ALGEBRAIC GEOMETRY

Tame Automorphisms of \mathbb{C}^3 with Multidegree of the Form (p_1, p_2, d_3)

by

Marek KARAŚ

Presented by Andrzej BIAŁYNICKI-BIRULA

Summary. Let $d_3 \ge p_2 > p_1 \ge 3$ be integers such that p_1, p_2 are prime numbers. We show that the sequence (p_1, p_2, d_3) is the multidegree of some tame automorphism of \mathbb{C}^3 if and only if $d_3 \in p_1 \mathbb{N} + p_2 \mathbb{N}$, i.e. if and only if d_3 is a linear combination of p_1 and p_2 with coefficients in \mathbb{N} .

1. Introduction. Let $F = (F_1, \ldots, F_n) : \mathbb{C}^n \to \mathbb{C}^n$ be any polynomial mapping. Its *multidegree*, denoted mdeg F, is the sequence of positive integers (deg $F_1, \ldots, \deg F_n$). In dimension 2 there is a complete characterization of the sequences (d_1, d_2) such that there is a polynomial automorphism $F : \mathbb{C}^2 \to \mathbb{C}^2$ with mdeg $F = (d_1, d_2)$. This characterization is a consequence of the Jung [2] and van der Kulk [4] theorem. Moreover in [3] it was proven, among other things, that there is no tame automorphism of \mathbb{C}^3 with multidegree (3, 4, 5), (3, 5, 7), (4, 5, 7) or (4, 5, 11).

Recall that a *tame automorphism* is, by definition, a composition of linear automorphisms and triangular automorphisms, where a *triangular automorphism* is a mapping of the form

$$T: \mathbb{C}^n \ni \begin{cases} x_1 \\ x_2 \\ \vdots \\ x_n \end{cases} \mapsto \begin{cases} x_1 \\ x_2 + f_2(x_1) \\ \vdots \\ x_n + f_n(x_1, \dots, x_{n-1}) \end{cases} \in \mathbb{C}^n$$

We will denote by $\text{Tame}(\mathbb{C}^n)$ the group of all tame automorphisms of \mathbb{C}^n , and by mdeg the mapping from the set of all polynomial endomorphisms

2010 Mathematics Subject Classification: 14Rxx, 14R10.

Key words and phrases: polynomial automorphism, tame automorphism, multidegree.

[27]

of \mathbb{C}^n into \mathbb{N}^n . Using this notation, the above mentioned facts can be written as follows: $(3, 4, 5), (3, 5, 7), (4, 5, 7), (4, 5, 11) \notin \text{mdeg}(\text{Tame}(\mathbb{C}^3))$. In [7] it was proven that for all d_1, d_2 there are only finitely many d_3 such that $(d_1, d_2, d_3) \notin \text{mdeg}(\text{Tame}(\mathbb{C}^3))$.

In this paper we make a further progress in the investigation of the set $mdeg(Tame(\mathbb{C}^3))$. Namely we show the following theorem.

THEOREM 1.1. Let $d_3 \ge p_2 > p_1 \ge 3$ be positive integers. If p_1 and p_2 are prime numbers, then $(p_1, p_2, d_3) \in \text{mdeg}(\text{Tame}(\mathbb{C}^3))$ if and only if $d_3 \in p_1\mathbb{N} + p_2\mathbb{N}$, i.e. if and only if d_3 is a linear combination of p_1 and p_2 with coefficients in \mathbb{N} .

Notice that for all permutations σ of the set $\{1, 2, 3\}$, $(d_1, d_2, d_3) \in$ mdeg(Tame(\mathbb{C}^3)) if and only if $(d_{\sigma(1)}, d_{\sigma(2)}, d_{\sigma(3)}) \in$ mdeg(Tame(\mathbb{C}^3)). Since also, $(d_1, d_2, d_3) \in$ mdeg(Tame(\mathbb{C}^3)) if $d_1 = d_2$ (by Proposition 2.2 below), and $(2, d_2, d_3) \in$ mdeg(Tame(\mathbb{C}^3)) for all $d_3 \geq d_2 \geq 2$ ([3, Corollary 2.3]), the assumption $d_3 \geq p_2 > p_1 \geq 3$ is not restrictive.

2. Proof of the theorem. First, we recall one classical result (due to Sylvester) from number theory, concerning the so-called coin problem or Frobenius problem [1].

THEOREM 2.1. If a, b are positive integers such that gcd(a, b) = 1, then for every integer $k \ge (a-1)(b-1)$ there are $k_1, k_2 \in \mathbb{N}$ such that

$$k = k_1 a + k_2 b.$$

Moreover $(a-1)(b-1) - 1 \notin a\mathbb{N} + b\mathbb{N}$.

