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Multiplication is Discontinuous in the Hawaiian Earring
Group (with the Quotient Topology)
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Summary. The natural quotient map q from the space of based loops in the Hawaiian
earring onto the fundamental group provides a naturally occuring example of a quotient
map such that q× q fails to be a quotient map. With the quotient topology, this example
shows π1(X, p) can fail to be a topological group if X is locally path connected.

1. Introduction. The Hawaiian earring HE is the union of a null
sequence of circles joined at a common point. If the fundamental group
π1(HE , p) is endowed with a certain natural topology, we prove π1(HE , p)
fails to be a topological group with the standard operations, and in the bar-
gain obtain a naturally occurring example of a map q : Y → Z such that
q × q : Y × Y → Z × Z fails to be a quotient map.

Following the definitions in [2], there is a natural quotient topology one
can impart on the familiar based fundamental group π1(X, p) of a topological
space X.

If L(X, p) denotes the space of p based loops in X with the compact
open topology, and if q : L(X, p)→ π1(X, p) is the natural surjection, then
we endow π1(X, p) with the quotient topology such that A ⊂ π1(X, p) is
closed in π1(X, p) if and only of q−1(A) is closed in L(X, p).

For spaces X sufficiently simple on the small scale, π1(X, p) has the
discrete topology and is certainly a topological group [7], [4], [3].

More generally Proposition 3.1 of [2] asserts that π1(X, p) is always a
topological group with the familiar operations. However Tyler Lawson no-
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ticed in 2006 that the proof of Proposition 3.1 depends on the questionable
assumption that the product of the quotient maps q×q : L(X, p)×L(X, p)→
π1(X, p) × π1(X, p) is again a quotient map (since for general topological
spaces, if q : Y → Z is a quotient map then q × q : Y × Y → Z × Z can fail
to be a quotient map [13]).

Jeremy Brazas has recently found various examples of spaces X such that
π1(X, p) fails to have continuous multiplication [3]. Particular attention in
[3] is given to spaces X constructed in the following manner. Let A be a
totally disconnected subset of the positive real line, and consider X as the
union of planar circles of radius 1 + a, centered on the positive real line,
and joined at the common point (0, 0). Such spaces X are locally simply
connected, but fail to be locally path connected. For example Brazas proves
π1(X, p) fails to have continuous multiplication if A is the positive rationals.

In contrast to the examples in [3], the Hawaiian earring HE is locally
path connected but not locally simply connected.

Various papers have referenced (or generalized) the false Proposition 3.1
of [2], including some of the author, and we will comment later in this paper
on what can be discarded, safely ignored or possibly repaired.

As a consequence of Theorem 1 we know π1(HE , p) is a Hausdorff space
but not a topological group with the familiar operations and this begs the
question “Is π1(HE , p) regular?”

2. Main result and implications. The Hawaiian earring HE is the
union of a null sequence of circles joined at a common point p.

Formally HE is the following subspace of the plane R2. For an integer
n ≥ 1 let Xn denote the circle of radius 1/n centered at (1/n, 0) and define
HE =

⋃∞
n=1Xn.

Let p = (0, 0) and let YN =
⋃N

n=1Xn.
Let RN : HE → YN denote the natural retraction collapsing

⋃∞
n=N+1Xn

to p. The natural restriction between YN+1 and YN determines an inverse
limit space lim← YN such that lim← YN is canonically homeomorphic to HE
via h : HE → lim← Yn of the format h(x) = (p, . . . , p, x, x, . . .). The map h
induces a continuous homomorphism φ : π1(HE , p)→ lim← π1(YN , p), since
in general maps between spaces induce continuous homomorphisms [2]. Of
critical importance is the nontrivial fact that φ is one-to-one [12], [5], [6].

Let L(HE , p) denote the space of maps f : [0, 1]→ HE such that f(0) =
f(1) = p, and endow L(HE , p) with the compact open topology. Since HE
is a compact metric space, this is equivalent to the topology of uniform
convergence.

