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Summary. We consider the convective Cahn–Hilliard equation with periodic boundary
conditions. Based on the iteration technique for regularity estimates and the classical
theorem on existence of a global attractor, we prove that the convective Cahn–Hilliard
equation has a global attractor in Hk.

1. Introduction. In this paper, we are concerned with the long time
behavior of solutions to the convective Cahn–Hilliard equation

ut +D4u = D2(u3 − u) + uDu, x ∈ Ω = (0, L), t > 0.(1.1)

On the basis of physical considerations, equation (1.1) is supplemented with
the periodic boundary value conditions

u(x+ L, t) = u(x, t), x ∈ R, t > 0,(1.2)

and the initial condition

u(x, 0) = ϕ(x), x ∈ R.(1.3)

Equation (1.1) arises naturally as a continuous model for the formation
of facets and corners in crystal growth (see [5, 6]). Here u(x, t) denotes the
slope of the interface, the convective term uDu (see [6]) stems from the
effect of kinetics that provides an independent flux of the order parameter,
similar to the effect of an external field in spinodal decomposition of a driven
system.

In the last years, many authors have paid much attention to the con-
vective Cahn–Hilliard equation (see [6, 18]). It was K. H. Kwek [7] who
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first studied the convective Cahn–Hilliard equation in a special case with
a special convection u. Based on the discontinuous Galerkin finite element
method, he proved the existence of a classical solution. Recently, Liu [8]
considered the equation

ut +D4u = D2(γ2u
3 + γ1u

2 − u) + βD

(
−1

4
u4 +

1
2
u2

)
.

He proved the global existence and uniqueness and asymptotic behavior of
classical solutions for the initial boundary value problem. Liu [9] also studied
the following convective Cahn–Hilliard equation with degenerate mobility:

∂u

∂t
+D[m(u)(kD3u−DA(u))]− γDB(u) = 0.

A. Eden and V. K. Kalantarov [4] considered (1.1) as an infinite-dimen-
sional dynamical system and showed that solutions enter an absorbing ball
in a finite time. Moreover, they showed that the solutions of problem (1.1)–
(1.3) fall into the Gevrey class and deduced as a simple corollary that four
nodes are determining for solutions. Recently, A. Eden and V. K. Kalantarov
[3] also studied (1.1) with periodic boundary conditions in the 3D case. They
considered a relevant continuous dynamical system on L̇2(Ω), and proved
that (1.1) has absorbing balls in L̇2(Ω), Ḣ1

per(Ω) and Ḣ2
per(Ω). Combining

this with the compactness property of the solution semigroup they deduced
the existence of a global attractor for (1.1).

There is much literature concerning the convective Cahn–Hilliard equa-
tion; for more recent results we refer the reader to [9, 16, 17] and the refer-
ences therein.

The dynamic properties of the convective Cahn–Hilliard equation, such
as the global asymptotical behavior of solutions and existence of global at-
tractors, are important for the study of convective Cahn–Hilliard systems.
In this paper, we are interested in the existence of global attractors for the
convective Cahn–Hilliard equation. Based on A. Eden and V. K. Kalan-
tarov’s work [4] and T. Ma and S. Wang’s recent work [10], we shall prove
that the convective Cahn–Hilliard equation (1.1) has a global attractor in
Hk (k > 0), which attracts any bounded subset of Hk(0, L) in the Hk-norm.

This paper is organized as follows. In the next section, we give some
preparations and we state the main theorem about the existence of a global
attractor. In Section 3, we prove that problem (1.1)–(1.3) has global attrac-
tors in Hk(0, L). Some ideas important for this paper come from [10, 12, 13,
14], etc.

2.Preliminaries. AssumeX andX1 are two Banach spaces, andX1⊂X
is a compact and dense inclusion. Consider the following equation defined
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on X:

ut = Lu+Gu, u(0) = ϕ,(2.1)

where u is an unknown function, L : X1 → X a linear operator and G :
X1 → X a nonlinear operator. Then the solution of (2.1) can be expressed
as

u(t, ϕ) = S(t)ϕ,

where S(t) : X → X (t ≥ 0) is the semigroup generated by (2.1).
Next, we recall the classical theorem on existence of a global attractor

by R. Temam [15].

