Tame Automorphisms of \mathbb{C}^{3} with Multidegree of the Form $\left(p_{1}, p_{2}, d_{3}\right)$

by

Marek KARAŚ

Presented by Andrzej BIAEYNICKI-BIRULA

Summary. Let $d_{3} \geq p_{2}>p_{1} \geq 3$ be integers such that p_{1}, p_{2} are prime numbers. We show that the sequence $\left(p_{1}, p_{2}, d_{3}\right)$ is the multidegree of some tame automorphism of \mathbb{C}^{3} if and only if $d_{3} \in p_{1} \mathbb{N}+p_{2} \mathbb{N}$, i.e. if and only if d_{3} is a linear combination of p_{1} and p_{2} with coefficients in \mathbb{N}.

1. Introduction. Let $F=\left(F_{1}, \ldots, F_{n}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be any polynomial mapping. Its multidegree, denoted mdeg F, is the sequence of positive integers $\left(\operatorname{deg} F_{1}, \ldots, \operatorname{deg} F_{n}\right)$. In dimension 2 there is a complete characterization of the sequences $\left(d_{1}, d_{2}\right)$ such that there is a polynomial automorphism $F: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ with mdeg $F=\left(d_{1}, d_{2}\right)$. This characterization is a consequence of the Jung [2] and van der Kulk [4] theorem. Moreover in [3] it was proven, among other things, that there is no tame automorphism of \mathbb{C}^{3} with multidegree $(3,4,5),(3,5,7),(4,5,7)$ or $(4,5,11)$.

Recall that a tame automorphism is, by definition, a composition of linear automorphisms and triangular automorphisms, where a triangular automorphism is a mapping of the form

$$
T: \mathbb{C}^{n} \ni\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right\} \mapsto\left\{\begin{array}{l}
x_{1} \\
x_{2}+f_{2}\left(x_{1}\right) \\
\vdots \\
x_{n}+f_{n}\left(x_{1}, \ldots, x_{n-1}\right)
\end{array}\right\} \in \mathbb{C}^{n}
$$

We will denote by Tame $\left(\mathbb{C}^{n}\right)$ the group of all tame automorphisms of \mathbb{C}^{n}, and by mdeg the mapping from the set of all polynomial endomorphisms

[^0]Key words and phrases: polynomial automorphism, tame automorphism, multidegree.
of \mathbb{C}^{n} into \mathbb{N}^{n}. Using this notation, the above mentioned facts can be written as follows: $(3,4,5),(3,5,7),(4,5,7),(4,5,11) \notin \operatorname{mdeg}\left(\operatorname{Tame}\left(\mathbb{C}^{3}\right)\right)$. In [7] it was proven that for all d_{1}, d_{2} there are only finitely many d_{3} such that $\left(d_{1}, d_{2}, d_{3}\right) \notin \operatorname{mdeg}\left(\operatorname{Tame}\left(\mathbb{C}^{3}\right)\right)$.

In this paper we make a further progress in the investigation of the set $\operatorname{mdeg}\left(\operatorname{Tame}\left(\mathbb{C}^{3}\right)\right)$. Namely we show the following theorem.

THEOREM 1.1. Let $d_{3} \geq p_{2}>p_{1} \geq 3$ be positive integers. If p_{1} and p_{2} are prime numbers, then $\left(p_{1}, p_{2}, d_{3}\right) \in \operatorname{mdeg}\left(\operatorname{Tame}\left(\mathbb{C}^{3}\right)\right)$ if and only if $d_{3} \in p_{1} \mathbb{N}+p_{2} \mathbb{N}$, i.e. if and only if d_{3} is a linear combination of p_{1} and p_{2} with coefficients in \mathbb{N}.

Notice that for all permutations σ of the set $\{1,2,3\},\left(d_{1}, d_{2}, d_{3}\right) \in$ $\operatorname{mdeg}\left(\operatorname{Tame}\left(\mathbb{C}^{3}\right)\right)$ if and only if $\left(d_{\sigma(1)}, d_{\sigma(2)}, d_{\sigma(3)}\right) \in \operatorname{mdeg}\left(\operatorname{Tame}\left(\mathbb{C}^{3}\right)\right)$. Since also, $\left(d_{1}, d_{2}, d_{3}\right) \in \operatorname{mdeg}\left(\operatorname{Tame}\left(\mathbb{C}^{3}\right)\right)$ if $d_{1}=d_{2}$ (by Proposition 2.2 below), and $\left(2, d_{2}, d_{3}\right) \in \operatorname{mdeg}\left(\operatorname{Tame}\left(\mathbb{C}^{3}\right)\right)$ for all $d_{3} \geq d_{2} \geq 2([3$, Corollary 2.3]), the assumption $d_{3} \geq p_{2}>p_{1} \geq 3$ is not restrictive.
2. Proof of the theorem. First, we recall one classical result (due to Sylvester) from number theory, concerning the so-called coin problem or Frobenius problem [1].

