1}} \chi_{m}(y)
$$

as the sum over all field elements is zero, since χ_{m} is nontrivial.
Lemma 2.2. If χ_{m} is a nontrivial character over $\mathbb{F}_{2^{s}}$, then

$$
\sum_{x \in \mathbb{F}_{2^{s}}} \chi_{m}(x) \chi_{m}(x+1)=G_{s}\left(1, \chi_{m}\right)
$$

Proof. We write the above sum as $\sum_{x \in \mathbb{F}_{2} s} \chi_{m}(x(x+1))$, since the character is multiplicative. Now the function $f(x)=x(x+1)$ maps $\mathbb{F}_{2^{s}}$ onto its subset of 0 -trace elements, as $\operatorname{Tr}_{s}(x)=\operatorname{Tr}_{s}\left(x^{2}\right)$ for any s, and each image comes from exactly two elements, x and $x+1$. It follows that

$$
\begin{equation*}
\sum_{x \in \mathbb{F}_{2^{s}}} \chi_{m}(x) \chi_{m}(x+1)=2 \sum_{\substack{y \in \mathbb{F}_{2}^{s} \\ \operatorname{Tr}_{s}(y)=0}} \chi_{m}(y)=G_{s}\left(1, \chi_{m}\right) \tag{2.2}
\end{equation*}
$$

Lemma 2.3. Let χ_{m} be a nontrivial character of order $m=2^{r}+1$. Then the Gauss sum $G_{s}\left(1, \chi_{m}\right)$ is a real number.

Proof. Using 2.2 we have

$$
\begin{aligned}
\bar{G}_{s}\left(1, \chi_{m}\right) & =\sum_{x \in \mathbb{F}_{2^{s}}} \bar{\chi}_{m}(x) \bar{\chi}_{m}(x+1) \\
& =\sum_{x \in \mathbb{F}_{2^{s}}} \chi_{m}\left(x^{2^{r}}\right) \chi_{m}\left(x^{2^{r}}+1\right) \\
& =\sum_{x \in \mathbb{F}_{2^{s}}} \chi_{m}(x) \chi_{m}(x+1)=G_{s}\left(1, \chi_{m}\right)
\end{aligned}
$$

as $\bar{\chi}_{m}(x)=\chi_{m}(x)^{2^{r}}=\chi_{m}\left(x^{2^{r}}\right)$ and $x \mapsto x^{2^{r}}$ is a field automorphism, so it just permutes the elements of the field.
3. Main results. The absolute value of $G_{s}\left(1, \chi_{m}\right)$ can be evaluated using elementary standard techniques going back to Gauss (see e.g. [1]), while its argument requires a more subtle analysis. Our main theorems in
this section yield in an elementary way the exact value of the Gauss sum for a cubic character χ_{3} over $\mathbb{F}_{2^{s}}, s$ even (the case of s odd is trivial, as shown above). Before we proceed, we show in a standard way what is its absolute value.

Since $G_{s}\left(\beta, \chi_{3}\right)=\bar{\chi}_{3}(\beta) G_{s}\left(1, \chi_{3}\right)$, on one hand, we have

$$
\begin{align*}
\sum_{\beta \in \mathbb{F}_{2^{s}}} G_{s}\left(\beta, \chi_{3}\right) \bar{G}_{s}\left(\beta, \chi_{3}\right) & =\sum_{\beta \in \mathbb{F}_{2}^{s}} \bar{\chi}_{3}(\beta) \chi_{3}(\beta) G_{s}\left(1, \chi_{3}\right) \bar{G}_{s}\left(1, \chi_{3}\right) \tag{3.1}\\
& =\sum_{\beta \in \mathbb{F}_{2}^{*}} G_{s}\left(1, \chi_{3}\right) \bar{G}_{s}\left(1, \chi_{3}\right) \\
& =\left(2^{s}-1\right) G_{s}\left(1, \chi_{3}\right) \bar{G}_{s}\left(1, \chi_{3}\right)
\end{align*}
$$