Lemma 2.1. Assume that S(t) : X → X is the semigroup generated by
problem (2.1), and the following conditions hold for some set B ⊂ X:

(H1) For any bounded set A ⊂ X there exists a time tA ≥ 0 such that
for all ϕ ∈ A and t > tA, we have S(t)ϕ ∈ B.

(H2) For any bounded set u ⊂ X and some T > 0 sufficiently large, the
set
⋃
t≥T S(t)u is compact in X.

Then the ω-limit set A = ω(B) of B is a global attractor of problem (2.1),
and A is connected providing B is connected.

In this paper, we usually assume that the linear operator L : X1 → X
in (2.1) is a sectorial operator, which generates an analytic semigroup etL,
and L induces the fractional power operators and fractional order spaces as
follows:

L α = (−L)α : Xα → X, α ∈ R,

where Xα = D(L α) is the domain of L α. By semigroup theory, Xβ ⊂ Xα

is a compact inclusion for any β > α. For more about the space Hα, we
recommend [10].

Thus, Lemma 2.1 can be equivalently expressed as the following lemma,
which can be found in [10, 12, 13, 14].

Lemma 2.2. Assume that u(t, ϕ) = S(t)ϕ (ϕ ∈ X, t ≥ 0) is a solution
of (2.1) and S(t) the semigroup generated by (2.1). Assume further that Xα

is the fractional order space generated by L and:

(B1) For some α ≥ 0 there is a bounded absorbing set B ⊂ Xα, which
means that for any ϕ ∈ Xα there exists tϕ > 0 such that

u(t, ϕ) ∈ B, ∀t > tϕ.

(B2) There is a β > α such that for any bounded set U ⊂ Xβ there are
T > 0 and C > 0 such that

‖u(t, ϕ)‖Xβ ≤ C, ∀t > T, ϕ ∈ U.
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Then (2.1) has a global attractor A ⊂ Xα which attracts any bounded set of
Xα in the Xα-norm.

We also have the following lemma which can be found in [10, 12, 13, 14].

Lemma 2.3. Assume that L : X1 → Xα is a sectorial operator which
generates an analytic semigroup T (t) = etL. If all eigenvalues λ of L satisfy
Reλ < −λ0 for some λ0 > 0, then for L α (L = −L) we have:

(C1) T (t) : X → Xα is bounded for all α ∈ R and t > 0.
(C2) T (t)L αx = L T (t)x for all x ∈ Xα.
(C3) For each t > 0, L αT (t) : X → X is bounded, and

‖L αT (t)‖ ≤ Cαt−αe−δt

for some δ > 0, where Cα > 0 is a constant depending only on α.
(C4) The Xα-norm can be defined by ‖x‖Xα = ‖L αx‖X .

For problem (1.1)–(1.3), we assume that the initial function has zero
mean, i.e.

	L
0 ϕ(x) dx = 0. Then it follows that

L�

0

u(x, t) dx =
L�

0

ϕ(x) dx = 0, ∀t > 0.

Now, we introduce the following spaces:
H = L̇2(Ω),
H1/2 = Ḣ2

per(Ω) = H2
per(Ω) ∩H,

H1 = Ḣ4
per(Ω) = H4

per(Ω) ∩H,
(2.2)

where Ω = (0, L). We define a linear operator L : H1 → H and a nonlinear
operator G : H1 → H by

Lu = −D4u,

g(u) = D2(u3 − u) + uDu,

Gu = g(u),
(2.3)

It is known that L given by (2.3) is a sectorial operator and the fractional
power operator (−L)1/2 is given by

(−L)1/2 = −∆ = −D2.

The space H1/2 is the same as in (2.2), and H1/4 is given by H1/4 = closure
of H1/2 in H1(Ω) and Hk = H4k ∩H1 for k ≥ 1.

We will give a theorem on the existence of a global attractor in H2(Ω)
for problem (1.1)–(1.3), which can be deduced easily from the results of
A. Eden and V. K. Kalantarov [4].
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Theorem 2.4. Assume Ω = (0, L), ϕ ∈ Ḣ2
per(Ω) and conditions (1.2)–

(1.3) hold. Then the semigroup {S(t)}t≥0 associated with (1.1) has a global
attractor A in Ḣ2

per(Ω) which is compact and connected.

