MEASURE AND INTEGRATION

The Young Measure Representation for Weak Cluster Points of Sequences in M-spaces of Measurable Functions by

Hông Thái NGUYÊÑ and Dariusz PĄCZKA

Presented by Czesław OLECH

Summary. Let $\langle X, Y \rangle$ be a duality pair of M-spaces X, Y of measurable functions from $\Omega \subset \mathbb{R}^n$ into \mathbb{R}^d . The paper deals with Y-weak cluster points $\overline{\phi}$ of the sequence $\phi(\cdot, z_j(\cdot))$ in X, where $z_j \colon \Omega \to \mathbb{R}^m$ is measurable for $j \in \mathbb{N}$ and $\phi \colon \Omega \times \mathbb{R}^m \to \mathbb{R}^d$ is a Carathéodory function. We obtain general sufficient conditions, under which, for some negligible set A_{ϕ} , the integral $I(\phi, \nu_x) := \int_{\mathbb{R}^m} \phi(x, \lambda) d\nu_x(\lambda)$ exists for $x \in \Omega \setminus A_{\phi}$ and $\overline{\phi}(x) = I(\phi, \nu_x)$ on $\Omega \setminus A_{\phi}$, where $\nu = \{\nu_x\}_{x \in \Omega}$ is a measurable-dependent family of Radon probability measures on \mathbb{R}^m .

1. Notations and some basic facts on Young measures. Let μ denote a complete separable σ -finite σ -additive positive measure on a σ -algebra \mathfrak{A} of subsets of a set Ω . Measurability will always mean \mathfrak{A} -measurability. Let E be a separable Banach space. We will denote by $L^{\infty}(\Omega, E; \mu)$, or briefly $L^{\infty}(E)$, the Banach space (of all equivalence classes) of essential E-norm-bounded measurable functions $u: \Omega \to E$ with norm $||u||_{L^{\infty}} := ess \sup_{x \in \Omega} ||u(x)||_E$. Let $L^1(\Omega, E; \mu)$, or briefly $L^1(E)$, denote the Bochner–Lebesgue space (of all equivalence classes) of μ -integrable strongly measurable functions from Ω into E.

Let $\mathcal{M}(\mathbb{R}^m)$ be the Banach space of bounded signed Radon measures on \mathbb{R}^m and $C_0(\mathbb{R}^m)$ be the Banach space of all continuous functions $f \colon \mathbb{R}^m \to \mathbb{R}$ with $\lim_{|\lambda|\to\infty} f(\lambda) = 0$ equipped with the sup-norm, where $|\cdot|$ denotes the Euclidean norm in \mathbb{R}^m . It is known that $(C_0(\mathbb{R}^m))^* \cong \mathcal{M}(\mathbb{R}^m)$. Let $L^{\infty}_{\omega}(\mathcal{M}(\mathbb{R}^m))$ denote the Banach space (of all equivalence classes) of $C_0(\mathbb{R}^m)$ -

²⁰⁰⁰ Mathematics Subject Classification: 28A33, 46E27, 46E30, 46E40, 47H30.

Key words and phrases: Young measure representation, weak cluster points of sequences in non- L^p -type spaces of measurable functions, *M*-spaces, Banach lattices and non-solid generalized Orlicz spaces, Köthe–Bochner spaces.

weakly measurable functions $\nu : \Omega \to \mathcal{M}(\mathbb{R}^m)$ with norm $\|\nu\|_{\infty} := \|x \mapsto |\nu_x|(\mathbb{R}^m)\|_{L^{\infty}} < \infty$, where $|\nu_x|(\mathbb{R}^m)$ is the total variation of ν_x on \mathbb{R}^m and, for abbreviation, we write L^{∞} (resp. ν_x) instead of $L^{\infty}(\mathbb{R})$ (resp. $\nu(x)$). It is known that $L^{\infty}_{\omega}(\mathcal{M}(\mathbb{R}^m))$ can be interpreted as dual space $(L^1(C_0(\mathbb{R}^m)))^*$ via the injection $\nu \mapsto \langle \cdot, \nu \rangle_{\mu}$, where $\langle h, \nu \rangle_{\mu} := \int_{\Omega} \langle v(x), h(x) \rangle d\mu(x)$ for all $h \in L^1(C_0(\mathbb{R}^m))$. Given a measurable function $z : \Omega \to \mathbb{R}^m$, define the parametrized Dirac measure $\delta_z \in L^{\infty}_{\omega}(\mathcal{M}(\mathbb{R}^m))$ by