Let q : L(HE , p) → π1(HE , p) denote the canonical quotient map such
that q(f) = q(g) if and only if f and g are path homotopic in HE .
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Let pn = (2/n, 0). Define the oscillation number On : L(HE , p) →
{0, 1, 2, 3, 4, . . .} to be the maximum number m such that there exists a
set T = {0, t1, . . . , t2m} ⊂ [0, 1] such that 0 < t1 < · · · < t2m = 1 with
f(t2i) = p and f(t2i+1) = pn.

Remark 1. Fixing n and m and allowing k to vary, suppose fk → f
uniformly in L(HE , p) and On(fk) ≥ m as shown by the sets Tk ⊂ [0, 1] such
that |Tk| = 2m+ 1. Then if T ⊂ [0, 1] is a subsequential limit of {Tk} in the
Hausdorff metric, then T shows On(f) ≥ m.

Given f ∈ L(HE , p), and natural numbers m and n, we obtain a lower
bound on On(f) as follows. Suppose f ∈ L(HE , p) and recall Rm : HE → Ym

is the natural retraction collapsing Xk to p for all k > m. If n > m then pn /∈
Ym (and hence On(Rm(f)) = 0) and if n ≤ m then On(Rm(f)) = On(f).
Thus if f1 = Rm(f) then On(f1) ≤ On(f). Let U be a contractible open sub-
space of Ym such that p ∈ U. Consider the open set J = f−1

1 (Ym\{p}) with
open interval components J1, J2, . . . . NoteJ ⊂ (0, 1) and hence diam(Jn)→0.
Uniform continuity of f ensures diam(f1(Jn))→ 0. Thus, with finitely many
exceptions, f1(Ji) ⊂ U. If f1(Ji) ⊂ U, replace f |Jn

by the constant loop
at p, to create a function f2 : [0, 1] → Ym. If Jˆ denotes the union of in-
tervals Jk in J such that f1(Ji) ⊂ U, the standard pasting lemma ensures
f2 = p|

Jˆ∪f1|([0,1]\Jˆ) is continuous, and applying a contraction of U to f2|Jˆ ,
we see f2 is path homotopic to f1 in Ym. By construction On(f2) = O(f1).

Recall π1(Ym, p) is canonically isomorphic to Fm, the free group on m
generators {x1, . . . , xm} with letters xi corresponding to one counterclock-
wise orbit around the circle Xi. Let w ∈ Fm denote the reduced finite word
in Fm corresponding to [f2] ∈ π1(Ym, p). Let g : [0, 1] → Ym be the unique
path of constant Euclidean speed determined by the word w. Notice On(g) is
the total number of occurrences of xn and x−1

n in the word w. Thus if v ∈ Fm

denotes the (unreduced) finite word determined by f2, then standard word
reduction in Fm from v to w (by successive deletion of consecutive inverse
pairs xix

−1
i or x−1

j xj) shows |v| ≥ |w|. Note Rm(f), f2 and g are path ho-
motopic in Ym and hence in HE . Thus in the particular case that Rm(f) is
path homotopic to f in HE , the previous discussion is summarized in the
following remark.

Remark 2. Suppose f and g are in the same path component of L(HE , p)
and suppose g : [0, 1] → Ym is a path of constant speed corresponding to a
maximally reduced finite word w in the free group Fm on m letters. Then
On(f) ≥ On(g).

Remark 3. Since φ : π1(HE , p) → lim← π1(Yn, p) is continuous and
one-to-one, and since lim← π1(Yn, p) is a T2 space, the space π1(HE , p) is T2.
In particular π1(HE , p) is T1 and hence the path components of L(HE , p)
are closed subspaces of L(HE , p).
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Remark 4. If Z is a metric space such that each path component of Z
is a closed subspace of Z, then each path component of Z × Z is a closed
subspace of Z×Z. (If (xn, yn)→ (x, y) and {(xn, yn)} is in a path component
of Z × Z then obtain paths α and β in Z connecting x to {xn} and y to
{yn} and (α, β) is the desired path in Z × Z.)

