Global Attractor for the Convective Cahn-Hilliard Equation in H^{k}

by
Xiaopeng ZHAO and Ning DUAN
Presented by Bogdan BOJARSKI

Summary. We consider the convective Cahn-Hilliard equation with periodic boundary conditions. Based on the iteration technique for regularity estimates and the classical theorem on existence of a global attractor, we prove that the convective Cahn-Hilliard equation has a global attractor in H^{k}.

1. Introduction. In this paper, we are concerned with the long time behavior of solutions to the convective Cahn-Hilliard equation

$$
\begin{equation*}
u_{t}+D^{4} u=D^{2}\left(u^{3}-u\right)+u D u, \quad x \in \Omega=(0, L), t>0 . \tag{1.1}
\end{equation*}
$$

On the basis of physical considerations, equation (1.1) is supplemented with the periodic boundary value conditions

$$
\begin{equation*}
u(x+L, t)=u(x, t), \quad x \in \mathbb{R}, t>0, \tag{1.2}
\end{equation*}
$$

and the initial condition

$$
\begin{equation*}
u(x, 0)=\varphi(x), \quad x \in \mathbb{R} . \tag{1.3}
\end{equation*}
$$

Equation (1.1) arises naturally as a continuous model for the formation of facets and corners in crystal growth (see [5, 6]). Here $u(x, t)$ denotes the slope of the interface, the convective term $u D u$ (see [6]) stems from the effect of kinetics that provides an independent flux of the order parameter, similar to the effect of an external field in spinodal decomposition of a driven system.

In the last years, many authors have paid much attention to the convective Cahn-Hilliard equation (see [6, 18]). It was K. H. Kwek [7] who

[^0]first studied the convective Cahn-Hilliard equation in a special case with a special convection u. Based on the discontinuous Galerkin finite element method, he proved the existence of a classical solution. Recently, Liu [8] considered the equation
$$
u_{t}+D^{4} u=D^{2}\left(\gamma_{2} u^{3}+\gamma_{1} u^{2}-u\right)+\beta D\left(-\frac{1}{4} u^{4}+\frac{1}{2} u^{2}\right)
$$

He proved the global existence and uniqueness and asymptotic behavior of classical solutions for the initial boundary value problem. Liu [9] also studied the following convective Cahn-Hilliard equation with degenerate mobility:

$$
\frac{\partial u}{\partial t}+D\left[m(u)\left(k D^{3} u-D A(u)\right)\right]-\gamma D B(u)=0
$$

A. Eden and V. K. Kalantarov (4) considered (1.1) as an infinite-dimensional dynamical system and showed that solutions enter an absorbing ball in a finite time. Moreover, they showed that the solutions of problem (1.1)(1.3) fall into the Gevrey class and deduced as a simple corollary that four nodes are determining for solutions. Recently, A. Eden and V. K. Kalantarov [3] also studied (1.1) with periodic boundary conditions in the 3D case. They considered a relevant continuous dynamical system on $\dot{L}^{2}(\Omega)$, and proved that (1.1) has absorbing balls in $\dot{L}^{2}(\Omega), \dot{H}_{\text {per }}^{1}(\Omega)$ and $\dot{H}_{\text {per }}^{2}(\Omega)$. Combining this with the compactness property of the solution semigroup they deduced the existence of a global attractor for (1.1).

There is much literature concerning the convective Cahn-Hilliard equation; for more recent results we refer the reader to [9, 16, 17] and the references therein.

The dynamic properties of the convective Cahn-Hilliard equation, such as the global asymptotical behavior of solutions and existence of global attractors, are important for the study of convective Cahn-Hilliard systems. In this paper, we are interested in the existence of global attractors for the convective Cahn-Hilliard equation. Based on A. Eden and V. K. Kalantarov's work [4] and T. Ma and S. Wang's recent work [10], we shall prove that the convective Cahn-Hilliard equation (1.1) has a global attractor in $H^{k}(k>0)$, which attracts any bounded subset of $H^{k}(0, L)$ in the H^{k}-norm.

This paper is organized as follows. In the next section, we give some preparations and we state the main theorem about the existence of a global attractor. In Section 3, we prove that problem (1.1)-(1.3) has global attractors in $H^{k}(0, L)$. Some ideas important for this paper come from [10, 12, 13 , 14, etc.
2. Preliminaries. Assume X and X_{1} are two Banach spaces, and $X_{1} \subset X$ is a compact and dense inclusion. Consider the following equation defined
on X :

$$
\begin{equation*}
u_{t}=L u+G u, \quad u(0)=\varphi \tag{2.1}
\end{equation*}
$$

where u is an unknown function, $L: X_{1} \rightarrow X$ a linear operator and G : $X_{1} \rightarrow X$ a nonlinear operator. Then the solution of (2.1) can be expressed as

$$
u(t, \varphi)=S(t) \varphi
$$

where $S(t): X \rightarrow X(t \geq 0)$ is the semigroup generated by (2.1).
Next, we recall the classical theorem on existence of a global attractor by R. Temam [15].