In order to prove Theorem 2.4, we should verify that equation (1.1) sat-
isfies the two conditions of Lemma 2.1. By A. Eden and V. K. Kalantarov’s
recent work [4], we have ‖u(t, ϕ)‖H2 ≤ C, where C is a positive constant,
so condition (H1) is proved. We have to prove that (1.1) satisfies condition
(H2), which suffices to prove that for t ≥ t0 > 0, ‖u(t, ϕ)‖H3 ≤ C, where C
is a positive constant. Differentiating (1.1) with respect to x, multiplying the
result by D5u, integrating on Ω and using the uniform Gronwall inequality
we can deduce (H2). Since the proof is easy, we omit it.

We also have the following corollary which was proved in [4].

Corollary 2.5. Assume Ω = (0, L) and ϕ ∈ Ḣ2
per(Ω). Then for prob-

lem (1.1)–(1.3), we have
‖u(t, ϕ)‖L∞ ≤ C,

where C is a positive constant.

The main result is given by the following theorem, which provides the
existence of a global attractor of the convective Cahn–Hilliard equation in
Hk for any k.

Theorem 2.6. Assume Ω = (0, L), ϕ ∈ Ḣ2
per(Ω) and conditions (1.2)–

(1.3) hold. Then for any α > 0, equation (1.1) has a global attractor A in
Hα and A attracts any bounded subset of Hα in the Hα-norm.

In the following, C, Ci (i = 1, 2, . . .) will represent generic constants that
may change from line to line even in the same inequality, and we denote
Ω = (0, L).

3. Proof of Theorem 2.6. It is well known that the solution u(t, ϕ)
of problem (1)–(3) can be written as

u(t, ϕ) = etLϕ+
t�

0

e(t−τ)LGudτ.(3.1)

Using (2.3) and (3.1), we obtain

u(t, ϕ) = etLϕ+
t�

0

e(t−τ)Lg(u) dτ.(3.2)

By Lemma 2.2, to prove Theorem 2.6, we first prove the following lemma.

Lemma 3.1. Assume Ω = (0, L) and ϕ ∈ Ḣ2
per(Ω). Then for any α ≥ 0,

the semigroup S(t) generated by problem (1.1)–(1.3) is uniformly compact
in Hα.
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Proof. It suffices to prove that for any bounded set U ⊂ Hα, there exists
C > 0 such that

‖u(t, ϕ)‖Hα ≤ C, ∀t ≥ 0, ϕ ∈ U ⊂ Hα, α ≥ 0.(3.3)

For α = 1/2, this follows from Theorem 2.4, i.e. for any bounded set
U ⊂ H1/2 there is a constant C > 0 such that

‖u(t, ϕ)‖H1/2
≤ C, ∀t ≥ 0, ϕ ∈ U ⊂ H1/2, α ≥ 0.(3.4)

We only need to prove (3.3) for any α > 1/2.
This is done in a few steps. First, we prove that for any bounded set

U ⊂ Hα (1/2 ≤ α < 1) there exists a constant C > 0 such that
‖u(t, ϕ)‖Hα ≤ C, ∀t ≥ 0, ϕ ∈ U, α < 1.(3.5)

By Corollary 2.5 and the following embedding theorems for fractional order
spaces (see Pazy [11]):

H1/2 ↪→ L2p(Ω), H1/2 ↪→W 1,2(Ω), H1/2 ↪→W 1,4(Ω),
we obtain

‖g(u)‖2H =
�

Ω

|g(u)|2 dx =
�

Ω

|D2(u3 − u) + uDu|2 dx(3.6)

=
�

Ω

∣∣6u|Du|2 + 3u2D2u−D2u+ uDu
∣∣2 dx

≤ C
�

Ω

(u2|Du|4 + u4|D2u|2 + |D2u|2 + u2|Du|2) dx

≤ C
�

Ω

(|Du|4 + |Du|2 + |D2u|2) dx

≤ C(‖u‖4W 1,4 + ‖u‖2W 1,2 + ‖u‖2H1/2
)

≤ C(‖u‖4H1/2
+ ‖u‖2H1/2

+ ‖u‖2H1/2
),

which means that g : H1/2 → H is bounded. Hence, we deduce that

‖u(t, ϕ)‖Hα =
∥∥∥etLϕ+

t�

0

e(t−τ)Lg(u) dτ
∥∥∥
Hα

(3.7)