Theorem 1. The product of quotient maps q× q : L(HE , p)×L(HE , p)
→ π1(HE , p)×π1(HE , p) fails to be a quotient map, standard multiplication
(by path class concatenation) M : π1(HE , p) × π1(HE , p) → π1(HE , p) is
discontinuous, and the fundamental group π1(HE , p) fails to be a topological
group with the standard group operations.

Proof. Let xn ∈ L(HE , p) orbit Xn once counterclockwise.
Applying path concatenation, for integers n ≥ 2 and k ≥ 2 and n 6= k

let a(n, k) ∈ L(HE , p) be a based loop corresponding to the finite word
(xnxkx

−1
n x−1

k )k+n and let w(n, k) ∈ L(HE , p) be a based loop corresponding
to the finite word (x1xkx

−1
1 x−1

k )n.

Let F ⊂ π1(HE , p) × π1(HE , p) denote the set of all doubly indexed
ordered pairs ([a(n, k)], [w(n, k)]).

Let P ∈ L(HE , p) denote the constant map such that f([0, 1]) = {p}.
To prove q × q fails to be a quotient map it suffices to prove that F is

not closed in π1(HE , p)×π1(HE , p) and (q×q)−1(F ) is closed in L(HE , p)×
L(HE , p).

To prove F is not closed in π1(HE , p) × π1(HE , p) we will prove that
([P ], [P ]) /∈ F but ([P ], [P ]) is a limit point of F.

Recall φ : π1(HE , p) → lim← π1(Ym, p) is one-to-one and k ≥ 2. Thus
[P ] 6= [w(n, k)] and [P ] 6= [a(n, k)]. Thus ([P ], [P ]) /∈ F.

Suppose [P ] ∈ U and U is open in π1(HE , p). Let V = q−1(U). Then V
is open in L(HE , p) since, by definition, q is continuous.

Note P ∈V. Thus there exist N and K such that if n≥N and k≥K then
a(n, k) ∈ V. Note (x1x

−1
1 )N is path homotopic to P and hence (x1x

−1
1 )N ∈ V.

Observe that w(N, k) (suitably parameterized over [0, 1]) converges to
(x1x

−1
1 )N uniformly in L(HE , p). Thus there exists K2 ≥ K such that

if k ≥ K2 then w(N, k) ∈ V. Hence ([w(N,K2)], [a(N,K2)]) ∈ U × U.
This proves ([P ], [P ]) is a limit point of F, and thus F is not closed in
π1(HE , p)× π1(HE , p).

To prove (q × q)−1(F ) is closed in L(HE , p) × L(HE , p) suppose that
(fm, gm)→ (f, g) uniformly and (fm, gm) ∈ (q × q)−1(F ). Note O1(w(n, k))
= 2n and ON (a(N, k)) ≥ 2(N + k).

Let a(nm, km) and w(nm, km) be path homotopic to respectively fm

and gm.

By Remark 2, O1(gm) ≥ O1(w(nm, km)) = 2nm.
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Thus if {nm} contains an unbounded subsequence then, by Remark 1,
O1(g) ≥ lim supO1(w(nm, knm)) = ∞ and we have a contradiction since
O1(g) <∞. Thus {nm} is bounded and so takes on finitely many values.

In similar fashion, if {km} is unbounded then there exists N and a sub-
sequence {kml

} such that ON (a(N, kml
)) → ∞. It follows that ON (f) ≥

lim supON (a(N, kml
)) =∞, contradicting the fact that ON (f) <∞.

Thus both {nm} and {km} are bounded and hence (by the pigeon hole
principle) there exists a path component B ⊂ L(HE , p)×L(HE , p) contain-
ing a subsequence (fml

, gml
).