 $x \in \Omega \mapsto \delta_z(x) := \delta_{z(x)}$ (the Dirac measure supported at z(x)).

An element $\nu \in L^{\infty}_{\omega}(\mathcal{M}(\mathbb{R}^m))$ is called a Young parametrized measure if $\nu_x(\mathbb{R}^m) = 1 \mu$ -a.e. Define $(\phi \circ z)(x) := \phi(x, z(x))$. A function $f: \Omega \times \mathbb{R}^m \to E$ is said to be Carathéodory if $f(\cdot, u)$ is measurable for every $u \in \mathbb{R}^m$ and $f(x, \cdot)$ is continuous for almost all $x \in \Omega$.

The formulations and proofs of the main results of the present paper are based on the following fundamental theorem [2, 3] about the Young measure representation in case of the pair $\langle X, Y \rangle = \langle L^1(\mathbb{R}), L^\infty(\mathbb{R}) \rangle$ (see Theorem 1.1; cf. [20, p. 98–100], [8, Section 8.1, pp. 518–525], [5, 21]).

THEOREM 1.1 (The Young measure representation; Ball [3], Balder [2]). Suppose that a sequence of measurable functions $z_j: \Omega \to \mathbb{R}^m$ satisfies the global tightness condition with respect to μ :

(GB)
$$\lim_{L \to \infty} \sup_{j \in \mathbb{N}} \mu\{x \in \Omega : |z_j(x)| \ge L\} = 0.$$

Then there exist a subsequence z_{j_k} and a Young measure $\nu = \{\nu_x\}_{x \in \Omega}$ such that $\delta_{z_{j_k}}$ is $L^1(C_0(\mathbb{R}^m))$ -weakly convergent to ν in $L^{\infty}_{\omega}(\mathcal{M}(\mathbb{R}^m))$. Moreover, given a Carathéodory function $\psi \colon \Omega \times \mathbb{R}^m \to \mathbb{R}$, the following statements hold.

(Y1) If $\psi \circ z_{j_k}$ is $L^{\infty}(\mathbb{R})$ -weakly convergent to $\overline{\psi}$ in $L^1(\mathbb{R})$, then, for some μ -negligible set $A_{\psi} \in \mathfrak{A}$, the integral $\int_{\mathbb{R}^m} \psi(x,\lambda) \, d\nu_x(\lambda) \in \mathbb{R}$ exists for $x \in \Omega \setminus A_{\psi}$ and

(1.1)
$$\overline{\psi}(x) = \int_{\mathbb{R}^m} \psi(x,\lambda) \, d\nu_x(\lambda) \quad on \ \Omega \setminus A_{\psi}.$$

(Y2) If $\psi \circ z_{j_k}$ is sequentially $L^{\infty}(\mathbb{R})$ -weakly pre-compact in $L^1(\mathbb{R})$, then, for some μ -negligible set $A_{\psi} \in \mathfrak{A}$, the integral $I(\psi, \nu_x) := \int_{\mathbb{R}^m} \psi(x, \lambda) \, d\nu_x(\lambda)$ $\in \mathbb{R}$ exists for all $x \in \Omega \setminus A_{\psi}$ and $\psi \circ z_{j_k}$ is $L^{\infty}(\mathbb{R})$ -weakly convergent to $\widetilde{\psi} \in L^1(\mathbb{R})$, where $\widetilde{\psi}(x) := I(\psi, \nu_x)$ for $x \in \Omega \setminus A_{\psi}$ and $\widetilde{\psi}(x) := 0$ otherwise.