In the proof we will also use the following proposition.

PRPOSITION 2.2 ([3, Proposition 2.2]). If for a sequence of integers $1 \le d_1 \le \cdots \le d_n$ there is $i \in \{1, \ldots, n\}$ such that

$$d_i = \sum_{j=1}^{i-1} k_j d_j \quad \text{with } k_j \in \mathbb{N},$$

then there exists a tame automorphism F of \mathbb{C}^n with mdeg $F = (d_1, \ldots, d_n)$.

By the above proposition, in order to prove Theorem 1.1, it is enough to show that if $d_3 \notin p_1 \mathbb{N} + p_2 \mathbb{N}$, then $(p_1, p_2, d_3) \notin \text{mdeg}(\text{Tame}(\mathbb{C}^3))$.

In the proof of the above implication we will use some results and notions from the papers of Shestakov and Umirbaev [5, 6].

The first one is the following

DEFINITION 2.1 ([5, Definition 1]). A pair $f, g \in k[X_1, \ldots, X_n]$ is called *-reduced if

- (i) f, g are algebraically independent;
- (ii) $\overline{f}, \overline{g}$ are algebraically dependent, where \overline{h} denotes the highest homogeneous part of h;
- (iii) $\overline{f} \notin k[\overline{g}]$ and $\overline{g} \notin k[\overline{f}]$.

DEFINITION 2.2 ([5, Definition 1]). Let $f, g \in k[X_1, \ldots, X_n]$ be a *-reduced pair with deg $f < \deg g$. Put $p = \deg f/\gcd(\deg f, \deg g)$. Then the pair f, g is called *p*-reduced.

THEOREM 2.3 ([5, Theorem 2]). Let $f, g \in k[X_1, \ldots, X_n]$ be a *p*-reduced pair, and let $G(x, y) \in k[x, y]$ with $\deg_y G(x, y) = pq + r, 0 \le r < p$. Then

 $\deg G(f,g) \ge q(p \deg g - \deg g - \deg f + \deg [f,g]) + r \deg g.$

In the above theorem [f, g] means the Poisson bracket of f and g; for us it is only important that

$$\deg\left[f,g\right] = 2 + \max_{1 \le i < j \le n} \deg\left(\frac{\partial f}{\partial x_i}\frac{\partial g}{\partial x_j} - \frac{\partial f}{\partial x_j}\frac{\partial g}{\partial x_i}\right)$$

if f, g are algebraically independent, and [f, g] = 0 if f, g are algebraically dependent.

Notice also that the estimate from Theorem 2.3 is true even if the condition (ii) of Definition 2.1 is not satisfied. Indeed, if $G(x, y) = \sum_{i,j} a_{i,j} x^i y^j$, then by the algebraic independence of \overline{f} and \overline{g} we have

$$\deg G(f,g) = \max_{i,j} \deg(a_{i,j}f^ig^j) \ge \deg_y G(x,y) \cdot \deg g = (qp+r) \deg g$$
$$\ge q(p \deg g - \deg f - \deg g + \deg [f,g]) + r \deg g.$$

The last inequality is a consequence of the fact that $\deg[f,g] \leq \deg f + \deg g$.

We will also use the following theorem.

THEOREM 2.4 ([5, Theorem 3]). Let $F = (F_1, F_2, F_3)$ be a tame automorphism of \mathbb{C}^3 . If deg F_1 + deg F_2 + deg $F_3 > 3$ (in other words, if F is not a linear automorphism), then F admits either an elementary reduction or a reduction of types I–IV (see [5, Definitions 2–4]).

Let us also recall that an automorphism $F = (F_1, F_2, F_3)$ admits an *elementary reduction* if there exists a polynomial $g \in \mathbb{C}[x, y]$ and a permutation σ of $\{1, 2, 3\}$ such that $\deg(F_{\sigma(1)} - g(F_{\sigma(2)}, F_{\sigma(3)})) < \deg F_{\sigma(1)}$.

Proof of Theorem 1.1. Assume that $F = (F_1, F_2, F_3)$ is an automorphism of \mathbb{C}^3 such that mdeg $F = (p_1, p_2, d_3)$. Assume also that $d_3 \notin p_1 \mathbb{N} + p_2 \mathbb{N}$. By Theorem 2.1 we have

$$(2.1) d_3 < (p_1 - 1)(p_2 - 1).$$

First of all we show that this hypothetical automorphism F does not admit reductions of types I–IV.