It follows from Remarks 3 and 4 that (f, g) ∈ B. Thus (q × q)−1(F ) is
closed and hence q × q fails to be a quotient map.

In similar fashion we will prove that group multiplication M : π1(HE , p)
× π1(HE , p)→ π1(HE , p) is discontinuous, and hence π1(HE , p) will fail to
be a topological group with the standard group operations. To achieve this
we will exhibit a closed set A ⊂ π1(HE , p) such that M−1(A) is not closed
in π1(HE , p)× π1(HE , p).

Consider the doubly indexed set A = M(F ) ⊂ π1(HE , p) such that each
element of A is of the form [a(n, k)] ∗ [w(n, k)] (with ∗ the denoting familiar
path class concatenation).

On the one hand observe by definition (and since φ is one-to-one) [a(n, k)]
∗ [w(n, k)] 6= [P ]. Thus [P ] /∈ A and ([P ], [P ]) /∈M−1(A). Note F ⊂M−1(A)
and by the previous argument ([P ], [P ]) is a limit point of F. Thus M−1(A)
is not closed in π1(HE , p)× π1(HE , p).

On the other hand we will prove A is closed in π1(HE , p) by prov-
ing q−1(A) is closed in L(HE , p). Suppose that fm → f ∈ L(HE , p) and
fm ∈ q−1(A).

Obtain nm and km such that fm ∈ [a(nm, km)] ∗ [w(nm, km)].
In similar fashion to the previous proof, if {nm} is unbounded we obtain

the contradiction O1(f) ≥ lim supO1(fm) =∞.
If {nm} is bounded and {km} is unbounded we obtain N and a subse-

quence kml
and the contradiction ON (f) ≥ lim supON (fml

) =∞.
Thus both {nm} and {km} are bounded. It follows by the pigeon hole

principle that some path component B ⊂ L(HE , p) contains a subsequence
{fml
} and Remark 3 implies that f ∈ B. Hence q−1(A) is closed in L(HE , p)

and thus A is closed in π1(HE , p).

Theorem 1 contradicts some published claims to the contrary and we
offer brief assessment of how this affects various published results.

It is falsely claimed in [2], [1] that group multiplication in π1(X, p) is
continuous and that π1(X, p) is a topological group. However these mistakes
do not appear to directly affect arguments elsewhere in the papers (some of
which have also been challenged [10]).
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The introduction in [10] mentions that π1(X, p) is a topological group,
but apparently none of the results or proofs are affected by this remark.

Theorem 2 of [9] claims that π1(X, p) is regular iff π1(X, p) is a T1 space.
This claim is suspicious since the proof assumes (incorrectly) that π1(X, p)
is a topological group, and Example 4.22 of [3] shows the T1 property of
π1(X, p) does not guarantee that π1(X, p) is completely regular.

The paper [8] develops a false generalization (Theorem 2.7) of Proposi-
tion 3.1 of [2] and the proof makes the common mistake of falsely assuming
that the product of quotient maps is a quotient map. However the main ap-
plication (the validity of Theorem 3.12 which constructs a completion B∞
of the infinite braid group) in [8] is unlikely to be affected (since with the
quotient topology, the pure braid subgroup of B∞ is the topological inverse
limit of the finite pure braid groups, and hence a topological group). Never-
theless it would be appropriate to provide a new and careful argument that
multiplication in B∞ is continuous.

In [14], Lemma 1.1 and its proof assert (falsely) that π1(X, p) is a topo-
logical group. In [11], Theorem 2.1 and its proof assert (falsely) that πn(X, p)
is a topological group for all n, and the familiar mistake is to assume that
the product of quotient maps is a quotient map.

3. Summary. The Hawaiian earring HE is a locally path connected
compact metric space whose fundamental group π1(HE , p) is shown in this
paper to have discontinuous group multiplication with a certain natural
topology on π1(HE , p). The topology of π1(HE , p) is the quotient topology
inherited under the natural map from the space of p-based loops in HE .
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