The generalization of Theorem 1.1 for the $L^{\Psi^*}(\mathbb{R})$ -weak limit of $\tau \circ z_{j_k}$ in the Orlicz space $L^{\Psi}(\mathbb{R})$ is proved by P. Málek et al. [11, Th. 4.2.1, pp. 171– 176] in the case when Ψ and Ψ^* are complementary non-power Orlicz functions, Ψ satisfies the Δ_2 -condition [12], and $\tau : \mathbb{R}^m \to \mathbb{R}$ is continuous. **2. Formulation of results.** A linear space $Z \subset L^0(\mathbb{R}^m)$ is called an *M*-space if the inclusions $z \in Z$ and $\alpha \in L^{\infty}(\mathbb{R})$ imply that $\alpha z \in Z$ [16, 18]. If m = 1 then it is easy to check that *M*-spaces *Z* are just vector lattices. The Köthe associate space Z' with respect to μ of an *M*-space *Z* is defined e.g. in [7, 9] for m = 1, and in [15, 14, 18] for $m \ge 2$. By [16, Theorem 3.1], equivalently in case $m \ge 2$, Z' is defined by

$$Z' = \{ z' \in L^0(\mathbb{R}^m) : z'(x) \in \text{vsupp } Z(x) \ \mu\text{-a.e.}, \ \langle z, z' \rangle_\mu \in \mathbb{R}, \ \forall z \in Z \}.$$

Here $\langle z, z' \rangle_{\mu} := \int_{\Omega} (z(x), z'(x)) d\mu(x)$, where (\cdot, \cdot) denotes the Euclidean scalar product on \mathbb{R}^m , and the so-called *vector support* vsupp Z can be equivalently defined by

vsupp
$$Z(x) := \overline{\{z_1(x), z_2(x), ...\}}$$
 μ -a.e.

for some sequence $z_n \in Z$ such that $z \in Z \Rightarrow z(x) \in \overline{\{z_1(x), z_2(x), \ldots\}}$ μ -a.e. If $Z, Y \subset L^0(\mathbb{R}^m)$ are *M*-spaces and $Y \subset Z'$, then $\langle Z, Y \rangle$ is a duality pair with respect to $\langle z, z' \rangle_{\mu}$ $(z \in Z, z' \in Y)$, and we write $\langle Z, Y \rangle_{\mu}$.

Let $\langle Z, Y \rangle$ be a duality pair of vector spaces. A set $\mathcal{N} \subset Z$ is called *sequentially* Y-weakly pre-compact in Z (or conditionally sequentially Y-weakly compact in Z) if each sequence $z_j \in \mathcal{N}$ has some Y-weak Cauchy subsequence $z_{j(k)}$. The space Z is called *sequentially* Y-weakly complete if each Y-weak Cauchy sequence is Y-weakly convergent in Z.

THEOREM 2.1. Let $X, Y \subset L^0(\mathbb{R}^d)$ be M-spaces, $\operatorname{supp} X = \Omega$, $\operatorname{supp} X(x) = \operatorname{vsupp} Y(x) \ \mu$ -a.e., and $Y \subset X'$, where X' is the Köthe associate space of X with respect to μ . Suppose that a sequence $z_j \in L^0(\mathbb{R}^m)$ satisfies (GB) with respect to μ , and a Carathéodory function $\phi \colon \Omega \times \mathbb{R}^m \to \mathbb{R}^d$ satisfies $\phi(x, \mathbb{R}^m) \subset \operatorname{vsupp} X(x) \ \mu$ -a.e. Moreover, let z_{j_k} and ν be as in Theorem 1.1. Then the following statements hold.