By the definitions of those reductions (see [5, Definitions 2–4]), if $F = (F_1, F_2, F_3)$ admits such a reduction, then $2 | \deg F_i$ for some $i \in \{1, 2, 3\}$. Thus if d_3 is odd, then F does not admit a reduction of types I–IV. Assume that $d_3 = 2n$ for some positive integer n.

If F admits a reduction of type I or II, then by the definition (see [5, Definitions 2 and 3]) we have $p_1 = sn$ or $p_2 = sn$ for some odd $s \ge 3$. Since $p_1, p_2 \le d_3 = 2n < sn$, we obtain a contradiction.

If F admits a reduction of type III or IV, then by the definition (see [5, Definition 4]) we have either

$$n < p_1 \le \frac{3}{2}n, \quad p_2 = 3n,$$

or

$$p_1 = \frac{3}{2}n, \quad \frac{5}{2}n < p_2 \le 3n$$

Since $p_1, p_2 \leq d_3 = 2n < \frac{5}{2}n, 3n$, we obtain a contradiction. Thus we have proved that our hypothetical automorphism F does not admit a reduction of types I–IV.

Now we will show that it also does not admit an elementary reduction.

Assume, to the contrary, that

$$(F_1, F_2, F_3 - g(F_1, F_2)),$$

where $g \in \mathbb{C}[x, y]$, is an elementary reduction of (F_1, F_2, F_3) . Then we have $\deg g(F_1, F_2) = \deg F_3 = d_3$. But, by Theorem 2.3,

$$\deg g(F_1, F_2) \ge q(p_1 p_2 - p_1 - p_2 + \deg [F_1, F_2]) + r p_2,$$

where $\deg_y g(x, y) = qp_1 + r$ with $0 \le r < p_1$. Since F_1, F_2 are algebraically independent, $\deg[F_1, F_2] \ge 2$ and so

$$p_1p_2 - p_1 - p_2 + \deg[F_1, F_2] \ge p_1p_2 - p_1 - p_2 + 2 > (p_1 - 1)(p_2 - 1).$$

This and (2.1) imply that q = 0, and that

$$g(x,y) = \sum_{i=0}^{p_1-1} g_i(x)y^i.$$

Since $lcm(p_1, p_2) = p_1 p_2$, the sets

$$p_1\mathbb{N}, p_2 + p_1\mathbb{N}, \dots, (p_1 - 1)p_2 + p_1\mathbb{N}$$

are pairwise disjoint. This yields

$$\deg\left(\sum_{i=0}^{p_1-1} g_i(F_1)F_2^i\right) = \max_{i=0,\dots,p_1-1} (\deg F_1 \deg g_i + i \deg F_2).$$

Since also

$$d_3 \notin \bigcup_{r=0}^{p_1-1} (rp_2 + p_1 \mathbb{N})$$

(because $d_3 \notin p_1 \mathbb{N} + p_2 \mathbb{N}$), it is easy to see that

$$\deg\left(\sum_{i=0}^{p_1-1} g_i(F_1)F_2^i\right) = d_3$$

is impossible.

Now, assume that

$$(F_1, F_2 - g(F_1, F_3), F_3),$$

where $g \in \mathbb{C}[x, y]$, is an elementary reduction of (F_1, F_2, F_3) . Since $d_3 \notin p_1\mathbb{N} + p_2\mathbb{N}$, we have $p_1 \nmid d_3$ and $gcd(p_1, d_3) = 1$. This means, by Theorem 2.3, that

$$\deg g(F_1, F_3) \ge q(p_1d_3 - d_3 - p_1 + \deg [F_1, F_3]) + rd_3,$$

where $\deg_y g(x, y) = qp_1 + r$ with $0 \leq r < p_1$. Since $p_1d_3 - d_3 - p_1 + \deg[F_1, F_3] \geq p_1d_3 - 2d_3 \geq d_3 > p_2$ and since we want to have $\deg g(F_1, F_3) = p_2$, it follows that q = r = 0. This means that g(x, y) = g(x). But since $p_2 \notin p_1 \mathbb{N}$, the equality $\deg g(F_1, F_3) = \deg g(F_1) = p_2$ is impossible.

Finally, if we assume that $(F_1 - g(F_2, F_3), F_2, F_3)$ is an elementary reduction of (F_1, F_2, F_3) , then in the same way as in the previous case we obtain a contradiction.