≤ C‖ϕ‖Hα +
t�

0

‖(−L)αe(t−τ)Lg(u)‖H dτ

≤ C‖ϕ‖Hα +
t�

0

‖(−L)αe(t−τ)L‖ · ‖g(u)‖H dτ

≤ C‖ϕ‖Hα + C

t�

0

τ−αe−δτ dτ

≤ C, ∀t ≥ 0, ϕ ∈ U ⊂ Hα,

where 0 < α < 1. Thus, (3.5) is proved.
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Second, we prove that for any bounded set U ⊂ Hα (1 ≤ α < 5/4), there
exists a constant C > 0 such that

‖u(t, ϕ)‖Hα ≤ C, ∀t ≥ 0, ϕ ∈ U ⊂ Hα, 1 ≤ α < 5/4.(3.8)

By Corollary 1.1 and the following embedding theorems of fractional order
spaces (see Pazy [11]):

Hα ↪→W 3,2(Ω), Hα ↪→W 2,4(Ω), Hα ↪→W 2,2(Ω),
Hα ↪→W 1,6(Ω), Hα ↪→W 1,4(Ω),

where 3/4 ≤ α < 1, we obtain

(3.9) ‖g(u)‖2H1/4

=
�

Ω

|Dg(u)|2 dx =
�

Ω

|D(D2(u3 − u) + uDu))|2 dx

=
�

Ω

(6|Du|3 + 18u|DuD2u|+ (3u2 − 1)D3u+ uD2u+ |Du|2)2 dx

≤ C
�

Ω

(|Du|6 + |DuD2u|2 + |D3u|2 + |D2u|2 + |Du|4) dx

≤ C
�

Ω

(|Du|6 + |D2u|4 + |D2u|2 + |D3u|2 + |Du|4) dx

≤ C(‖u‖6W 1,6 + ‖u‖4W 2,4 + ‖u‖2W 2,2 + ‖u‖2W 3,2 + ‖u‖4W 1,4)

≤ C(‖u‖6Hα + ‖u‖2Hα + ‖u‖4Hα),

which means that g : Hα → H1/4 is bounded for 3/4 ≤ α < 1. Using (3.5)
and (3.9), we obtain

‖g(u(t, ϕ))‖H1/4
≤ C, ∀t ≥ 0, ϕ ∈ U, 3/4 ≤ α < 1.(3.10)

By using the same method as in the first step, from (3.10) we have

‖u(t, ϕ)‖Hα =
∥∥∥etLϕ+

t�

0

e(t−τ)Lg(u) dτ
∥∥∥
Hα

(3.11)

≤ C‖ϕ‖Hα +
t�

0

‖(−L)αe(t−τ)Lg(u)‖H dτ

≤ C‖ϕ‖Hα +
t�

0

‖(−L)α−1/4e(t−τ)L‖ · ‖g(u)‖H1/4
dτ

≤ C‖ϕ‖Hα + C

t�

0

τ−βe−δτ dτ

≤ C, ∀t ≥ 0, ϕ ∈ U ⊂ Hα,

where β = α− 1/4 (0 < β < 1). Thus (3.8) is proved.
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Third, we prove that for any bounded set U ⊂ Hα (5/4 ≤ α < 3/2)
there exists a constant C > 0 such that

‖u(t, ϕ)‖Hα ≤ C, ∀t ≥ 0, ϕ ∈ U ⊂ Hα, 5/4 ≤ α < 3/2.(3.12)

By Corollary 2.5 and the following embedding theorems (see Pazy [11]):