(Y3) If $\phi \circ z_{j_k}$ is Y-weakly convergent to $\overline{\phi}$ in X, then, for some μ -negligible set $A_{\phi} \in \mathfrak{A}$, the integral $\int_{\mathbb{R}^m} \phi(x,\lambda) d\nu_x(\lambda)$ exists in vsupp X(x) for $x \in \Omega \setminus A_{\phi}$ and

(2.1)
$$\overline{\phi}(x) = \int_{\mathbb{R}^m} \phi(x,\lambda) \, d\nu_x(\lambda) \quad on \ \Omega \setminus A_\phi.$$

(Y4) If X = Y' and $\phi \circ z_{j_k}$ is sequentially Y-weakly pre-compact in X, then, for some μ -negligible set $A_{\phi} \in \mathfrak{A}$, the integral $I(\phi, \nu_x) := \int_{\mathbb{R}^m} \phi(x, \lambda) \, d\nu_x(\lambda)$ exists in vsupp X(x) for all $x \in \Omega \setminus A_{\phi}$ and $\phi \circ z_{j_k}$ is Y-weakly convergent to ϕ in X, where $\phi(x) := I(\phi, \nu_x)$ for $x \in \Omega \setminus A_{\phi}$ and $\phi(x) := 0$.

CONDITION 2.2 (Local tightness condition, [11, p. 171], [20]). A sequence $z_j \in L^0(\mathbb{R}^m)$ satisfies

(LB)
$$\lim_{L \to \infty} \sup_{j \in \mathbb{N}} \mu\{x \in C_q : |z_j(x)| \ge L\} = 0 \quad (\forall q \in \mathbb{N})$$

for a nondecreasing sequence $C_q \in \mathfrak{A}$ with $\mu(C_q) < \infty$ and $\bigcup_{q \in \mathbb{N}} C_q = \Omega$.

THEOREM 2.3. Let $\mu(\Omega) = \infty$ and let X, Y and ϕ be as in Theorem 2.1. If a sequence $z_j \in L^0(\mathbb{R}^m)$ satisfies (LB) with respect to μ , then the statements (Y3)–(Y4) of Theorem 2.1 remain true.

A normed space $Z \subset L^0(\mathbb{R}^m)$ with norm $\|\cdot\|_Z$ is called a *normed M*space if the inclusions $z \in Z$ and $\alpha \in L^{\infty}(\mathbb{R})$ imply that $\alpha z \in Z$ and $\|\alpha z\|_Z \leq \|\alpha\|_{L^{\infty}} \|z\|_Z$ [16, 18]. The regular part Z° of a normed *M*-space *Z* is defined to be the normed *M*-subspace of all elements $z \in Z$ satisfying $\lim_{\mu_*(D)\to 0} \|\chi_D z\|_Z = 0$, where $\mu_* := \mu$ if $\mu(\Omega) < \infty$ and μ_* is a fixed finite positive measure equivalent to μ if $\mu(\Omega) = \infty$, and χ_D denotes the characteristic function of $D \in \mathfrak{A}$.

PROPOSITION 2.4. Let $X, Y \subset L^0(\mathbb{R}^d)$ be *M*-spaces with $X \subset Y'$, where Y' is the Köthe associate space of Y with respect to μ . Suppose that a sequence $z_j \in L^0(\mathbb{R}^m)$ and a Carathéodory function $\phi \colon \Omega \times \mathbb{R}^m \to \mathbb{R}^d$ satisfy one of the following conditions:

- (SC1) There exist nondecreasing continuous functions $g, \gamma \colon [0, \infty) \to [0, \infty)$ such that
 - (a) $\lim_{t\to\infty} g(t) = \infty$ and $\lim_{t\to\infty} \gamma(t)/g(t) = 0$;
 - (b) $\{(g \circ |z_j|)u_0\}_{j \in \mathbb{N}} \text{ is } Y \text{-weakly bounded in } X, \text{ where } u_0 \colon \Omega \to (0, \infty) \text{ is measurable, } u_0 Y \subset L^1(\mathbb{R}^d), \text{ and } \operatorname{vsupp} X(x) = \operatorname{vsupp} Y(x) \mu\text{-}a.e.;$
 - (c) $|\phi(x,\lambda)| \leq \gamma(|\lambda|)u_0(x)$ for μ -almost all $x \in \Omega$ and all $\lambda \in \mathbb{R}^m$;

(SC2) There exists a Banach M-space Γ with $Y \subset \Gamma^{\circ}, (\Gamma^{\circ})' \subset X$ and

$$\sup_{j\in\mathbb{N}} \|\phi \circ z_j\|_{(\Gamma^\circ)'} < \infty.$$

Then the sequence $\phi \circ z_i$ is sequentially Y-weakly pre-compact in X.