Lemma 2.1. Assume that $S(t): X \rightarrow X$ is the semigroup generated by problem (2.1), and the following conditions hold for some set $B \subset X$:
(H1) For any bounded set $A \subset X$ there exists a time $t_{A} \geq 0$ such that for all $\varphi \in A$ and $t>t_{A}$, we have $S(t) \varphi \in B$.
(H2) For any bounded set $u \subset X$ and some $T>0$ sufficiently large, the set $\overline{\bigcup_{t \geq T} S(t) u}$ is compact in X.
Then the ω-limit set $\mathcal{A}=\omega(B)$ of B is a global attractor of problem (2.1), and \mathcal{A} is connected providing B is connected.

In this paper, we usually assume that the linear operator $L: X_{1} \rightarrow X$ in (2.1) is a sectorial operator, which generates an analytic semigroup $e^{t L}$, and L induces the fractional power operators and fractional order spaces as follows:

$$
\mathscr{L}^{\alpha}=(-L)^{\alpha}: X_{\alpha} \rightarrow X, \quad \alpha \in \mathbb{R}
$$

where $X_{\alpha}=D\left(\mathscr{L}^{\alpha}\right)$ is the domain of \mathscr{L}^{α}. By semigroup theory, $X_{\beta} \subset X_{\alpha}$ is a compact inclusion for any $\beta>\alpha$. For more about the space H_{α}, we recommend [10].

Thus, Lemma 2.1 can be equivalently expressed as the following lemma, which can be found in $[10, ~ 12, ~ 13, ~ 14] . ~$

Lemma 2.2. Assume that $u(t, \varphi)=S(t) \varphi(\varphi \in X, t \geq 0)$ is a solution of (2.1) and $S(t)$ the semigroup generated by (2.1). Assume further that X_{α} is the fractional order space generated by L and:
(B1) For some $\alpha \geq 0$ there is a bounded absorbing set $B \subset X_{\alpha}$, which means that for any $\varphi \in X_{\alpha}$ there exists $t_{\varphi}>0$ such that

$$
u(t, \varphi) \in B, \quad \forall t>t_{\varphi}
$$

(B2) There is a $\beta>\alpha$ such that for any bounded set $U \subset X_{\beta}$ there are $T>0$ and $C>0$ such that

$$
\|u(t, \varphi)\|_{X_{\beta}} \leq C, \quad \forall t>T, \varphi \in U
$$

Then (2.1) has a global attractor $\mathscr{A} \subset X_{\alpha}$ which attracts any bounded set of X_{α} in the X_{α}-norm.

We also have the following lemma which can be found in [10, 12, 13, 14 .
Lemma 2.3. Assume that $L: X_{1} \rightarrow X_{\alpha}$ is a sectorial operator which generates an analytic semigroup $T(t)=e^{t L}$. If all eigenvalues λ of L satisfy $\operatorname{Re} \lambda<-\lambda_{0}$ for some $\lambda_{0}>0$, then for $\mathscr{L}^{\alpha}(\mathscr{L}=-L)$ we have:
(C1) $T(t): X \rightarrow X_{\alpha}$ is bounded for all $\alpha \in \mathbb{R}$ and $t>0$.
(C2) $T(t) \mathscr{L}^{\alpha} x=\mathscr{L} T(t) x$ for all $x \in X_{\alpha}$.
(C3) For each $t>0, \mathscr{L}^{\alpha} T(t): X \rightarrow X$ is bounded, and

$$
\left\|\mathscr{L}^{\alpha} T(t)\right\| \leq C_{\alpha} t^{-\alpha} e^{-\delta t}
$$

for some $\delta>0$, where $C_{\alpha}>0$ is a constant depending only on α.
(C4) The X_{α}-norm can be defined by $\|x\|_{X_{\alpha}}=\left\|\mathscr{L}^{\alpha} x\right\|_{X}$.
For problem (1.1)-(1.3), we assume that the initial function has zero mean, i.e. $\int_{0}^{L} \varphi(x) d x=0$. Then it follows that

$$
\int_{0}^{L} u(x, t) d x=\int_{0}^{L} \varphi(x) d x=0, \quad \forall t>0
$$

Now, we introduce the following spaces:

$$
\left\{\begin{array}{l}
H=\dot{L}^{2}(\Omega) \tag{2.2}\\
H_{1 / 2}=\dot{H}_{\mathrm{per}}^{2}(\Omega)=H_{\mathrm{per}}^{2}(\Omega) \cap H \\
H_{1}=\dot{H}_{\mathrm{per}}^{4}(\Omega)=H_{\mathrm{per}}^{4}(\Omega) \cap H
\end{array}\right.
$$

where $\Omega=(0, L)$. We define a linear operator $L: H_{1} \rightarrow H$ and a nonlinear operator $G: H_{1} \rightarrow H$ by

$$
\left\{\begin{array}{l}
L u=-D^{4} u \tag{2.3}\\
g(u)=D^{2}\left(u^{3}-u\right)+u D u \\
G u=g(u)
\end{array}\right.
$$

It is known that L given by (2.3) is a sectorial operator and the fractional power operator $(-L)^{1 / 2}$ is given by

$$
(-L)^{1 / 2}=-\Delta=-D^{2}
$$

The space $H_{1 / 2}$ is the same as in 2.2 , and $H_{1 / 4}$ is given by $H_{1 / 4}=$ closure of $H_{1 / 2}$ in $H^{1}(\Omega)$ and $H_{k}=H^{4 k} \cap H_{1}$ for $k \geq 1$.