TheOrem 2.1. If a, b are positive integers such that $\operatorname{gcd}(a, b)=1$, then for every integer $k \geq(a-1)(b-1)$ there are $k_{1}, k_{2} \in \mathbb{N}$ such that

$$
k=k_{1} a+k_{2} b
$$

Moreover $(a-1)(b-1)-1 \notin a \mathbb{N}+b \mathbb{N}$.
In the proof we will also use the following proposition.
Prposition 2.2 ([3, Proposition 2.2]). If for a sequence of integers $1 \leq$ $d_{1} \leq \cdots \leq d_{n}$ there is $i \in\{1, \ldots, n\}$ such that

$$
d_{i}=\sum_{j=1}^{i-1} k_{j} d_{j} \quad \text { with } k_{j} \in \mathbb{N}
$$

then there exists a tame automorphism F of \mathbb{C}^{n} with $\operatorname{mdeg} F=\left(d_{1}, \ldots, d_{n}\right)$.
By the above proposition, in order to prove Theorem 1.1, it is enough to show that if $d_{3} \notin p_{1} \mathbb{N}+p_{2} \mathbb{N}$, then $\left(p_{1}, p_{2}, d_{3}\right) \notin \operatorname{mdeg}\left(\operatorname{Tame}\left(\mathbb{C}^{3}\right)\right)$.

In the proof of the above implication we will use some results and notions from the papers of Shestakov and Umirbaev [5, 6].

The first one is the following
Definition 2.1 ([5, Definition 1]). A pair $f, g \in k\left[X_{1}, \ldots, X_{n}\right]$ is called *-reduced if
(i) f, g are algebraically independent;
(ii) \bar{f}, \bar{g} are algebraically dependent, where \bar{h} denotes the highest homogeneous part of h;
(iii) $\bar{f} \notin k[\bar{g}]$ and $\bar{g} \notin k[\bar{f}]$.

Definition 2.2 ([5, Definition 1]). Let $f, g \in k\left[X_{1}, \ldots, X_{n}\right]$ be a *reduced pair with $\operatorname{deg} f<\operatorname{deg} g$. Put $p=\operatorname{deg} f / \operatorname{gcd}(\operatorname{deg} f, \operatorname{deg} g)$. Then the pair f, g is called p-reduced.

Theorem 2.3 ([5, Theorem 2]). Let $f, g \in k\left[X_{1}, \ldots, X_{n}\right]$ be a p-reduced pair, and let $G(x, y) \in k[x, y]$ with $\operatorname{deg}_{y} G(x, y)=p q+r, 0 \leq r<p$. Then

$$
\operatorname{deg} G(f, g) \geq q(p \operatorname{deg} g-\operatorname{deg} g-\operatorname{deg} f+\operatorname{deg}[f, g])+r \operatorname{deg} g
$$

In the above theorem $[f, g]$ means the Poisson bracket of f and g; for us it is only important that

$$
\operatorname{deg}[f, g]=2+\max _{1 \leq i<j \leq n} \operatorname{deg}\left(\frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial x_{j}}-\frac{\partial f}{\partial x_{j}} \frac{\partial g}{\partial x_{i}}\right)
$$

if f, g are algebraically independent, and $[f, g]=0$ if f, g are algebraically dependent.