On the other hand, by the definition of Gauss sum, we have

$$
\begin{aligned}
& \sum_{\beta \in \mathbb{F}_{2^{s}}} G_{s}\left(\beta, \chi_{3}\right) \bar{G}_{s}\left(\beta, \chi_{3}\right) \\
&=\sum_{\beta \in \mathbb{F}_{2^{s}}} \sum_{\alpha \in \mathbb{F}_{2^{s}}} \sum_{\gamma \in \mathbb{F}_{2^{s}}} \bar{\chi}_{3}(\alpha) e^{\pi i \operatorname{Tr}_{s}(\beta \alpha)} \chi_{3}(\gamma) e^{-\pi i \operatorname{Tr}_{s}(\gamma \beta)}
\end{aligned}
$$

and substituting $\alpha=\gamma+\theta$ in the last sum, we have

$$
\begin{align*}
\sum_{\beta \in \mathbb{F}_{2^{s}}} G_{s}\left(\beta, \chi_{3}\right) \bar{G}_{s}\left(\beta, \chi_{3}\right) & =\sum_{\gamma \in \mathbb{F}_{2^{s}}} \sum_{\theta \in \mathbb{F}_{2^{s}}} \bar{\chi}_{3}(\gamma+\theta) \chi_{3}(\gamma) \sum_{\beta \in \mathbb{F}_{2^{s}}} e^{\pi i \operatorname{Tr}_{2 s}(\beta \theta)} \tag{3.2}\\
& =2^{s}\left(2^{s}-1\right)
\end{align*}
$$

as the sum on β is 2^{s} if $\theta=0$ and is 0 otherwise, since the values of the trace are equally distributed, as said above; consequently, the sum over γ is $2^{s}-1$ times 2^{s}, as $\chi_{3}(0)=0$. From the comparison of (3.1) with (3.2) we get $G_{s}\left(1, \chi_{3}\right) \bar{G}_{s}\left(1, \chi_{3}\right)=2^{s}$, so $\left|G_{s}\left(1, \chi_{3}\right)\right|=2^{s / 2}$.

Few initial values are $G_{2}\left(1, \chi_{3}\right)=2, G_{4}\left(1, \chi_{3}\right)=-4, G_{6}\left(1, \chi_{3}\right)=8$, $G_{8}\left(1, \chi_{3}\right)=-16$, and $G_{10}\left(1, \chi_{3}\right)=32$, so a reasonable guess is $G_{s}\left(1, \chi_{3}\right)=$ $-(-2)^{s / 2}$. This guess is correct as proved by the following theorems.

Theorem 3.1. If ℓ is odd, the value of the Gauss sum $G_{2 \ell}\left(1, \chi_{3}\right)$ is 2^{ℓ}.
Proof. Let α be a primitive cubic root of unity in $\mathbb{F}_{2^{2 \ell}}$. Then it is a root of $x^{2}+x+1$. In other words, a root α of $x^{2}+x+1$, which does not belong to $\mathbb{F}_{2^{\ell}}$, as ℓ is odd, can be used to define a quadratic extension of this field, i.e. $\mathbb{F}_{2^{2 \ell}}$, and the elements of this extension can be represented in the form $x+\alpha y$ with $x, y \in \mathbb{F}_{2^{\ell}}$. Furthermore, the two roots α and $1+\alpha$ of $x^{2}+x+1$ are either fixed or exchanged by any Frobenius automorphism; in particular the automorphism $\sigma^{\ell}(x)=x^{2^{\ell}}$ necessarily exchanges the two roots as it fixes precisely all the elements of $\mathbb{F}_{2^{\ell}}$, while α does not belong to this field,
so that $\sigma^{\ell}(\alpha) \neq \alpha$. Now, a Gauss sum $G_{2 \ell}\left(1, \chi_{3}\right)$ can be written as

$$
\begin{align*}
G_{2 \ell}\left(1, \chi_{3}\right) & =2 \sum_{\substack{z \in \mathbb{F}_{22 \ell} \\
\operatorname{Tr}_{2 \ell}(z)=0}} \chi_{3}(z)=2 \sum_{\substack{x, y \in \mathbb{F}_{2 \ell} \\
\operatorname{Tr}_{2 \ell}(x+\alpha y)=0}} \chi_{3}(x+\alpha y) \tag{3.3}\\
& =2 \sum_{\substack{x, y \in \mathbb{F}_{2 \ell} \\
\operatorname{Tr}_{\ell}(y)=0}} \chi_{3}(x+\alpha y)
\end{align*}
$$