We will give a theorem on the existence of a global attractor in $H^{2}(\Omega)$ for problem $\sqrt{1.1}-(\sqrt{1.3})$, which can be deduced easily from the results of A. Eden and V. K. Kalantarov [4].

Theorem 2.4. Assume $\Omega=(0, L), \varphi \in \dot{H}_{\mathrm{per}}^{2}(\Omega)$ and conditions 1.2 (1.3) hold. Then the semigroup $\{S(t)\}_{t \geq 0}$ associated with (1.1) has a global attractor \mathscr{A} in $\dot{H}_{\mathrm{per}}^{2}(\Omega)$ which is compact and connected.

In order to prove Theorem 2.4 , we should verify that equation (1.1) satisfies the two conditions of Lemma 2.1. By A. Eden and V. K. Kalantarov's recent work [4], we have $\|u(t, \varphi)\|_{H^{2}} \leq C$, where C is a positive constant, so condition (H1) is proved. We have to prove that (1.1) satisfies condition (H2), which suffices to prove that for $t \geq t_{0}>0,\|u(t, \varphi)\|_{H^{3}} \leq C$, where C is a positive constant. Differentiating (1.1) with respect to x, multiplying the result by $D^{5} u$, integrating on Ω and using the uniform Gronwall inequality we can deduce (H2). Since the proof is easy, we omit it.

We also have the following corollary which was proved in 4].
Corollary 2.5. Assume $\Omega=(0, L)$ and $\varphi \in \dot{H}_{\mathrm{per}}^{2}(\Omega)$. Then for problem (1.1)-(1.3), we have

$$
\|u(t, \varphi)\|_{L^{\infty}} \leq C
$$

where C is a positive constant.
The main result is given by the following theorem, which provides the existence of a global attractor of the convective Cahn-Hilliard equation in H^{k} for any k.

TheOrem 2.6. Assume $\Omega=(0, L), \varphi \in \dot{H}_{\mathrm{per}}^{2}(\Omega)$ and conditions 1.2 (1.3) hold. Then for any $\alpha>0$, equation (1.1) has a global attractor \mathscr{A} in H_{α} and \mathscr{A} attracts any bounded subset of H_{α} in the H_{α}-norm.

In the following, $C, C_{i}(i=1,2, \ldots)$ will represent generic constants that may change from line to line even in the same inequality, and we denote $\Omega=(0, L)$.
3. Proof of Theorem 2.6. It is well known that the solution $u(t, \varphi)$ of problem (1)-(3) can be written as

$$
\begin{equation*}
u(t, \varphi)=e^{t L} \varphi+\int_{0}^{t} e^{(t-\tau) L} G u d \tau \tag{3.1}
\end{equation*}
$$

Using (2.3) and (3.1), we obtain

$$
\begin{equation*}
u(t, \varphi)=e^{t L} \varphi+\int_{0}^{t} e^{(t-\tau) L} g(u) d \tau \tag{3.2}
\end{equation*}
$$

By Lemma 2.2, to prove Theorem 2.6, we first prove the following lemma.
Lemma 3.1. Assume $\Omega=(0, L)$ and $\varphi \in \dot{H}_{\mathrm{per}}^{2}(\Omega)$. Then for any $\alpha \geq 0$, the semigroup $S(t)$ generated by problem (1.1)-1.3) is uniformly compact in H_{α}.

Proof. It suffices to prove that for any bounded set $U \subset H_{\alpha}$, there exists $C>0$ such that

$$
\begin{equation*}
\|u(t, \varphi)\|_{H_{\alpha}} \leq C, \quad \forall t \geq 0, \varphi \in U \subset H_{\alpha}, \alpha \geq 0 . \tag{3.3}
\end{equation*}
$$

For $\alpha=1 / 2$, this follows from Theorem [2.4, i.e. for any bounded set $U \subset H_{1 / 2}$ there is a constant $C>0$ such that

$$
\begin{equation*}
\|u(t, \varphi)\|_{H_{1 / 2}} \leq C, \quad \forall t \geq 0, \varphi \in U \subset H_{1 / 2}, \alpha \geq 0 . \tag{3.4}
\end{equation*}
$$

We only need to prove (3.3) for any $\alpha>1 / 2$.
This is done in a few steps. First, we prove that for any bounded set $U \subset H_{\alpha}(1 / 2 \leq \alpha<1)$ there exists a constant $C>0$ such that

$$
\begin{equation*}
\|u(t, \varphi)\|_{H_{\alpha}} \leq C, \quad \forall t \geq 0, \varphi \in U, \alpha<1 . \tag{3.5}
\end{equation*}
$$