REMARK 2.5. Proposition 2.4/(SC1) is a generalization of [20, Proposition 6.5] (where $Y = L^1(\mathbb{R})$ with $\mu(\Omega) < \infty$).

In the case of $\phi: \Omega \times \mathbb{R}^m \to E$ with dim $E = \infty$, results analogous to Theorems 2.1 and 2.3 can be proved but only for a pair $\langle X, Y \rangle$ of Köthe–Bochner spaces X, Y of E- $/E^*$ -valued functions (see Theorem 2.6). Given a separable Banach space E and a vector lattice $K \subset L^0(\mathbb{R})$, the Köthe–Bochner space K(E) is defined as the space (of equivalence classes) of strongly measurable E-valued functions z such that $||z(\cdot)||_E \in K$.

THEOREM 2.6. Let $K, \widetilde{K} \subset L^0(\mathbb{R})$ be vector lattices, E be a Banach space and E^* be its dual. Assume that:

- (a) supp $K = \text{supp } \widetilde{K} = \Omega$ and $\widetilde{K} \subset K'$, where K' is the Köthe associate space of K with respect to μ ;
- (b) E is separable and reflexive with dim $E = \infty$.

If $\phi: \Omega \times \mathbb{R}^m \to E$ is a Carathéodory function and a sequence $z_j \in L^0(\mathbb{R}^m)$ satisfies either (GB) or (LB), then the statements (Y3)–(Y4) of Theorem 2.1 remain true for the Köthe–Bochner spaces X = K(E) and $Y = \widetilde{K}(E^*)$ provided (2.1) (resp. ϕ) is substituted by

(2.2)
$$\overline{\phi}(x) = (P) - \int_{\mathbb{R}^m} \phi(x,\lambda) \, d\nu_x(\lambda) \quad on \ \Omega \setminus A_\phi$$

(resp. $\phi(x) = (P) - \int_{\mathbb{R}^m} \phi(x, \lambda) d\nu_x(\lambda)$ for $x \in \Omega \setminus A_{\phi}$), where, for $x \in \Omega \setminus A_{\phi}$, the above integral exists as the Pettis integral of the function $\phi(x, \cdot) : \mathbb{R}^m \to E$ with respect to the measure ν_x .

PROPOSITION 2.7. Let $z_j \in L^0(\mathbb{R}^m)$ $(j \in \mathbb{N})$. Then (LB) with respect to μ follows from the condition:

(LK) For $q \in \mathbb{N}$ there exist a normed lattice with monotone norm $K(q) \subset L^0(\mathbb{R})$ and a continuous nondecreasing function $g_q \colon [0,\infty) \to [0,\infty)$ such that $\lim_{t\to\infty} g_q(t) = \infty$ and $\sup_{j\in\mathbb{N}} \|\chi_{C_q}g_q(|z_j(\cdot)|)\|_{K(q)} < \infty$ for a nondecreasing sequence $C_q \in \mathfrak{A}$ with $\mu(C_q) < \infty$ and $\bigcup_{a\in\mathbb{N}} C_q = \Omega$.

REMARK 2.8. Proposition 2.7 is an extension of the statement in [3, Remark 1, p. 209] (where $K(q) = L^1(\mathbb{R})$).

