GENERAL TOPOLOGY

Multiplication is Discontinuous in the Hawaiian Earring Group (with the Quotient Topology)

by

Paul FABEL

Presented by Czesaw BESSAGA

Summary. The natural quotient map q from the space of based loops in the Hawaiian earring onto the fundamental group provides a naturally occuring example of a quotient map such that $q \times q$ fails to be a quotient map. With the quotient topology, this example shows $\pi_1(X, p)$ can fail to be a topological group if X is locally path connected.

1. Introduction. The Hawaiian earring HE is the union of a null sequence of circles joined at a common point. If the fundamental group $\pi_1(HE, p)$ is endowed with a certain natural topology, we prove $\pi_1(HE, p)$ fails to be a topological group with the standard operations, and in the bargain obtain a naturally occurring example of a map $q: Y \to Z$ such that $q \times q: Y \times Y \to Z \times Z$ fails to be a quotient map.

Following the definitions in [2], there is a natural quotient topology one can impart on the familiar based fundamental group $\pi_1(X, p)$ of a topological space X.

If L(X,p) denotes the space of p based loops in X with the compact open topology, and if $q: L(X,p) \to \pi_1(X,p)$ is the natural surjection, then we endow $\pi_1(X,p)$ with the quotient topology such that $A \subset \pi_1(X,p)$ is closed in $\pi_1(X,p)$ if and only of $q^{-1}(A)$ is closed in L(X,p).

For spaces X sufficiently simple on the small scale, $\pi_1(X, p)$ has the discrete topology and is certainly a topological group [7], [4], [3].

More generally Proposition 3.1 of [2] asserts that $\pi_1(X, p)$ is always a topological group with the familiar operations. However Tyler Lawson no-

²⁰¹⁰ Mathematics Subject Classification: Primary 54G20; Secondary 54B15. Key words and phrases: Hawaiian earring.

ticed in 2006 that the proof of Proposition 3.1 depends on the questionable assumption that the product of the quotient maps $q \times q : L(X, p) \times L(X, p) \to \pi_1(X, p) \times \pi_1(X, p)$ is again a quotient map (since for general topological spaces, if $q: Y \to Z$ is a quotient map then $q \times q : Y \times Y \to Z \times Z$ can fail to be a quotient map [13]).

Jeremy Brazas has recently found various examples of spaces X such that $\pi_1(X, p)$ fails to have continuous multiplication [3]. Particular attention in [3] is given to spaces X constructed in the following manner. Let A be a totally disconnected subset of the positive real line, and consider X as the union of planar circles of radius 1 + a, centered on the positive real line, and joined at the common point (0,0). Such spaces X are locally simply connected, but fail to be locally path connected. For example Brazas proves $\pi_1(X, p)$ fails to have continuous multiplication if A is the positive rationals.

In contrast to the examples in [3], the Hawaiian earring HE is locally path connected but not locally simply connected.

Various papers have referenced (or generalized) the false Proposition 3.1 of [2], including some of the author, and we will comment later in this paper on what can be discarded, safely ignored or possibly repaired.

As a consequence of Theorem 1 we know $\pi_1(HE, p)$ is a Hausdorff space but *not* a topological group with the familiar operations and this begs the question "Is $\pi_1(HE, p)$ regular?"

2. Main result and implications. The Hawaiian earring HE is the union of a null sequence of circles joined at a common point p.

Formally *HE* is the following subspace of the plane \mathbb{R}^2 . For an integer $n \ge 1$ let X_n denote the circle of radius 1/n centered at (1/n, 0) and define $HE = \bigcup_{n=1}^{\infty} X_n$.

Let p = (0, 0) and let $Y_N = \bigcup_{n=1}^N X_n$.

Let $R_N : HE \to Y_N$ denote the natural retraction collapsing $\bigcup_{n=N+1}^{\infty} X_n$ to p. The natural restriction between Y_{N+1} and Y_N determines an inverse limit space $\lim_{\leftarrow} Y_N$ such that $\lim_{\leftarrow} Y_N$ is canonically homeomorphic to HEvia $h : HE \to \lim_{\leftarrow} Y_n$ of the format $h(x) = (p, \ldots, p, x, x, \ldots)$. The map hinduces a continuous homomorphism $\phi : \pi_1(HE, p) \to \lim_{\leftarrow} \pi_1(Y_N, p)$, since in general maps between spaces induce continuous homomorphisms [2]. Of critical importance is the nontrivial fact that ϕ is one-to-one [12], [5], [6].