By Corollary 2.5 and the following embedding theorems for fractional order spaces (see Pazy [11):

$$
H_{1 / 2} \hookrightarrow L^{2 p}(\Omega), \quad H_{1 / 2} \hookrightarrow W^{1,2}(\Omega), \quad H_{1 / 2} \hookrightarrow W^{1,4}(\Omega),
$$

we obtain

$$
\begin{align*}
\|g(u)\|_{H}^{2} & =\int_{\Omega}|g(u)|^{2} d x=\int_{\Omega}\left|D^{2}\left(u^{3}-u\right)+u D u\right|^{2} d x \tag{3.6}\\
& =\left.\int_{\Omega}|6 u| D u\right|^{2}+3 u^{2} D^{2} u-D^{2} u+\left.u D u\right|^{2} d x \\
& \leq C \int_{\Omega}\left(u^{2}|D u|^{4}+u^{4}\left|D^{2} u\right|^{2}+\left|D^{2} u\right|^{2}+u^{2}|D u|^{2}\right) d x \\
& \leq C \int_{\Omega}\left(|D u|^{4}+|D u|^{2}+\left|D^{2} u\right|^{2}\right) d x \\
& \leq C\left(\|u\|_{W^{1,4}}^{4}+\|u\|_{W^{1,2}}^{2}+\|u\|_{H_{1 / 2}}^{2}\right) \\
& \leq C\left(\|u\|_{H_{1 / 2}}^{4}+\|u\|_{H_{1 / 2}}^{2}+\|u\|_{H_{1 / 2}}^{2}\right)
\end{align*}
$$

which means that $g: H_{1 / 2} \rightarrow H$ is bounded. Hence, we deduce that

$$
\begin{align*}
\|u(t, \varphi)\|_{H_{\alpha}} & =\left\|e^{t L} \varphi+\int_{0}^{t} e^{(t-\tau) L} g(u) d \tau\right\|_{H_{\alpha}} \tag{3.7}\\
& \leq C\|\varphi\|_{H_{\alpha}}+\int_{0}^{t}\left\|(-L)^{\alpha} e^{(t-\tau) L} g(u)\right\|_{H} d \tau \\
& \leq C\|\varphi\|_{H_{\alpha}}+\int_{0}^{t}\left\|(-L)^{\alpha} e^{(t-\tau) L}\right\| \cdot\|g(u)\|_{H} d \tau \\
& \leq C\|\varphi\|_{H_{\alpha}}+C \int_{0}^{t} \tau^{-\alpha} e^{-\delta \tau} d \tau \\
& \leq C, \quad \forall t \geq 0, \varphi \in U \subset H_{\alpha},
\end{align*}
$$

where $0<\alpha<1$. Thus, (3.5) is proved.

Second, we prove that for any bounded set $U \subset H_{\alpha}(1 \leq \alpha<5 / 4)$, there exists a constant $C>0$ such that

$$
\begin{equation*}
\|u(t, \varphi)\|_{H_{\alpha}} \leq C, \quad \forall t \geq 0, \varphi \in U \subset H_{\alpha}, 1 \leq \alpha<5 / 4 \tag{3.8}
\end{equation*}
$$

By Corollary 1.1 and the following embedding theorems of fractional order spaces (see Pazy [11]):

$$
\begin{array}{ll}
H_{\alpha} \hookrightarrow W^{3,2}(\Omega), & H_{\alpha} \hookrightarrow W^{2,4}(\Omega), \quad H_{\alpha} \hookrightarrow W^{2,2}(\Omega) \\
H_{\alpha} \hookrightarrow W^{1,6}(\Omega), & H_{\alpha} \hookrightarrow W^{1,4}(\Omega)
\end{array}
$$

where $3 / 4 \leq \alpha<1$, we obtain

$$
\begin{align*}
& \|g(u)\|_{H_{1 / 4}}^{2} \tag{3.9}\\
& \left.\quad=\int_{\Omega}|D g(u)|^{2} d x=\int_{\Omega} \mid D\left(D^{2}\left(u^{3}-u\right)+u D u\right)\right)\left.\right|^{2} d x \\
& \quad=\int_{\Omega}\left(6|D u|^{3}+18 u\left|D u D^{2} u\right|+\left(3 u^{2}-1\right) D^{3} u+u D^{2} u+|D u|^{2}\right)^{2} d x \\
& \quad \leq C \int_{\Omega}\left(|D u|^{6}+\left|D u D^{2} u\right|^{2}+\left|D^{3} u\right|^{2}+\left|D^{2} u\right|^{2}+|D u|^{4}\right) d x \\
& \quad \leq C \int_{\Omega}\left(|D u|^{6}+\left|D^{2} u\right|^{4}+\left|D^{2} u\right|^{2}+\left|D^{3} u\right|^{2}+|D u|^{4}\right) d x \\
& \quad \leq C\left(\|u\|_{W^{1,6}}^{6}+\|u\|_{W^{2,4}}^{4}+\|u\|_{W^{2,2}}^{2}+\|u\|_{W^{3,2}}^{2}+\|u\|_{W^{1,4}}^{4}\right) \\
& \quad \leq C\left(\|u\|_{H_{\alpha}}^{6}+\|u\|_{H_{\alpha}}^{2}+\|u\|_{H_{\alpha}}^{4}\right)
\end{align*}
$$