where we have used the trace property
$\operatorname{Tr}_{2 \ell}(x+\alpha y)=\operatorname{Tr}_{2 \ell}(x)+\operatorname{Tr}_{2 \ell}(\alpha y)=\operatorname{Tr}_{\ell}(x)+\operatorname{Tr}_{\ell}\left(x^{2^{\ell}}\right)+\operatorname{Tr}_{2 \ell}(\alpha y)=\operatorname{Tr}_{2 \ell}(\alpha y)$, and the fact that

$$
\begin{aligned}
\operatorname{Tr}_{2 \ell}(\alpha y) & =\operatorname{Tr}_{\ell}(\alpha y)+\operatorname{Tr}_{\ell}(\alpha y)^{2^{\ell}}=\operatorname{Tr}_{\ell}(\alpha y)+\operatorname{Tr}_{\ell}\left((\alpha y)^{2^{\ell}}\right) \\
& =\operatorname{Tr}_{\ell}(\alpha y)+\operatorname{Tr}_{\ell}\left(\alpha^{2^{\ell}} y\right)=\operatorname{Tr}_{\ell}(\alpha y)+\operatorname{Tr}_{\ell}((\alpha+1) y)=\operatorname{Tr}_{\ell}(y)
\end{aligned}
$$

since $\alpha^{2^{\ell}}=\alpha+1$ as shown previously. The last sum in 3.3 can be split into three sums by separating the cases $x=0$ and $y=0$:

$$
\begin{gathered}
2 \sum_{\substack{x, y \in \mathbb{F}_{2} \ell \\
\operatorname{Tr}_{\ell}(y)=0}} \chi_{3}(x+\alpha y)=2 \sum_{\substack{y \in \mathbb{F}_{2} \ell \\
\operatorname{Tr}_{\ell}(y)=0}} \chi_{3}(\alpha y)+2 \sum_{x \in \mathbb{F}_{2} \ell} \chi_{3}(x) \\
+2 \sum_{\substack{x, y \in \mathbb{F}_{2}^{*} \\
\operatorname{Tr}_{\ell}(y)=0}} \chi_{3}(x+\alpha y) .
\end{gathered}
$$

Considering the three sums separately, we have:

$$
\sum_{x \in \mathbb{F}_{2} \ell} \chi_{3}(x)=2^{\ell}-1
$$

as $\chi_{3}(x)=1$ unless $x=0$ since ℓ is odd;

$$
\sum_{y \in \mathbb{F}_{2} \ell \operatorname{Tr}_{\ell}(y)=0} \chi_{3}(\alpha y)=\chi_{3}(\alpha)\left(2^{\ell-1}-1\right)
$$

as the character is multiplicative, $\chi_{3}(y)=1$ unless $y=0$, and only the 0 -trace elements (which are $2^{\ell-1}-1$) should be counted; and

$$
\begin{aligned}
\sum_{\substack{x, y \in \mathbb{F}_{2}^{*} \ell \\
\operatorname{Tr}_{\ell}(y)=0}} \chi_{3}(x+\alpha y) & =\sum_{\substack{x, y \in \mathbb{F}_{2^{\ell}}^{*} \\
\operatorname{Tr}_{\ell}(y)=0}} \chi_{3}(y) \chi_{3}\left(x y^{-1}+\alpha\right)=\sum_{\substack{z, y \in \mathbb{F}_{2 \ell}^{*} \\
\operatorname{Tr}_{\ell}(y)=0}} \chi_{3}(z+\alpha) \\
& =\left(2^{\ell-1}-1\right) \sum_{z \in \mathbb{F}_{2}^{*}} \chi_{3}(z+\alpha),
\end{aligned}
$$

as y is invertible, $\chi_{3}(y)=1$ since ℓ is odd, z has been substituted for $x y^{-1}$, and the sum we get in the end, being independent of y, is simply multiplied
by the number of values assumed by y. Altogether we have

$$
\begin{aligned}
G_{2 \ell}\left(1, \chi_{3}\right) & =2^{\ell+1}-2+\chi_{3}(\alpha)\left(2^{\ell}-2\right)+\left(2^{\ell}-2\right) \sum_{z \in \mathbb{F}_{2^{*}}^{*}} \chi_{3}(z+\alpha) \\
& =2^{\ell+1}-2+\left(2^{\ell}-2\right) \sum_{z \in \mathbb{F}_{2^{\ell}}} \chi_{3}(z+\alpha)
\end{aligned}
$$