REMARK 2.9. If $Z \subset L^0(\mathbb{R}^m)$ is a normed *M*-space and $\sup_{j\in\mathbb{N}} ||z_j||_Z < \infty$, then (LB) holds. Indeed, by [9, Corollary of Theorem IV.3.1], [23] (m = 1) and [16, Theorem 2.1/(3)] $(m \ge 2)$, the sequence z_j is bounded in $L^0(\mathbb{R}^m)$ equipped with the quasi-norm $||z||_{L^0(\mathbb{R}^m)} := \int_{\Omega} \frac{|z(x)|}{1+|z(x)|} d\mu_*(x)$. Hence, by [9, Section III.1.3–III.1.4], this sequence is bounded in μ on any C_q , and so (LB) follows. In particular, *Z* can be assumed to be either a Banach lattice of scalar-valued functions (a solid space) or a non-solid generalized Orlicz space (see, e.g., [1, 12, 17]) of \mathbb{R}^m -valued functions with $m \ge 2$.

3. Proofs of results of Section 2

Proof of Theorem 2.1. We divide this proof into Steps 3.1–3.2.

STEP 3.1 (Proof of (Y3)). Given $y \in Y$, define $\phi_y \colon \Omega \times \mathbb{R}^m \to \mathbb{R}$ by $\phi_y(x,\lambda) := (y(x), \phi(x,\lambda))$. As Y is an M-space we have $\alpha y \in Y$ for every $\alpha \in L^{\infty}(\mathbb{R})$, and from $Y \subset X'$ we infer that

$$\langle \phi \circ z_{j_k}, \alpha y \rangle_\mu = \langle \phi_y \circ z_{j_k}, \alpha \rangle_\mu \in \mathbb{R}.$$

By Theorem 1.1/(Y2) for ϕ_y together with the assumption for $\phi \circ z_{j_k}$, we

deduce that

$$\langle \phi \circ z_{j_k}, \alpha y \rangle_\mu = \langle \phi_y \circ z_{j_k}, \alpha \rangle_\mu \to \langle \overline{\phi}, \alpha y \rangle_\mu = \langle \widetilde{\phi}_y, \alpha \rangle_\mu \in \mathbb{R}$$

for all $\alpha \in L^{\infty}(\mathbb{R})$, where, for some $\widetilde{D}_{\phi y} \in \mathfrak{A}$ with $\mu(\Omega \setminus \widetilde{D}_{\phi y}) = 0$, the integral $\int_{\mathbb{R}^m} \phi_y(x,\lambda) \, d\nu_x(\lambda) \in \mathbb{R} \text{ exists for } x \in \widetilde{D}_{\phi y}, \text{ and } \phi_y(x) := \int_{\mathbb{R}^m} \phi_y(x,\lambda) \, d\nu_x(\lambda)$ for $x \in \widetilde{D}_{\phi y}$ and $\widetilde{\phi}_y(x) := 0$ otherwise. Hence,

$$\begin{split} \langle \overline{\phi}, \chi_D y \rangle_\mu &= \langle \widetilde{\phi}_y, \chi_D \rangle_\mu \\ &= \int_D \left[\int_{\mathbb{R}^m} (y(x), \phi(x, \lambda)) \, d\nu_x(\lambda) \right] d\mu(x) \in \mathbb{R} \quad (D \in \mathfrak{A}, D \subset \widetilde{D}_{\phi y}). \end{split}$$

On the other hand, $\langle \overline{\phi}, \chi_D y \rangle_{\mu} = \int_D (y(x), \overline{\phi}(x)) d\mu(x)$ for any $D \in \mathfrak{A}$ with $D \subseteq D_{\phi y}$. By the Radon–Nikodym theorem, we deduce that for $y \in Y$ there exists $D_{\phi y} \in \mathfrak{A}$ such that $D_{\phi y} \subset \widetilde{D}_{\phi y}, \ \mu(\widetilde{D}_{\phi y} \setminus D_{\phi y}) = 0$, and

(3.1)
$$(y(x),\overline{\phi}(x)) = \int_{\mathbb{R}^m} (y(x),\phi(x,\lambda)) \, d\nu_x(\lambda) \in \mathbb{R} \quad (\forall x \in D_{\phi y}).$$