which means that $g: H_{\alpha} \rightarrow H_{1 / 4}$ is bounded for $3 / 4 \leq \alpha<1$. Using (3.5) and (3.9), we obtain

$$
\begin{equation*}
\|g(u(t, \varphi))\|_{H_{1 / 4}} \leq C, \quad \forall t \geq 0, \varphi \in U, 3 / 4 \leq \alpha<1 \tag{3.10}
\end{equation*}
$$

By using the same method as in the first step, from (3.10) we have
(3.11) $\|u(t, \varphi)\|_{H_{\alpha}}=\left\|e^{t L} \varphi+\int_{0}^{t} e^{(t-\tau) L} g(u) d \tau\right\|_{H_{\alpha}}$

$$
\begin{aligned}
& \leq C\|\varphi\|_{H_{\alpha}}+\int_{0}^{t}\left\|(-L)^{\alpha} e^{(t-\tau) L} g(u)\right\|_{H} d \tau \\
& \leq C\|\varphi\|_{H_{\alpha}}+\int_{0}^{t}\left\|(-L)^{\alpha-1 / 4} e^{(t-\tau) L}\right\| \cdot\|g(u)\|_{H_{1 / 4}} d \tau \\
& \leq C\|\varphi\|_{H_{\alpha}}+C \int_{0}^{t} \tau^{-\beta} e^{-\delta \tau} d \tau \\
& \leq C, \quad \forall t \geq 0, \varphi \in U \subset H_{\alpha}
\end{aligned}
$$

where $\beta=\alpha-1 / 4(0<\beta<1)$. Thus (3.8) is proved.

Third, we prove that for any bounded set $U \subset H_{\alpha}(5 / 4 \leq \alpha<3 / 2)$ there exists a constant $C>0$ such that

$$
\begin{equation*}
\|u(t, \varphi)\|_{H_{\alpha}} \leq C, \quad \forall t \geq 0, \varphi \in U \subset H_{\alpha}, 5 / 4 \leq \alpha<3 / 2 \tag{3.12}
\end{equation*}
$$

By Corollary 2.5 and the following embedding theorems (see Pazy [11]):

$$
\begin{array}{lll}
H_{\alpha} \hookrightarrow W^{1,4}(\Omega), & H_{\alpha} \hookrightarrow W^{2,4}(\Omega), & H_{\alpha} \hookrightarrow W^{3,4}(\Omega) \\
H_{\alpha} \hookrightarrow W^{4,2}(\Omega), & H_{\alpha} \hookrightarrow W^{3,2}(\Omega), & H_{\alpha} \hookrightarrow W^{1,8}(\Omega)
\end{array}
$$

where $1 \leq \alpha<5 / 4$, we obtain

$$
\begin{align*}
&\|g(u)\|_{H_{1 / 2}}^{2}=\int_{\Omega}\left|D^{2} g(u)\right|^{2} d x=\int_{\Omega}\left|D^{2}\left(D^{2}\left(u^{3}-u\right)+u D u\right)\right|^{2} d x \tag{3.13}\\
&= \int_{\Omega}\left(36|D u|^{2}\left|D^{2} u\right|+18 u\left|D^{2} u\right|^{2}+24 u D u D^{3} u+\left(3 u^{2}-1\right) D^{4} u\right. \\
&\left.+3 D u D^{2} u+u D^{3} u\right)^{2} d x \\
& \leq C \int_{\Omega}\left(|D u|^{4}\left|D^{2} u\right|^{2}+u^{2}\left|D^{2} u\right|^{4}+u^{2}|D u|^{2}\left|D^{3} u\right|^{2}+u^{4}\left|D^{4} u\right|^{2}\right. \\
&\left.+\left|D^{4} u\right|^{2}+|D u|^{2}\left|D^{2} u\right|^{2}+u^{2}\left|D^{3} u\right|^{2}\right) d x \\
& \leq C \int_{\Omega}\left(|D u|^{8}+\left|D^{2} u\right|^{4}+\left|D^{3} u\right|^{4}+\left|D^{4} u\right|^{2}+|D u|^{4}+\left|D^{3} u\right|^{2}\right) d x \\
& \leq C\left(\|u\|_{W^{1,8}}^{8}+\|u\|_{W^{2,4}}^{4}+\|u\|_{W^{1,4}}^{4}+\|u\|_{W^{3,4}}^{4}+\|u\|_{W^{4,2}}^{2}+\|u\|_{W^{3,2}}^{2}\right) \\
& \leq C\left(\|u\|_{H_{\alpha}}^{8}+\|u\|_{H_{\alpha}}^{4}+\|u\|_{H_{\alpha}}^{2}\right),
\end{align*}
$$

which means that $g: H_{\alpha} \rightarrow H_{1 / 2}$ is bounded for $1 \leq \alpha<5 / 4$. Using (3.8) and 3.13 , we obtain

$$
\begin{equation*}
\|g(u(t, \varphi))\|_{H_{1 / 2}} \leq C, \quad \forall t \geq 0, \varphi \in U, 1 \leq \alpha<5 / 4 \tag{3.14}
\end{equation*}
$$