Notice also that the estimate from Theorem 2.3 is true even if the condition (ii) of Definition 2.1 is not satisfied. Indeed, if $G(x, y)=\sum_{i, j} a_{i, j} x^{i} y^{j}$, then by the algebraic independence of \bar{f} and \bar{g} we have

$$
\begin{aligned}
\operatorname{deg} G(f, g) & =\max _{i, j} \operatorname{deg}\left(a_{i, j} f^{i} g^{j}\right) \geq \operatorname{deg}_{y} G(x, y) \cdot \operatorname{deg} g=(q p+r) \operatorname{deg} g \\
& \geq q(p \operatorname{deg} g-\operatorname{deg} f-\operatorname{deg} g+\operatorname{deg}[f, g])+r \operatorname{deg} g
\end{aligned}
$$

The last inequality is a consequence of the fact that $\operatorname{deg}[f, g] \leq \operatorname{deg} f+\operatorname{deg} g$.
We will also use the following theorem.
TheOrem 2.4 ([5, Theorem 3]). Let $F=\left(F_{1}, F_{2}, F_{3}\right)$ be a tame automorphism of \mathbb{C}^{3}. If $\operatorname{deg} F_{1}+\operatorname{deg} F_{2}+\operatorname{deg} F_{3}>3$ (in other words, if F is not a linear automorphism), then F admits either an elementary reduction or a reduction of types $I-I V$ (see [5, Definitions 2-4]).

Let us also recall that an automorphism $F=\left(F_{1}, F_{2}, F_{3}\right)$ admits an elementary reduction if there exists a polynomial $g \in \mathbb{C}[x, y]$ and a permutation σ of $\{1,2,3\}$ such that $\operatorname{deg}\left(F_{\sigma(1)}-g\left(F_{\sigma(2)}, F_{\sigma(3)}\right)\right)<\operatorname{deg} F_{\sigma(1)}$.

Proof of Theorem 1.1. Assume that $F=\left(F_{1}, F_{2}, F_{3}\right)$ is an automorphism of \mathbb{C}^{3} such that mdeg $F=\left(p_{1}, p_{2}, d_{3}\right)$. Assume also that $d_{3} \notin p_{1} \mathbb{N}+p_{2} \mathbb{N}$. By Theorem 2.1 we have

$$
\begin{equation*}
d_{3}<\left(p_{1}-1\right)\left(p_{2}-1\right) \tag{2.1}
\end{equation*}
$$

First of all we show that this hypothetical automorphism F does not admit reductions of types I-IV.

By the definitions of those reductions (see [5, Definitions 2-4]), if $F=$ $\left(F_{1}, F_{2}, F_{3}\right)$ admits such a reduction, then $2 \mid \operatorname{deg} F_{i}$ for some $i \in\{1,2,3\}$. Thus if d_{3} is odd, then F does not admit a reduction of types I-IV. Assume that $d_{3}=2 n$ for some positive integer n.

If F admits a reduction of type I or II, then by the definition (see [5, Definitions 2 and 3]) we have $p_{1}=s n$ or $p_{2}=s n$ for some odd $s \geq 3$. Since $p_{1}, p_{2} \leq d_{3}=2 n<s n$, we obtain a contradiction.

If F admits a reduction of type III or IV, then by the definition (see 5, Definition 4]) we have either

$$
n<p_{1} \leq \frac{3}{2} n, \quad p_{2}=3 n
$$

or

$$
p_{1}=\frac{3}{2} n, \quad \frac{5}{2} n<p_{2} \leq 3 n
$$

Since $p_{1}, p_{2} \leq d_{3}=2 n<\frac{5}{2} n, 3 n$, we obtain a contradiction. Thus we have proved that our hypothetical automorphism F does not admit a reduction of types I-IV.

Now we will show that it also does not admit an elementary reduction.
Assume, to the contrary, that

$$
\left(F_{1}, F_{2}, F_{3}-g\left(F_{1}, F_{2}\right)\right)
$$

where $g \in \mathbb{C}[x, y]$, is an elementary reduction of $\left(F_{1}, F_{2}, F_{3}\right)$. Then we have $\operatorname{deg} g\left(F_{1}, F_{2}\right)=\operatorname{deg} F_{3}=d_{3}$. But, by Theorem 2.3 .

$$
\operatorname{deg} g\left(F_{1}, F_{2}\right) \geq q\left(p_{1} p_{2}-p_{1}-p_{2}+\operatorname{deg}\left[F_{1}, F_{2}\right]\right)+r p_{2}
$$

where $\operatorname{deg}_{y} g(x, y)=q p_{1}+r$ with $0 \leq r<p_{1}$. Since F_{1}, F_{2} are algebraically independent, $\operatorname{deg}\left[F_{1}, F_{2}\right] \geq 2$ and so

$$
p_{1} p_{2}-p_{1}-p_{2}+\operatorname{deg}\left[F_{1}, F_{2}\right] \geq p_{1} p_{2}-p_{1}-p_{2}+2>\left(p_{1}-1\right)\left(p_{2}-1\right)
$$