Now, we consider $X \subset L^0(\Omega, \mathbb{R}^d)$ and $Y \subset X'$ for d > 1 (the case d = 1can be handled analogously upon using [9, Corollary IV.3.2] for supp Y = $\operatorname{supp} X = \Omega$). By [16, Theorem 3.1], there exists a sequence of representative families $G_q = \{u_{1q}, \ldots, u_{dq}\}$ of the *M*-space *Y* such that the sets supp G_q $\in \mathfrak{A}$ are mutually disjoint, and

- (1) $\mu(\operatorname{supp} Y \setminus \bigcup_{q=1}^{\infty} \operatorname{supp} G_q) = 0;$ (2) $|u_{1q}(x)| = \cdots = |u_{d(q)q}(x)| = 1$ and $|u_{iq}(x)| = 0$ $(i \notin \{1, \ldots, d(q)\})$ for $x \in \operatorname{supp} G_q$ and $\overline{d(q)} = \operatorname{dim} \operatorname{vsupp} Y(x)$ on $\operatorname{supp} G_q$.

By the definition [16] of the representative family G_q , we have $u_{iq} \in Y$ and the linear hull of $\{u_{1q}(x), \ldots, u_{dq}(x)\}$ coincides with vsupp Y(x) for $x \in \operatorname{supp} G_q$. Hence, by (3.1), for $\chi_{\operatorname{supp} G_q} u_{pq} \in Y$ $(1 \le p \le d(q))$ there exists $D_{pq} \in \mathfrak{A}$ such that $D_{pq} \subset \operatorname{supp} G_q$, $\mu(\operatorname{supp} G_q \setminus D_{pq}) = 0$, and

$$(\chi_{\operatorname{supp} G_q}(x)u_{pq}(x),\overline{\phi}(x)) = \int_{\mathbb{R}^m} (\chi_{\operatorname{supp} G_q}(x)u_{pq}(x),\phi(x,\lambda)) \, d\nu_x(\lambda) \in \mathbb{R}$$

for $x \in D_{pq}$. By the assumption, there exists $D_0 \in \mathfrak{A}$ with $\mu(\Omega \setminus D_0) = 0$ such that $\overline{\phi}(x), \phi(x, \lambda) \in \operatorname{vsupp} X(x) = \operatorname{vsupp} Y(x)$ for all $x \in D_0$ and for all $\lambda \in \mathbb{R}^m$. Hence, for $x \in D_0 \cap \bigcap_{p=1}^{d(q)} D_{pq}$ and $1 \leq p \leq d(q)$, the integral $\int_{\mathbb{R}^m} \phi(x,\lambda) d\nu_x(\lambda)$ exists in the finite-dimensional Euclidean space $\operatorname{vsupp} Y(x) = \operatorname{vsupp} X(x)$ and

$$(u_{pq}(x),\overline{\phi}(x)) = \left(u_{pq}(x), \int_{\mathbb{R}^m} \phi(x,\lambda) \, d\nu_x(\lambda)\right) \in \mathbb{R}.$$

Therefore,

$$\overline{\phi}(x) = \int_{\mathbb{R}^m} \phi(x,\lambda) \, d\nu_x(\lambda) \in \operatorname{vsupp} X(x)$$

for $x \in D_{\phi} := \bigcup_{q=1}^{\infty} [D_0 \cap \bigcap_{p=1}^{d(q)} D_{pq}]$, and $\mu(\Omega \setminus D_{\phi}) = 0$. Hence the statement (Y3) follows for $A_{\phi} := \Omega \setminus D_{\phi}$.

STEP 3.2 (Proof of (Y4)). Observe that, as X = Y', there exist a subsequence j(k) of j_k and $\overline{\phi} \in X$ such that $\phi \circ z_{j(k)}$ is Y-weakly convergent to $\overline{\phi}$ in X, due to the Y-weak completeness theorem of J. Dieudonné [7] (if X is a normed lattice with Y = X'); W. Luxemburg and A. Zaanen [10], P. P. Zabrejko [23, Theorem 32] (if X is a normed lattice); H. Nakano [13] (d = 1 with Y = X'); O. Burkinshaw and P. Dodds [4, Corollary 4.2 of Theorem 4.1] (d = 1) and [15, Theorem 2.8/(1)], [18] $(d \ge 2)$.