Let L(HE, p) denote the space of maps $f : [0, 1] \to HE$ such that f(0) = f(1) = p, and endow L(HE, p) with the compact open topology. Since HE is a compact metric space, this is equivalent to the topology of uniform convergence.

Let $q: L(HE, p) \to \pi_1(HE, p)$ denote the canonical quotient map such that q(f) = q(g) if and only if f and g are path homotopic in HE.

Let $p_n = (2/n, 0)$. Define the oscillation number $O_n : L(HE, p) \rightarrow \{0, 1, 2, 3, 4, \ldots\}$ to be the maximum number m such that there exists a set $T = \{0, t_1, \ldots, t_{2m}\} \subset [0, 1]$ such that $0 < t_1 < \cdots < t_{2m} = 1$ with $f(t_{2i}) = p$ and $f(t_{2i+1}) = p_n$.

REMARK 1. Fixing n and m and allowing k to vary, suppose $f_k \to f$ uniformly in L(HE, p) and $O_n(f_k) \ge m$ as shown by the sets $T_k \subset [0, 1]$ such that $|T_k| = 2m + 1$. Then if $T \subset [0, 1]$ is a subsequential limit of $\{T_k\}$ in the Hausdorff metric, then T shows $O_n(f) \ge m$.

Given $f \in L(HE, p)$, and natural numbers m and n, we obtain a lower bound on $O_n(f)$ as follows. Suppose $f \in L(HE, p)$ and recall $R_m : HE \to Y_m$ is the natural retraction collapsing X_k to p for all k > m. If n > m then $p_n \notin Y_m$ (and hence $O_n(R_m(f)) = 0$) and if $n \leq m$ then $O_n(R_m(f)) = O_n(f)$. Thus if $f_1 = R_m(f)$ then $O_n(f_1) \leq O_n(f)$. Let U be a contractible open subspace of Y_m such that $p \in U$. Consider the open set $J = f_1^{-1}(Y_m \setminus \{p\})$ with open interval components J_1, J_2, \ldots . Note $J \subset (0, 1)$ and hence diam $(J_n) \to 0$. Uniform continuity of f ensures diam $(f_1(J_n)) \to 0$. Thus, with finitely many exceptions, $f_1(\overline{J_i}) \subset U$. If $f_1(\overline{J_i}) \subset U$, replace $f|_{\overline{J_n}}$ by the constant loop at p, to create a function $f_2 : [0, 1] \to Y_m$. If J^{\uparrow} denotes the union of intervals J_k in J such that $f_1(\overline{J_i}) \subset U$, the standard pasting lemma ensures $f_2 = p|_{\overline{J^{\frown}}} \cup f_1|_{([0,1] \setminus J^{\uparrow})}$ is continuous, and applying a contraction of U to $f_2|_{\overline{J^{\uparrow}}}$, we see f_2 is path homotopic to f_1 in Y_m . By construction $O_n(f_2) = O(f_1)$.

Recall $\pi_1(Y_m, p)$ is canonically isomorphic to F_m , the free group on mgenerators $\{x_1, \ldots, x_m\}$ with letters x_i corresponding to one counterclockwise orbit around the circle X_i . Let $w \in F_m$ denote the reduced finite word in F_m corresponding to $[f_2] \in \pi_1(Y_m, p)$. Let $g : [0, 1] \to Y_m$ be the unique path of constant Euclidean speed determined by the word w. Notice $O_n(g)$ is the total number of occurrences of x_n and x_n^{-1} in the word w. Thus if $v \in F_m$ denotes the (unreduced) finite word determined by f_2 , then standard word reduction in F_m from v to w (by successive deletion of consecutive inverse pairs $x_i x_i^{-1}$ or $x_j^{-1} x_j$) shows $|v| \ge |w|$. Note $R_m(f)$, f_2 and g are path homotopic in Y_m and hence in HE. Thus in the particular case that $R_m(f)$ is path homotopic to f in HE, the previous discussion is summarized in the following remark.