This and (2.1) imply that $q=0$, and that

$$
g(x, y)=\sum_{i=0}^{p_{1}-1} g_{i}(x) y^{i}
$$

Since $\operatorname{lcm}\left(p_{1}, p_{2}\right)=p_{1} p_{2}$, the sets

$$
p_{1} \mathbb{N}, p_{2}+p_{1} \mathbb{N}, \ldots,\left(p_{1}-1\right) p_{2}+p_{1} \mathbb{N}
$$

are pairwise disjoint. This yields

$$
\operatorname{deg}\left(\sum_{i=0}^{p_{1}-1} g_{i}\left(F_{1}\right) F_{2}^{i}\right)=\max _{i=0, \ldots, p_{1}-1}\left(\operatorname{deg} F_{1} \operatorname{deg} g_{i}+i \operatorname{deg} F_{2}\right)
$$

Since also

$$
d_{3} \notin \bigcup_{r=0}^{p_{1}-1}\left(r p_{2}+p_{1} \mathbb{N}\right)
$$

(because $d_{3} \notin p_{1} \mathbb{N}+p_{2} \mathbb{N}$), it is easy to see that

$$
\operatorname{deg}\left(\sum_{i=0}^{p_{1}-1} g_{i}\left(F_{1}\right) F_{2}^{i}\right)=d_{3}
$$

is impossible.
Now, assume that

$$
\left(F_{1}, F_{2}-g\left(F_{1}, F_{3}\right), F_{3}\right)
$$

where $g \in \mathbb{C}[x, y]$, is an elementary reduction of $\left(F_{1}, F_{2}, F_{3}\right)$. Since $d_{3} \notin$ $p_{1} \mathbb{N}+p_{2} \mathbb{N}$, we have $p_{1} \nmid d_{3}$ and $\operatorname{gcd}\left(p_{1}, d_{3}\right)=1$. This means, by Theorem 2.3, that

$$
\operatorname{deg} g\left(F_{1}, F_{3}\right) \geq q\left(p_{1} d_{3}-d_{3}-p_{1}+\operatorname{deg}\left[F_{1}, F_{3}\right]\right)+r d_{3}
$$

where $\operatorname{deg}_{y} g(x, y)=q p_{1}+r$ with $0 \leq r<p_{1}$. Since $p_{1} d_{3}-d_{3}-p_{1}+$ $\operatorname{deg}\left[F_{1}, F_{3}\right] \geq p_{1} d_{3}-2 d_{3} \geq d_{3}>p_{2}$ and since we want to have $\operatorname{deg} g\left(F_{1}, F_{3}\right)$ $=p_{2}$, it follows that $q=r=0$. This means that $g(x, y)=g(x)$. But since $p_{2} \notin p_{1} \mathbb{N}$, the equality $\operatorname{deg} g\left(F_{1}, F_{3}\right)=\operatorname{deg} g\left(F_{1}\right)=p_{2}$ is impossible.

Finally, if we assume that $\left(F_{1}-g\left(F_{2}, F_{3}\right), F_{2}, F_{3}\right)$ is an elementary reduction of $\left(F_{1}, F_{2}, F_{3}\right)$, then in the same way as in the previous case we obtain a contradiction.

3. Some consequences

ThEOREM 3.1. Let $p_{2}>3$ be a prime number and $d_{3} \geq p_{2}$ be an integer. Then $\left(3, p_{2}, d_{3}\right) \in \operatorname{mdeg}\left(\operatorname{Tame}\left(\mathbb{C}^{3}\right)\right)$ if and only if $d_{3} \notin\left\{2 p_{2}-3 k \mid k=\right.$ $\left.1, \ldots,\left[p_{2} / 3\right]\right\}$.