By using the same method as in the first and second steps, from (3.14) we have

$$
\begin{align*}
\|u(t, \varphi)\|_{H_{\alpha}} & =\left\|e^{t L}+\int_{0}^{t} e^{(t-\tau) L} g(u) d \tau\right\|_{H_{\alpha}} \tag{3.15}\\
& \leq C\|\varphi\|_{H_{\alpha}}+\int_{0}^{t}\left\|(-L)^{\alpha-1 / 2} e^{(t-\tau) L}\right\| \cdot\|g(u)\|_{H_{1 / 2}} d \tau \\
& \leq C\|\varphi\|_{H_{\alpha}}+C \int_{0}^{t} \tau^{-\beta} e^{-\delta \tau} d \tau \\
& \leq C, \quad \forall t \geq 0, \varphi \in U \subset H_{\alpha}
\end{align*}
$$

where $\beta=\alpha-1 / 2(0<\beta<1)$. Thus (3.12) is proved.

Fourth, we prove that for any bounded set $U \subset H_{\alpha}(3 / 2 \leq \alpha<7 / 4)$ there exists a constant $C>0$ such that

$$
\begin{equation*}
\|u(t, \varphi)\|_{H_{\alpha}} \leq C, \quad \forall t \geq 0, \varphi \in U \subset H_{\alpha}, 3 / 2 \leq \alpha<7 / 4 \tag{3.16}
\end{equation*}
$$

By Corollary 2.5 and the following embedding theorems (see Pazy [11]):

$$
\begin{array}{lll}
H_{\alpha} \hookrightarrow W^{1,8}(\Omega), & H_{\alpha} \hookrightarrow W^{3,4}(\Omega), & H_{\alpha} \hookrightarrow W^{4,2}(\Omega) \\
H_{\alpha} \hookrightarrow W^{1,4}(\Omega), & H_{\alpha} \hookrightarrow W^{2,8}(\Omega), & H_{\alpha} \hookrightarrow W^{1,6}(\Omega) \\
H_{\alpha} \hookrightarrow W^{2,4}(\Omega), & H_{\alpha} \hookrightarrow W^{4,4}(\Omega), & H_{\alpha} \hookrightarrow W^{5,2}(\Omega),
\end{array}
$$

where $5 / 4 \leq \alpha<3 / 2$, we obtain

$$
\begin{aligned}
\|g(u)\|_{H_{3 / 4}}^{2}= & \int_{\Omega}\left|D^{3}\left(D^{2}\left(u^{3}-u\right)+u D u\right)\right|^{2} d x \\
= & \int_{\Omega}\left(60|D u|^{2} D^{3} u+90 D u\left|D^{2} u\right|^{2}+60 u D^{2} u D^{3} u+30 u D u D^{4} u\right. \\
& \left.+\left(3 u^{2}-1\right) D^{5} u+3\left|D^{2} u\right|^{2}+4 D u D^{3} u+u D^{4} u\right)^{2} d x \\
\leq & C \int_{\Omega}\left(|D u|^{4}\left|D^{3} u\right|^{2}+|D u|^{2}\left|D^{2} u\right|^{4}+\left|D^{2} u\right|^{2}\left|D^{3} u\right|^{2}\right. \\
& \left.+|D u|^{2}\left|D^{4} u\right|^{2}+\left|D^{5} u\right|^{2}+\left|D^{2} u\right|^{4}+|D u|^{2}\left|D^{3} u\right|^{2}+\left|D^{4} u\right|^{2}\right) d x \\
\leq & C \int_{\Omega}\left(|D u|^{8}+\left|D^{3} u\right|^{4}+|D u|^{4}+\left|D^{2} u\right|^{8}+\left|D^{2} u\right|^{4}\right. \\
& \left.+\left|D^{4} u\right|^{4}+\left|D^{4} u\right|^{2}+\left|D^{5} u\right|^{2}\right) d x \\
\leq & C\left(\|u\|_{W^{1,8}}^{8}+\|u\|_{W^{3,4}}^{4}+\|u\|_{W^{1,4}}^{4}+\|u\|_{W^{2,8}}^{8}+\|u\|_{W^{2,4}}^{4}\right. \\
& \left.+\|u\|_{W^{4,2}}^{2}+\|u\|_{W^{4,4}}^{4}+\|u\|_{W^{5,2}}^{2}\right) d x \\
\leq & C\left(\|u\|_{H_{\alpha}}^{2}+\|u\|_{H_{\alpha}}^{4}+\|u\|_{H_{\alpha}}^{6}+\|u\|_{H_{\alpha}}^{8}\right)
\end{aligned}
$$

which means that $g: H_{\alpha} \rightarrow H_{3 / 4}$ is bounded for $5 / 4 \leq \alpha<3 / 2$. Using (3.12) and (3.17), we obtain

$$
\begin{equation*}
\|g(u(t, \varphi))\|_{H_{3 / 4}} \leq C, \quad \forall t \geq 0, \varphi \in U, 5 / 4 \leq \alpha<3 / 2 \tag{3.17}
\end{equation*}
$$