and, for later use, we define $A(\alpha)=\sum_{z \in \mathbb{F}_{2} \ell} \chi_{3}(z+\alpha)$. In order to evaluate $A(\alpha)$, we consider the sum of $A(\beta)$ over $\beta \in \mathbb{F}_{2^{2 \ell}}$, and observe that $A(\beta)=$ $2^{\ell}-1$ if $\beta \in \mathbb{F}_{2^{\ell}}$, while if $\beta \notin \mathbb{F}_{2^{\ell}}$ all sums assume the same value $A(\alpha)$, which is shown as follows. Set $\beta=u+\alpha v$ with $v \neq 0$. Then

$$
\sum_{z \in \mathbb{F}_{2^{\ell}}} \chi_{3}(z+u+\alpha v)=\sum_{z \in \mathbb{F}_{2} \ell} \chi_{3}(v) \chi_{3}\left((z+u) v^{-1}+\alpha\right)=\sum_{z^{\prime} \in \mathbb{F}_{2} \ell} \chi_{3}\left(z^{\prime}+\alpha\right) .
$$

Therefore, the sum

$$
\sum_{\beta \in \mathbb{F}_{2} 2 \ell} A(\beta)=\sum_{\beta \in \mathbb{F}_{2^{2 \ell}}} \sum_{z \in \mathbb{F}_{2} \ell} \chi_{3}(z+\beta)=\sum_{z \in \mathbb{F}_{2} \ell} \sum_{\beta \in \mathbb{F}_{2} 2 \ell} \chi_{3}(z+\beta)=0
$$

yields

$$
2^{\ell}\left(2^{\ell}-1\right)+\left(2^{2 \ell}-2^{\ell}\right) A(\alpha)=0,
$$

which implies $A(\alpha)=-1$, and finally

$$
G_{2 \ell}\left(1, \chi_{3}\right)=2^{\ell+1}-2-\left(2^{\ell}-2\right)=2^{\ell} .
$$

Remark. The above theorem can also be proved using a theorem by Stickelberger (3, Theorem 5.16]).

Theorem 3.2. If ℓ is even, then the Gauss sum $G_{2 \ell}\left(1, \chi_{3}\right)$ is equal to $(-2)^{\ell / 2} G_{\ell}\left(1, \chi_{3}\right)$.

Proof. The relative trace of the elements of $\mathbb{F}_{2^{2 \ell}}$ over $\mathbb{F}_{2^{\ell}}$, which is

$$
\operatorname{Tr}_{2 \ell \ell \ell}(x)=x+x^{2^{\ell}},
$$

introduces the polynomial $x+x^{2^{\ell}}$ which defines a mapping from $\mathbb{F}_{2^{2 \ell}}$ onto $\mathbb{F}_{2^{\ell}}$ with kernel $\mathbb{F}_{2^{\ell}}\left([3)\right.$. The equation $x^{2^{\ell}}+x=y$ has in fact exactly 2^{ℓ} roots in $\mathbb{F}_{2^{2 \ell}}$ for every $y \in \mathbb{F}_{2^{\ell}}$.

By definition we have

$$
G_{2 \ell}\left(1, \chi_{3}\right)=2 \sum_{\substack{z \in \mathbb{F}_{2} 2 \ell \\ \operatorname{Tr}_{2 \ell}(z)=0}} \chi_{3}(z)=2 \sum_{\substack{x, y \in \mathbb{F}_{2} \ell \\ \operatorname{Tr}_{2 \ell}(x+\alpha y)=0}} \chi_{3}(x+\alpha y),
$$

where α is a root of an irreducible quadratic polynomial $x^{2}+x+b$ over \mathbb{F}_{2}, i.e. $\operatorname{Tr}_{\ell}(b)=1$ ([3, Corollary 3.79]) and $\operatorname{Tr}_{2 \ell / \ell}(\alpha)=1$, which can be seen from the coefficient of x of the polynomial. Now