Proof. Since $p_{2}>3$ is a prime number, we have $p_{2} \equiv r(\bmod 3)$ for some $r \in\{1,2\}$. It is easy to see that if $d_{3} \geq p_{2}$ and either $d_{3} \equiv 0(\bmod 3)$ or $d_{3} \equiv r(\bmod 3)$, then $d_{3} \in 3 \mathbb{N}+p_{2} \mathbb{N}$. Thus, by Theorem 2.1.

$$
2\left(p_{2}-1\right)-1 \neq 0, r(\bmod 3)
$$

Take any d_{3} such that $p_{2} \leq d_{3} \leq 2 p_{2}-3$ and $d_{3} \neq 0, r(\bmod 3)$. Since $d_{3} \leq 2 p_{2}-3$ and $d_{3} \equiv 2 p_{2}-3(\bmod 3)$, one can see that $d_{3} \notin 3 \mathbb{N}+p_{2} \mathbb{N}$, because otherwise we would have $2 p_{2}-3 \in 3 \mathbb{N}+p_{2} \mathbb{N}$, contrary to Theorem 2.1. Thus

$$
\begin{aligned}
\left\{d_{3}\right. & \left.\in \mathbb{N} \mid d_{3} \geq p_{2}, d_{3} \notin 3 \mathbb{N}+p_{2} \mathbb{N}\right\} \\
& =\left\{d_{3} \in \mathbb{N} \mid p_{2} \leq d_{3} \leq 2 p_{2}-3, d_{3} \equiv 2 p_{2}-3(\bmod 3)\right\} \\
& =\left\{2 p_{2}-3 k \mid k=1, \ldots,\left[p_{2} / 3\right]\right\}
\end{aligned}
$$

One can also notice the following easy but probably amusing results (of course one can easily write down more statements like these).

THEOREM 3.2. (a) If $d_{3} \geq 7$, then $\left(5,7, d_{3}\right) \in \operatorname{mdeg}\left(\operatorname{Tame}\left(\mathbb{C}^{3}\right)\right)$ if and only if

$$
d_{3} \neq 8,9,11,13,16,18,23
$$

(b) If $d_{3} \geq 11$, then $\left(5,11, d_{3}\right) \in \operatorname{mdeg}\left(\operatorname{Tame}\left(\mathbb{C}^{3}\right)\right)$ if and only if

$$
d_{3} \neq 12,13,14,17,18,19,23,24,28,29,34,39
$$

(c) If $d_{3} \geq 13$, then $\left(5,13, d_{3}\right) \in \operatorname{mdeg}\left(\operatorname{Tame}\left(\mathbb{C}^{3}\right)\right)$ if and only if

$$
d_{3} \neq 14,16,17,19,21,22,24,27,29,32,34,37,42,47
$$

(d) If $d_{3} \geq 11$, then $\left(7,11, d_{3}\right) \in \operatorname{mdeg}\left(\operatorname{Tame}\left(\mathbb{C}^{3}\right)\right)$ if and only if $d_{3} \neq 12,13,15,16,17,19,20,23,24,26,27,30,31,34,37,38$, $41,45,48,52,59$.

Proof. This is a consequence of Theorems 2.1 and 1.1. For example to prove (a), by Theorems 2.1 and 1.1 we only have to check which of the numbers $7,8, \ldots, 23=(5-1)(7-1)-1$ are elements of the set $5 \mathbb{N}+7 \mathbb{N}$.

References

[1] A. Brauer, On a problem on partitions, Amer. J. Math. 64 (1942), 299-312.
[2] H. W. E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161-174.
[3] M. Karaś, There is no tame automorphism of \mathbb{C}^{3} with multidegree (3,4,5), Proc. Amer. Math. Soc. 139 (2011), 769-775.
[4] W. van der Kulk, On polynomial rings in two variables, Nieuw Arch. Wisk. (3) 1 (1953), 33-41.
[5] I. P. Shestakov and U. U. Umirbaev, The Nagata automorphism is wild, Proc. Nat. Acad. Sci. USA 100 (2003), 12561-12563.
[6] -, 一, The tame and the wild automorphisms of polynomial rings in three variables, J. Amer. Math. Soc. 17 (2004), 197-227.
[7] J. Zygadło, On multidegrees of polynomial automorphisms of \mathbb{C}^{3}, Comm. Algebra, to appear.

Marek Karaś
Instytut Matematyki Uniwersytetu Jagiellońskiego
Łojasiewicza 6
30-348 Kraków, Poland
E-mail: Marek.Karas@im.uj.edu.pl

[^0]: 2010 Mathematics Subject Classification: 14Rxx, 14R10.