By using the same method as in the above steps, and from (3.17), we have

$$
\begin{align*}
\|u(t, \varphi)\|_{H_{\alpha}} & =\left\|e^{t L} \varphi+\int_{0}^{t} e^{(t-\tau) L} g(u) d \tau\right\|_{H_{\alpha}} \tag{3.18}\\
& \leq C\|\varphi\|_{H_{\alpha}}+\int_{0}^{t}\left\|(-L)^{\alpha-3 / 4} e^{(t-\tau) L}\right\| \cdot\|g(u)\|_{H_{3 / 4}} d \tau \\
& \leq C\|\varphi\|_{H_{\alpha}}+C \int_{0}^{t} \tau^{-\beta} e^{-\delta \tau} d \tau \\
& \leq C, \quad \forall t \geq 0, \varphi \in U \subset H_{\alpha}
\end{align*}
$$

where $\beta=\alpha-3 / 4(0<\beta<1)$. Thus (3.16) is proved.

Using the same method as in the proof of (3.16), by iteration we can prove that for any bounded set $U \subset H_{\alpha}(\alpha>0)$, there exists a constant $C>0$ such that 3.3 holds. i.e. for all $\alpha \geq 0$ the semigroup $S(t)$ generated by problem (1.1)-1.3) is uniformly compact in H_{α}.

We also have the following lemma.
Lemma 3.2. Assume $\Omega=(0, L)$ and $\varphi \in \dot{H}_{\text {per }}^{2}(\Omega)$. Then for any $\alpha \geq 0$, problem (1.1)-(1.3) has a bounded absorbing set in H_{α}.

Proof. It suffices to prove that for any bounded set $U \subset H_{\alpha}(\alpha \geq 0)$ there exist $T>0$ and a constant $C>0$, independent of φ, such that

$$
\begin{equation*}
\|u(t, \varphi)\|_{H_{\alpha}} \leq C, \quad \forall t \geq T, \varphi \in U \subset H_{\alpha} \tag{3.19}
\end{equation*}
$$

For $\alpha=1 / 2$, this follows from Theorem 2.4. And we only need to prove 3.19 for any $\alpha>1 / 2$. We prove the lemma in the following steps.

First, we will prove that for any $1 / 2 \leq \alpha<1$, the problem (1.1)-(1.3) has a bounded absorbing set in H_{α}. Using (3.2) gives

$$
\begin{equation*}
u(t, \varphi)=e^{(t-T) L} u(T, \varphi)+\int_{T}^{t} e^{(t-T) L} g(u) d \tau \tag{3.20}
\end{equation*}
$$

Assume B is a bounded absorbing set of problem (1.1)-(1.3) and $B \subset H_{1 / 2}$; we also let $T_{0}>0$ be the time such that

$$
u(t, \varphi) \in B, \quad \forall t>T_{0}, \varphi \in U \subset H_{\alpha}, \alpha \geq 1 / 2
$$

Note that

$$
\left\|e^{t L}\right\| \leq C e^{-d \lambda_{1} t}
$$

where $\lambda_{1}>0$ is the first eigenvalue of the equation

$$
\begin{equation*}
-\Delta u=\lambda u, \quad u(L, t)=u(0, t) \tag{3.21}
\end{equation*}
$$

Then for any given $T>0$ and $\varphi \in U \subset H_{\alpha}(\alpha \geq 1 / 2)$, we obtain

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\|e^{(t-T) L} u(T, \varphi)\right\|_{H_{\alpha}}=0 \tag{3.22}
\end{equation*}
$$

Using (3.6), 3.20) and the assertion (C3) of Lemma 2.3 gives

$$
\begin{align*}
\| u(t, \varphi) & \|_{H_{\alpha}} \tag{3.23}\\
& \leq\left\|e^{\left(t-T_{0}\right) L} u\left(T_{0}, \varphi\right)\right\|_{H_{\alpha}}+\int_{T_{0}}^{t}\left\|(-L)^{\alpha} e^{(t-T) L}\right\| \cdot\|g(u)\|_{H} d \tau \\
& \leq\left\|e^{\left(t-T_{0}\right) L} u\left(T_{0}, \varphi\right)\right\|_{H_{\alpha}}+C \int_{T_{0}}^{t}\left\|(-L)^{\alpha} e^{(t-T) L}\right\| \\
& \leq\left\|e^{\left(t-T_{0}\right) L} u\left(T_{0}, \varphi\right)\right\|_{H_{\alpha}}+C \int_{0}^{T-T_{0}} \tau^{-\alpha} e^{-\delta \tau} d \tau \\
& \leq\left\|e^{\left(t-T_{0}\right) L} u\left(T_{0}, \varphi\right)\right\|_{H_{\alpha}}+C
\end{align*}
$$

where $C>0$ is a constant independent of φ. Then by (3.22) and 3.23), we see that (3.19) holds for all $1 / 2 \leq \alpha<1$.