REMARK 2. Suppose f and g are in the same path component of L(HE, p)and suppose $g: [0,1] \to Y_m$ is a path of constant speed corresponding to a maximally reduced finite word w in the free group F_m on m letters. Then $O_n(f) \ge O_n(g)$.

REMARK 3. Since $\phi : \pi_1(HE, p) \to \lim_{\leftarrow} \pi_1(Y_n, p)$ is continuous and one-to-one, and since $\lim_{\leftarrow} \pi_1(Y_n, p)$ is a T_2 space, the space $\pi_1(HE, p)$ is T_2 . In particular $\pi_1(HE, p)$ is T_1 and hence the path components of L(HE, p)are closed subspaces of L(HE, p). REMARK 4. If Z is a metric space such that each path component of Z is a closed subspace of Z, then each path component of $Z \times Z$ is a closed subspace of $Z \times Z$. (If $(x_n, y_n) \to (x, y)$ and $\{(x_n, y_n)\}$ is in a path component of $Z \times Z$ then obtain paths α and β in Z connecting x to $\{x_n\}$ and y to $\{y_n\}$ and (α, β) is the desired path in $Z \times Z$.)

THEOREM 1. The product of quotient maps $q \times q : L(HE, p) \times L(HE, p)$ $\rightarrow \pi_1(HE, p) \times \pi_1(HE, p)$ fails to be a quotient map, standard multiplication (by path class concatenation) $M : \pi_1(HE, p) \times \pi_1(HE, p) \rightarrow \pi_1(HE, p)$ is discontinuous, and the fundamental group $\pi_1(HE, p)$ fails to be a topological group with the standard group operations.

Proof. Let $x_n \in L(HE, p)$ orbit X_n once counterclockwise.

Applying path concatenation, for integers $n \ge 2$ and $k \ge 2$ and $n \ne k$ let $a(n,k) \in L(HE,p)$ be a based loop corresponding to the finite word $(x_n x_k x_n^{-1} x_k^{-1})^{k+n}$ and let $w(n,k) \in L(HE,p)$ be a based loop corresponding to the finite word $(x_1 x_k x_1^{-1} x_k^{-1})^n$.

Let $F \subset \pi_1(HE, p) \times \pi_1(HE, p)$ denote the set of all doubly indexed ordered pairs ([a(n, k)], [w(n, k)]).

Let $P \in L(HE, p)$ denote the constant map such that $f([0, 1]) = \{p\}$.

To prove $q \times q$ fails to be a quotient map it suffices to prove that F is not closed in $\pi_1(HE, p) \times \pi_1(HE, p)$ and $(q \times q)^{-1}(F)$ is closed in $L(HE, p) \times L(HE, p)$.

To prove F is not closed in $\pi_1(HE, p) \times \pi_1(HE, p)$ we will prove that $([P], [P]) \notin F$ but ([P], [P]) is a limit point of F.

Recall $\phi : \pi_1(HE, p) \to \lim_{\leftarrow} \pi_1(Y_m, p)$ is one-to-one and $k \ge 2$. Thus $[P] \neq [w(n, k)]$ and $[P] \neq [a(n, k)]$. Thus $([P], [P]) \notin F$.

Suppose $[P] \in U$ and U is open in $\pi_1(HE, p)$. Let $V = q^{-1}(U)$. Then V is open in L(HE, p) since, by definition, q is continuous.

Note $P \in V$. Thus there exist N and K such that if $n \ge N$ and $k \ge K$ then $a(n,k) \in V$. Note $(x_1x_1^{-1})^N$ is path homotopic to P and hence $(x_1x_1^{-1})^N \in V$. Observe that w(N,k) (suitably parameterized over [0,1]) converges to $(x_1x_1^{-1})^N$ uniformly in L(HE,p). Thus there exists $K_2 \ge K$ such that if $k \ge K_2$ then $w(N,k) \in V$. Hence $([w(N,K_2)], [a(N,K_2)]) \in U \times U$. This proves ([P], [P]) is a limit point of F, and thus F is not closed in $\pi_1(HE,p) \times \pi_1(HE,p)$.