Hα ↪→W 1,4(Ω), Hα ↪→W 2,4(Ω), Hα ↪→W 3,4(Ω),

Hα ↪→W 4,2(Ω), Hα ↪→W 3,2(Ω), Hα ↪→W 1,8(Ω),

where 1 ≤ α < 5/4, we obtain

(3.13) ‖g(u)‖2H1/2
=

�

Ω

|D2g(u)|2 dx =
�

Ω

|D2(D2(u3 − u) + uDu)|2 dx

=
�

Ω

(36|Du|2|D2u|+ 18u|D2u|2 + 24uDuD3u+ (3u2 − 1)D4u

+ 3DuD2u+ uD3u)2 dx

≤ C
�

Ω

(|Du|4|D2u|2 + u2|D2u|4 + u2|Du|2|D3u|2 + u4|D4u|2

+ |D4u|2 + |Du|2|D2u|2 + u2|D3u|2) dx

≤ C
�

Ω

(|Du|8 + |D2u|4 + |D3u|4 + |D4u|2 + |Du|4 + |D3u|2) dx

≤ C(‖u‖8W 1,8 + ‖u‖4W 2,4 + ‖u‖4W 1,4 + ‖u‖4W 3,4 + ‖u‖2W 4,2 + ‖u‖2W 3,2)

≤ C(‖u‖8Hα + ‖u‖4Hα + ‖u‖2Hα),

which means that g : Hα → H1/2 is bounded for 1 ≤ α < 5/4. Using (3.8)
and (3.13), we obtain

‖g(u(t, ϕ))‖H1/2
≤ C, ∀t ≥ 0, ϕ ∈ U, 1 ≤ α < 5/4.(3.14)

By using the same method as in the first and second steps, from (3.14) we
have

‖u(t, ϕ)‖Hα =
∥∥∥etL +

t�

0

e(t−τ)Lg(u) dτ
∥∥∥
Hα

(3.15)

≤ C‖ϕ‖Hα +
t�

0

‖(−L)α−1/2e(t−τ)L‖ · ‖g(u)‖H1/2
dτ

≤ C‖ϕ‖Hα + C

t�

0

τ−βe−δτ dτ

≤ C, ∀t ≥ 0, ϕ ∈ U ⊂ Hα,

where β = α− 1/2 (0 < β < 1). Thus (3.12) is proved.
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Fourth, we prove that for any bounded set U ⊂ Hα (3/2 ≤ α < 7/4)
there exists a constant C > 0 such that

‖u(t, ϕ)‖Hα ≤ C, ∀t ≥ 0, ϕ ∈ U ⊂ Hα, 3/2 ≤ α < 7/4.(3.16)

By Corollary 2.5 and the following embedding theorems (see Pazy [11]):

Hα ↪→W 1,8(Ω), Hα ↪→W 3,4(Ω), Hα ↪→W 4,2(Ω),

Hα ↪→W 1,4(Ω), Hα ↪→W 2,8(Ω), Hα ↪→W 1,6(Ω),

Hα ↪→W 2,4(Ω), Hα ↪→W 4,4(Ω), Hα ↪→W 5,2(Ω),

where 5/4 ≤ α < 3/2, we obtain

‖g(u)‖2H3/4
=

�

Ω

|D3(D2(u3 − u) + uDu)|2 dx

=
�

Ω

(60|Du|2D3u+ 90Du|D2u|2 + 60uD2uD3u+ 30uDuD4u

+ (3u2 − 1)D5u+ 3|D2u|2 + 4DuD3u+ uD4u)2 dx

≤ C
�

Ω

(|Du|4|D3u|2 + |Du|2|D2u|4 + |D2u|2|D3u|2

+ |Du|2|D4u|2 + |D5u|2 + |D2u|4 + |Du|2|D3u|2 + |D4u|2) dx

≤ C
�

Ω

(|Du|8 + |D3u|4 + |Du|4 + |D2u|8 + |D2u|4

+|D4u|4 + |D4u|2 + |D5u|2) dx
≤ C(‖u‖8W 1,8 + ‖u‖4W 3,4 + ‖u‖4W 1,4 + ‖u‖8W 2,8 + ‖u‖4W 2,4

+ ‖u‖2W 4,2 + ‖u‖4W 4,4 + ‖u‖2W 5,2) dx
≤ C(‖u‖2Hα + ‖u‖4Hα + ‖u‖6Hα + ‖u‖8Hα),

which means that g : Hα → H3/4 is bounded for 5/4 ≤ α < 3/2. Using
(3.12) and (3.17), we obtain

‖g(u(t, ϕ))‖H3/4
≤ C, ∀t ≥ 0, ϕ ∈ U, 5/4 ≤ α < 3/2.(3.17)