Second, we can use the same method as in the above step to prove that for any $3 / 4<\alpha<5 / 4$ and for any $1<\alpha<3 / 2$, problem (1.1)-(1.3) has a bounded absorbing set in H_{α}. By iteration, we conclude that (3.19) holds for all $\alpha \geq 1 / 2$.

Proof of Theorem 2.6. Apply Lemmas 2.2, 3.1 and 3.2.
Hence, we have the following remark.
Remark. The attractors $\mathscr{A}_{\alpha} \subset H_{\alpha}$ in Theorem 2.6 are the same for all $\alpha \geq 0$, i.e. $\mathscr{A}_{\alpha}=\mathscr{A}$ for all $\alpha \geq 0$. Hence, $\mathscr{A} \subset C^{\infty}(\Omega)$. Theorem 2.6 implies that for any $\varphi \in H$, the solution $u(t, \varphi)$ of problem (1.1)-(1.3) satisfies

$$
\lim _{t \rightarrow \infty} \inf _{v \in \mathscr{A}}\|u(t, \varphi)-v\|_{C^{k}}=0, \quad \forall k \geq 1
$$

Acknowledgements. The authors would like to thank Professor Changchun Liu for his valuable suggestions.

References

[1] R. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2] T. Dlotko, Global attractor for the Cahn-Hilliard equation in H^{2} and H^{3}, J. Differential Equations 113 (1994), 381-393.
[3] A. Eden and V. K. Kalantarov, 3D convective Cahn-Hilliard equation, Comm. Pure Appl. Anal. 6 (2007), 1075-1086.
[4] -, 一, The convective Cahn-Hilliard equation, Appl. Math. Lett. 20 (2007), 455461.
[5] A. A. Golovin, S. H. Davis and A. A. Nepomnyashchy, A convective Cahn-Hilliard model for the formation of facets and corners in crystal growth, Phys. D 122 (1998), 202-230.
[6] A. A. Golovin, A. A. Nepomnyashchy, S. H. Davis and M. A. Zaks, Convective Cahn-Hilliard models: from coarsening to roughening, Phys. Rev. Lett. 86 (2001), 1550-1553.
[7] K. H. Kwek, On the Cahn-Hilliard type equation, PhD thesis, Georgia Institute of Technology, 1991.
[8] C. C. Liu, On the convective Cahn-Hilliard equation, Bull. Polish Acad. Sci. Math. 53 (2005), 299-314.
[9] -, On the convective Cahn-Hilliard equation with degenerate mobility, J. Math. Anal. Appl. 344 (2008), 124-144.
[10] T. Ma and S. H. Wang, Stability and Bifurcation of Nonlinear Evolution Equations, Sci. Press, Beijing, 2006 (in Chinese).
[11] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer, 1983.
[12] L. Y. Song, Y. N. He and Y. D. Zhang, The existence of global attractors for semilinear parabolic equation in H^{k} spaces, Nonlinear Anal. 68 (2008), 3541-3549.
[13] L. Y. Song, Y. D. Zhang and T. Ma, Global attractor of the Cahn-Hilliard equation in H^{k} spaces, J. Math. Anal. Appl. 355 (2009), 53-62.
[14] —, 一, 一, Global attractor of a modified Swift-Hohenberg equation in H^{k} spaces, Nonlinear Anal. 72 (2010), 183-191.
[15] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, 1997.
[16] M. A. Zarksm, A. Podolny, A. A. Nepomnyashchy and A. A. Golovin, Periodic stationary patterns governed by a convective Cahn-Hilliard equation, SIAM J. Appl. Math. 66 (2005), 700-720.
[17] X. P. Zhao and C. C. Liu, Global attractor for the convective Cahn-Hilliard equation, Bull. Polish Acad. Sci. Math. 58 (2010), 117-127.
[18] S. M. Zheng, Asymptotic behavior of solution to the Cahn-Hilliard equation, Appl. Anal. 23 (1986), 165-184.

Xiaopeng Zhao
School of Mathematics
Jilin University
Changchun, 130012, P.R. China
E-mail: zhaoxp10@mails.jlu.edu.cn

Ning Duan The No. 2 High School of Tangshan Tangshan, 063000, P.R. China

E-mail: duanning@sina.cn

Received October 19, 2010; received in final form March 3, 2011

[^0]: 2010 Mathematics Subject Classification: 35B41, 35K35.
 Key words and phrases: global attractor, convective Cahn-Hilliard equation, ω-limit set.