$$
\operatorname{Tr}_{2 \ell}(x+\alpha y)=\operatorname{Tr}_{2 \ell}(x)+\operatorname{Tr}_{2 \ell}(\alpha y)=\operatorname{Tr}_{2 \ell}(\alpha y)=\operatorname{Tr}_{\ell}(\alpha y)+\operatorname{Tr}_{\ell}\left(\alpha^{2^{\ell}} y\right),
$$

but $\alpha^{2^{\ell}}=1+\alpha$, so that $\operatorname{Tr}_{2 \ell}(x+\alpha y)=\operatorname{Tr}_{\ell}(y)$, and we have

$$
\begin{aligned}
G_{2 \ell}\left(1, \chi_{3}\right) & =2 \sum_{\substack{x, y \in \mathbb{F}_{2} \ell \\
\operatorname{Tr}_{\ell}(y)=0}} \chi_{3}(x+\alpha y) \\
& =2 \sum_{x \in \mathbb{F}_{2} \ell} \chi_{3}(x)+2 \sum_{\substack{y \in \mathbb{F}_{2 \ell}^{*} \\
\operatorname{Tr}_{\ell}(y)=0}} \chi_{3}(\alpha y)+2 \sum_{\substack{x, y \in \mathbb{F}_{2 \ell}^{*} \\
\operatorname{Tr}_{\ell}(y)=0}} \chi_{3}(x+\alpha y),
\end{aligned}
$$

where the summation has been split into three sums, by separating the cases $y=0$ and $x=0$. We observe that, since the character over $\mathbb{F}_{2^{\ell}}$ is not trivial, the first sum is 0 and the second is $\chi_{3}(\alpha) G_{\ell}\left(1, \chi_{3}\right)$, while the third can be written as follows:

$$
\begin{aligned}
& 2 \sum_{\substack{x, y \in \mathbb{F}_{2^{\ell}}^{*} \\
\operatorname{Tr}_{\ell}(y)=0}} \chi_{3}(x+\alpha y)=2 \sum_{\substack{x, y \in \mathbb{F}_{2 \ell}^{*} \\
\operatorname{Tr}_{\ell}(y)=0}} \chi_{3}(y) \chi_{3}\left(x y^{-1}+\alpha\right) \\
&=2 \sum_{\substack{y \in \mathbb{F}_{2^{\ell}}^{*} \\
\operatorname{Tr}_{\ell}(y)=0}} \chi_{3}(y) \sum_{z \in \mathbb{F}_{2^{\ell}}^{*}} \chi_{3}(z+\alpha) .
\end{aligned}
$$

Putting all together, we obtain

$$
G_{2 \ell}\left(1, \chi_{3}\right)=G_{\ell}\left(1, \chi_{3}\right) \sum_{z \in \mathbb{F}_{2} \ell} \chi_{3}(z+\alpha)=G_{\ell}\left(1, \chi_{3}\right) A_{\ell}(\alpha)
$$

which shows that $\left|A_{\ell}(\alpha)\right|=2^{\ell / 2}$ and that $A_{\ell}(\alpha)$ is real, as both $G_{2 \ell}\left(1, \chi_{3}\right)$ and $G_{\ell}\left(1, \chi_{3}\right)$ are real. Note that this holds for any α with $\operatorname{Tr}_{2 \ell / \ell}(\alpha)=1$. We will show now that $A_{\ell}(\alpha)=(-2)^{\ell / 2}$. Consider the sum of $A_{\ell}(\gamma)$ over all γ with relative trace equal to 1 , which is on one hand $2^{\ell} A_{\ell}(\alpha)$, as the polynomial $x^{2^{\ell}}+x=1$ has exactly 2^{ℓ} roots in $\mathbb{F}_{2^{2 \ell}}$, and on the other hand, explicitly we have

$$
\begin{aligned}
& \sum_{\substack{\gamma \in \mathbb{F}_{22 \ell}^{*} \\
\operatorname{Tr}_{2 \ell / \ell}(\gamma)=1}} A_{\ell}(\gamma)= \sum_{z \in \mathbb{F}_{2} \ell} \sum_{\substack{\gamma \in \mathbb{F}_{2}^{*} \\
\operatorname{Tr}_{2 \ell / \ell}(\gamma)=1}} \chi_{3}(z+\gamma)=\sum_{z \in \mathbb{F}_{2 \ell}} \sum_{\substack{\gamma^{\prime} \in \mathbb{F}_{2}^{*} \\
\operatorname{Tr}_{2 \ell / \ell}\left(\gamma^{\prime}\right)=1}} \chi_{3}\left(\gamma^{\prime}\right) \\
&=2^{\ell} \sum_{\substack{\gamma^{\prime} \in \mathbb{F}_{22 \ell}^{*} \\
\operatorname{Tr}_{2 \ell / \ell}\left(\gamma^{\prime}\right)=1}} \chi_{3}\left(\gamma^{\prime}\right),
\end{aligned}
$$