To prove $(q \times q)^{-1}(F)$ is closed in $L(HE, p) \times L(HE, p)$ suppose that $(f_m, g_m) \to (f, g)$ uniformly and $(f_m, g_m) \in (q \times q)^{-1}(F)$. Note $O_1(w(n, k)) = 2n$ and $O_N(a(N, k)) \ge 2(N + k)$.

Let $a(n_m, k_m)$ and $w(n_m, k_m)$ be path homotopic to respectively f_m and g_m .

By Remark 2, $O_1(g_m) \ge O_1(w(n_m, k_m)) = 2n_m$.

Thus if $\{n_m\}$ contains an unbounded subsequence then, by Remark 1, $O_1(g) \ge \limsup O_1(w(n_m, k_{n_m})) = \infty$ and we have a contradiction since $O_1(g) < \infty$. Thus $\{n_m\}$ is bounded and so takes on finitely many values.

In similar fashion, if $\{k_m\}$ is unbounded then there exists N and a subsequence $\{k_{m_l}\}$ such that $O_N(a(N, k_{m_l})) \to \infty$. It follows that $O_N(f) \ge$ $\limsup O_N(a(N, k_{m_l})) = \infty$, contradicting the fact that $O_N(f) < \infty$.

Thus both $\{n_m\}$ and $\{k_m\}$ are bounded and hence (by the pigeon hole principle) there exists a path component $B \subset L(HE, p) \times L(HE, p)$ containing a subsequence (f_{m_l}, g_{m_l}) .

It follows from Remarks 3 and 4 that $(f,g) \in B$. Thus $(q \times q)^{-1}(F)$ is closed and hence $q \times q$ fails to be a quotient map.

In similar fashion we will prove that group multiplication $M : \pi_1(HE, p) \times \pi_1(HE, p) \to \pi_1(HE, p)$ is discontinuous, and hence $\pi_1(HE, p)$ will fail to be a topological group with the standard group operations. To achieve this we will exhibit a closed set $A \subset \pi_1(HE, p)$ such that $M^{-1}(A)$ is not closed in $\pi_1(HE, p) \times \pi_1(HE, p)$.

Consider the doubly indexed set $A = M(F) \subset \pi_1(HE, p)$ such that each element of A is of the form [a(n, k)] * [w(n, k)] (with * the denoting familiar path class concatenation).

On the one hand observe by definition (and since ϕ is one-to-one) $[a(n,k)] * [w(n,k)] \neq [P]$. Thus $[P] \notin A$ and $([P], [P]) \notin M^{-1}(A)$. Note $F \subset M^{-1}(A)$ and by the previous argument ([P], [P]) is a limit point of F. Thus $M^{-1}(A)$ is not closed in $\pi_1(HE, p) \times \pi_1(HE, p)$.

On the other hand we will prove A is closed in $\pi_1(HE, p)$ by proving $q^{-1}(A)$ is closed in L(HE, p). Suppose that $f_m \to f \in L(HE, p)$ and $f_m \in q^{-1}(A)$.

Obtain n_m and k_m such that $f_m \in [a(n_m, k_m)] * [w(n_m, k_m)]$.

In similar fashion to the previous proof, if $\{n_m\}$ is unbounded we obtain the contradiction $O_1(f) \ge \limsup O_1(f_m) = \infty$.

If $\{n_m\}$ is bounded and $\{k_m\}$ is unbounded we obtain N and a subsequence k_{m_l} and the contradiction $O_N(f) \ge \limsup O_N(f_{m_l}) = \infty$.

Thus both $\{n_m\}$ and $\{k_m\}$ are bounded. It follows by the pigeon hole principle that some path component $B \subset L(HE, p)$ contains a subsequence $\{f_{m_l}\}$ and Remark 3 implies that $f \in B$. Hence $q^{-1}(A)$ is closed in L(HE, p)and thus A is closed in $\pi_1(HE, p)$.

Theorem 1 contradicts some published claims to the contrary and we offer brief assessment of how this affects various published results.