3. Some consequences

THEOREM 3.1. Let $p_2 > 3$ be a prime number and $d_3 \ge p_2$ be an integer. Then $(3, p_2, d_3) \in \text{mdeg}(\text{Tame}(\mathbb{C}^3))$ if and only if $d_3 \notin \{2p_2 - 3k \mid k = 1, \ldots, [p_2/3]\}.$

Proof. Since $p_2 > 3$ is a prime number, we have $p_2 \equiv r \pmod{3}$ for some $r \in \{1, 2\}$. It is easy to see that if $d_3 \geq p_2$ and either $d_3 \equiv 0 \pmod{3}$ or $d_3 \equiv r \pmod{3}$, then $d_3 \in 3\mathbb{N} + p_2\mathbb{N}$. Thus, by Theorem 2.1,

$$2(p_2 - 1) - 1 \neq 0, r \pmod{3}$$

Take any d_3 such that $p_2 \leq d_3 \leq 2p_2 - 3$ and $d_3 \neq 0, r \pmod{3}$. Since $d_3 \leq 2p_2 - 3$ and $d_3 \equiv 2p_2 - 3 \pmod{3}$, one can see that $d_3 \notin 3\mathbb{N} + p_2\mathbb{N}$, because otherwise we would have $2p_2 - 3 \in 3\mathbb{N} + p_2\mathbb{N}$, contrary to Theorem 2.1. Thus

$$\{ d_3 \in \mathbb{N} \mid d_3 \ge p_2, d_3 \notin 3\mathbb{N} + p_2\mathbb{N} \}$$

= $\{ d_3 \in \mathbb{N} \mid p_2 \le d_3 \le 2p_2 - 3, d_3 \equiv 2p_2 - 3 \pmod{3} \}$
= $\{ 2p_2 - 3k \mid k = 1, \dots, [p_2/3] \}.$

One can also notice the following easy but probably amusing results (of course one can easily write down more statements like these).

THEOREM 3.2. (a) If $d_3 \ge 7$, then $(5,7,d_3) \in mdeg(Tame(\mathbb{C}^3))$ if and only if

$$\begin{split} & d_3 \neq 8, 9, 11, 13, 16, 18, 23. \\ \text{(b) If } d_3 \geq 11, \ then \ (5, 11, d_3) \in \text{mdeg}(\text{Tame}(\mathbb{C}^3)) \ if \ and \ only \ if \\ & d_3 \neq 12, 13, 14, 17, 18, 19, 23, 24, 28, 29, 34, 39. \\ \text{(c) If } d_3 \geq 13, \ then \ (5, 13, d_3) \in \text{mdeg}(\text{Tame}(\mathbb{C}^3)) \ if \ and \ only \ if \\ & d_3 \neq 14, 16, 17, 19, 21, 22, 24, 27, 29, 32, 34, 37, 42, 47. \\ \text{(d) If } d_3 \geq 11, \ then \ (7, 11, d_3) \in \text{mdeg}(\text{Tame}(\mathbb{C}^3)) \ if \ and \ only \ if \\ & d_3 \neq 12, 13, 15, 16, 17, 19, 20, 23, 24, 26, 27, 30, 31, 34, 37, 38, \\ & 41, 45, 48, 52, 59. \end{split}$$

Proof. This is a consequence of Theorems 2.1 and 1.1. For example to prove (a), by Theorems 2.1 and 1.1 we only have to check which of the numbers $7, 8, \ldots, 23 = (5-1)(7-1) - 1$ are elements of the set $5\mathbb{N} + 7\mathbb{N}$.

References

- [1] A. Brauer, On a problem on partitions, Amer. J. Math. 64 (1942), 299–312.
- H. W. E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161–174.
- [3] M. Karaś, There is no tame automorphism of C³ with multidegree (3, 4, 5), Proc. Amer. Math. Soc. 139 (2011), 769−775.
- [4] W. van der Kulk, On polynomial rings in two variables, Nieuw Arch. Wisk. (3) 1 (1953), 33-41.
- [5] I. P. Shestakov and U. U. Umirbaev, *The Nagata automorphism is wild*, Proc. Nat. Acad. Sci. USA 100 (2003), 12561–12563.
- [6] —, —, The tame and the wild automorphisms of polynomial rings in three variables, J. Amer. Math. Soc. 17 (2004), 197–227.
- [7] J. Zygadło, On multidegrees of polynomial automorphisms of \mathbb{C}^3 , Comm. Algebra, to appear.

Marek Karaś Instytut Matematyki Uniwersytetu Jagiellońskiego Łojasiewicza 6 30-348 Kraków, Poland E-mail: Marek.Karas@im.uj.edu.pl

Received October 22, 2010 (7792)