where the summation order has been reversed, and $\operatorname{Tr}_{2 \ell / \ell}(\gamma)=\operatorname{Tr}_{2 \ell / \ell}\left(\gamma^{\prime}\right)$ as $\operatorname{Tr}_{2 \ell / \ell}(z)=0$ for any $z \in \mathbb{F}_{2^{\ell}}$. Comparing the two results, we have

$$
A_{\ell}(\alpha)=\sum_{\substack{\prime \\ \gamma^{\prime} \in \mathbb{F}_{2}^{*} \\ \operatorname{Tr}_{2 \ell / \ell}\left(\gamma^{\prime}\right)=1}} \chi_{3}\left(\gamma^{\prime}\right)=M_{0}+M_{1} \zeta_{3}+M_{2} \zeta_{3}^{2}
$$

where M_{0} is the number of γ^{\prime} with $\operatorname{Tr}_{2 \ell / \ell}\left(\gamma^{\prime}\right)=1$ that are cubic residues, i.e. they have character $\chi_{3}\left(\gamma^{\prime}\right)$ equal to $1, M_{1}$ is the number of γ^{\prime} with $\operatorname{Tr}_{2 \ell / \ell}\left(\gamma^{\prime}\right)=1$ that have character ζ_{3}, and M_{2} is the number of γ^{\prime} with $\operatorname{Tr}_{2 \ell / \ell}\left(\gamma^{\prime}\right)=1$ that have character ζ_{3}^{2}. Then $M_{0}+M_{1}+M_{2}=2^{\ell}$, and $M_{1}=M_{2}$ since $A_{\ell}(\alpha)$ is real. Therefore, $A_{\ell}(\alpha)=M_{0}-M_{1}$, and so we consider two equations for M_{0} and M_{1},

$$
\left\{\begin{array}{l}
M_{0}+2 M_{1}=2^{\ell} \\
M_{0}-M_{1}= \pm 2^{\ell / 2}
\end{array}\right.
$$

Solving for M_{1} we have $M_{1}=\frac{1}{3}\left(2^{\ell} \mp 2^{\ell / 2}\right)$. Since M_{1} must be an integer, we obtain

$$
\begin{cases}M_{0}-M_{1}=2^{\ell / 2} & \text { if } \ell / 2 \text { is even } \\ M_{0}-M_{1}=-2^{\ell / 2} & \text { if } \ell / 2 \text { is odd. }\end{cases}
$$

Corollary 3.3. For ℓ even, the value of the Gauss sum $G_{2 \ell}\left(1, \chi_{3}\right)$ is -2^{ℓ}.

Proof. This is a direct consequence of the two theorems above.
Acknowledgements. This research was partly supported by the Swiss National Science Foundation (grants No. 126948 and No. 132256).

References

[1] B. Berndt, R. J. Evans and H. Williams, Gauss and Jacobi Sums, Wiley, New York, 1998.
[2] D. Jungnickel, Finite Fields, Structure and Arithmetics, Wissenschaftsverlag, Mannheim, 1993.
[3] R. Lidl and H. Niederreiter, Finite Fields, Cambridge Univ. Press, Cambridge, 1986.
[4] A. Winterhof, On the distribution of powers in finite fields, Finite Fields Appl. 4 (1998), 43-54.

Davide Schipani
Institute of Mathematics
University of Zurich
8057 Zürich, Switzerland
E-mail: davide.schipani@math.uzh.ch

Michele Elia
Department of Electronics
Politecnico di Torino 10129 Torino, Italy
E-mail: michele.elia@polito.it

[^0]: 2010 Mathematics Subject Classification: Primary 12Y05; Secondary 12E30.
 Key words and phrases: Gauss sum, character, binary finite fields.