It is falsely claimed in [2], [1] that group multiplication in $\pi_1(X, p)$ is continuous and that $\pi_1(X, p)$ is a topological group. However these mistakes do not appear to directly affect arguments elsewhere in the papers (some of which have also been challenged [10]). The introduction in [10] mentions that $\pi_1(X, p)$ is a topological group, but apparently none of the results or proofs are affected by this remark.

Theorem 2 of [9] claims that $\pi_1(X, p)$ is regular iff $\pi_1(X, p)$ is a T_1 space. This claim is suspicious since the proof assumes (incorrectly) that $\pi_1(X, p)$ is a topological group, and Example 4.22 of [3] shows the T_1 property of $\pi_1(X, p)$ does not guarantee that $\pi_1(X, p)$ is completely regular.

The paper [8] develops a false generalization (Theorem 2.7) of Proposition 3.1 of [2] and the proof makes the common mistake of falsely assuming that the product of quotient maps is a quotient map. However the main application (the validity of Theorem 3.12 which constructs a completion $\overline{B_{\infty}}$ of the infinite braid group) in [8] is unlikely to be affected (since with the quotient topology, the pure braid subgroup of $\overline{B_{\infty}}$ is the topological inverse limit of the finite pure braid groups, and hence a topological group). Nevertheless it would be appropriate to provide a new and careful argument that multiplication in $\overline{B_{\infty}}$ is continuous.

In [14], Lemma 1.1 and its proof assert (falsely) that $\pi_1(X, p)$ is a topological group. In [11], Theorem 2.1 and its proof assert (falsely) that $\pi_n(X, p)$ is a topological group for all n, and the familiar mistake is to assume that the product of quotient maps is a quotient map.

3. Summary. The Hawaiian earring HE is a locally path connected compact metric space whose fundamental group $\pi_1(HE, p)$ is shown in this paper to have discontinuous group multiplication with a certain natural topology on $\pi_1(HE, p)$. The topology of $\pi_1(HE, p)$ is the quotient topology inherited under the natural map from the space of *p*-based loops in *HE*.

References

- D. K. Biss, A generalized approach to the fundamental group, Amer. Math. Monthly 107 (2000), 711–720.
- [2] —, The topological fundamental group and generalized covering spaces, Topology Appl. 124 (2002), 355–371.
- J. Brazas, The topological fundamental group and free topological groups, ibid. 148 (2011), 779–802.
- [4] J. S. Calcut and J. D. McCarthy, Discreteness and homogeneity of the topological fundamental group, Topology Proc. 34 (2009), 339–349.
- [5] J. W. Cannon and G. R. Conner, The combinatorial structure of the Hawaiian earring group, Topology Appl. 106 (2000), 225–271.
- B. de Smit, The fundamental group of the Hawaiian earring is not free, Int. J. Algebra Comput. 2 (1992), 33–37.
- P. Fabel, Metric spaces with discrete topological fundamental group, Topology Appl. 154 (2007), 635–638.
- [8] —, Completing Artin's braid group on infinitely many strands, J. Knot Theory Ramif. 14 (2005), 979–991.

- P. Fabel, A retraction theorem for topological fundamental groups with application to the Hawaiian earring, Topology Appl. 154 (2007), 722–724.
- [10] —, The topological Hawaiian earring group does not embed in the inverse limit of free groups, Algebr. Geom. Topol. 5 (2005), 1585–1587.
- [11] H. Ghane, Z. Hamed, B. Mashayekhy, and H. Mirebrahimi, *Topological homotopy groups*, Bull. Belg. Math. Soc. Simon Stevin 15 (2008), 455–464.
- [12] J. W. Morgan and I. Morrison, A van Kampen theorem for weak joins, Proc. London Math. Soc. (3) 53 (1986), 562–576.
- [13] J. Munkres, *Topology*, 2nd ed., Prentice-Hall, 1999.
- [14] H. Sahleh and A. G. Sanatee, Embedding of the fundamental topological group in the inverse limit of discrete groups, Int. J. Contemp. Math. Sci. 3 (2008), 305–310.

Paul Fabel

Department of Mathematics and Statistics

Mississippi State University

Drawer MA, Mississippi State, MS 39762, U.S.A.

E-mail: fabel@ra.msstate.edu

http://www2.msstate.edu/~fabel/

Received November 17, 2009; received in final form April 3, 2011 (7737)