By using the same method as in the above steps, and from (3.17), we have

‖u(t, ϕ)‖Hα =
∥∥∥etLϕ+

t�

0

e(t−τ)Lg(u) dτ
∥∥∥
Hα

(3.18)

≤ C‖ϕ‖Hα +
t�

0

‖(−L)α−3/4e(t−τ)L‖ · ‖g(u)‖H3/4
dτ

≤ C‖ϕ‖Hα + C

t�

0

τ−βe−δτ dτ

≤ C, ∀t ≥ 0, ϕ ∈ U ⊂ Hα,

where β = α− 3/4 (0 < β < 1). Thus (3.16) is proved.
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Using the same method as in the proof of (3.16), by iteration we can
prove that for any bounded set U ⊂ Hα (α > 0), there exists a constant
C > 0 such that (3.3) holds. i.e. for all α ≥ 0 the semigroup S(t) generated
by problem (1.1)–(1.3) is uniformly compact in Hα.

We also have the following lemma.

Lemma 3.2. Assume Ω = (0, L) and ϕ ∈ Ḣ2
per(Ω). Then for any α ≥ 0,

problem (1.1)–(1.3) has a bounded absorbing set in Hα.

Proof. It suffices to prove that for any bounded set U ⊂ Hα (α ≥ 0)
there exist T > 0 and a constant C > 0, independent of ϕ, such that

‖u(t, ϕ)‖Hα ≤ C, ∀t ≥ T, ϕ ∈ U ⊂ Hα.(3.19)
For α = 1/2, this follows from Theorem 2.4. And we only need to prove

(3.19) for any α > 1/2. We prove the lemma in the following steps.
First, we will prove that for any 1/2 ≤ α < 1, the problem (1.1)–(1.3)

has a bounded absorbing set in Hα. Using (3.2) gives

u(t, ϕ) = e(t−T )Lu(T, ϕ) +
t�

T

e(t−T )Lg(u) dτ.(3.20)

Assume B is a bounded absorbing set of problem (1.1)–(1.3) and B ⊂ H1/2;
we also let T0 > 0 be the time such that

u(t, ϕ) ∈ B, ∀t > T0, ϕ ∈ U ⊂ Hα, α ≥ 1/2.
Note that

‖etL‖ ≤ Ce−dλ1t,

where λ1 > 0 is the first eigenvalue of the equation
(3.21) −∆u = λu, u(L, t) = u(0, t).
Then for any given T > 0 and ϕ ∈ U ⊂ Hα (α ≥ 1/2), we obtain

lim
t→∞
‖e(t−T )Lu(T, ϕ)‖Hα = 0.(3.22)

Using (3.6), (3.20) and the assertion (C3) of Lemma 2.3 gives

(3.23) ‖u(t, ϕ)‖Hα

≤ ‖e(t−T0)Lu(T0, ϕ)‖Hα +
t�

T0

‖(−L)αe(t−T )L‖ · ‖g(u)‖H dτ

≤ ‖e(t−T0)Lu(T0, ϕ)‖Hα + C

t�

T0

‖(−L)αe(t−T )L‖

≤ ‖e(t−T0)Lu(T0, ϕ)‖Hα + C

T−T0�

0

τ−αe−δτ dτ

≤ ‖e(t−T0)Lu(T0, ϕ)‖Hα + C,
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where C > 0 is a constant independent of ϕ. Then by (3.22) and (3.23), we
see that (3.19) holds for all 1/2 ≤ α < 1.

Second, we can use the same method as in the above step to prove that
for any 3/4 < α < 5/4 and for any 1 < α < 3/2, problem (1.1)–(1.3) has
a bounded absorbing set in Hα. By iteration, we conclude that (3.19) holds
for all α ≥ 1/2.

Proof of Theorem 2.6. Apply Lemmas 2.2, 3.1 and 3.2.

Hence, we have the following remark.

Remark. The attractors Aα ⊂ Hα in Theorem 2.6 are the same for all
α ≥ 0, i.e. Aα = A for all α ≥ 0. Hence, A ⊂ C∞(Ω). Theorem 2.6 implies
that for any ϕ ∈ H, the solution u(t, ϕ) of problem (1.1)–(1.3) satisfies

lim
t→∞

inf
v∈A
‖u(t, ϕ)− v‖Ck = 0, ∀k ≥ 1.
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