By Theorem 2.1/(Y3) applied to $\phi \circ z_{j(k)}$, we can find $A_{\phi} \in \mathfrak{A}$ such that $\mu(A_{\phi}) = 0$ and the integral $\int_{\mathbb{R}^m} \phi(x, \lambda) d\nu_x(\lambda)$ exists in vsupp X(x) for $x \in \Omega \setminus A_{\phi}$.

We proceed to show that $\phi \circ z_{j_k}$ is Y-weakly convergent to ϕ in X, where $\phi(x) := \int_{\mathbb{R}^m} \phi(x, \lambda) d\nu_x(\lambda)$ for $x \in \Omega \setminus A_{\phi}$ and $\phi(x) := 0$ otherwise.

On the contrary, suppose that $\phi \circ z_{j_k}$ is not Y-weakly convergent to ϕ in X. Then there exist $\varepsilon > 0$, $h_0 \in Y$ and a subsequence q_k of j_k such that $|\langle \phi \circ z_{q_k}, h_0 \rangle_{\mu} - \langle \widetilde{\phi}, h_0 \rangle_{\mu}| > \varepsilon > 0$. By the above Y-weak completeness theorem together with Theorem 2.1/(Y3), for the sequence $\phi \circ z_{q_k}$ we can find a subsequence i_k of q_k , $\widehat{\phi} \in X$ and $A_{\widehat{\phi}} \in \mathfrak{A}$ such that $\langle \phi \circ z_{i_k}, h \rangle_{\mu} \to \langle \widehat{\phi}, h \rangle_{\mu} (\forall h \in Y),$ $\mu(A_{\widehat{\phi}}) = 0$, the integral $\int_{\mathbb{R}^m} \phi(x, \lambda) d\nu_x(\lambda)$ exists in vsupp X(x) for $x \in$ $\Omega \setminus A_{\widehat{\phi}}$, and $\widehat{\phi}(x) = \int_{\mathbb{R}^m} \phi(x, \lambda) d\nu_x(\lambda)$ on $\Omega \setminus A_{\widehat{\phi}}$. Therefore, $\widehat{\phi}$ and $\widetilde{\phi}$ define the same element (equivalence class) in X, and $\langle \widehat{\phi}, h_0 \rangle_{\mu} = \langle \widetilde{\phi}, h_0 \rangle_{\mu}$. Hence, we get a contradiction. \blacksquare

PROPOSITION 3.1 ([15, Lemma 4.2.2]). Let $\mu(\Omega) = \infty$. Then, for a sequence $z_j \in L^0(\mathbb{R}^m)$, the condition (LB) holds with respect to μ if and only if the condition (GB) holds with respect to μ_* .

Proof of Theorem 2.3. By Proposition 3.1, (LB) for μ and z_j implies (GB) for μ_* and z_j . So, we may apply Theorem 2.1 for z_j with respect to μ_* . Recall that if $\mu(\Omega) = \infty$ then the measure μ is called *separable* (see [9, 23]) provided μ_* is separable, which is equivalent to separability of $L^0(\mathbb{R}^m)$. We divide the proof into Steps 3.3–3.4.

STEP 3.3 (Proof of (Y3)). Denote by $\alpha_* \in L^1((0,\infty))$ the Radon–Nikodym derivative $d\mu_*/d\mu$. Define

$$\begin{split} \widetilde{Y} &:= \{ \widetilde{z}' : \alpha_* \widetilde{z}' \in Y \}, \\ \widetilde{Y}'_{\mu_*} &:= \{ z \in L^0(\mathbb{R}^m) : z(x) \in \text{vsupp } \widetilde{Y}(x) \ \mu_*\text{-a.e.}, \langle z, \widetilde{z}' \rangle_{\mu_*} \in \mathbb{R}, \ \forall \widetilde{z}' \in \widetilde{Y} \}, \end{split}$$

where $\langle z, \tilde{z}' \rangle_{\mu_*} := \int_{\Omega} (z(x), \tilde{z}'(x)) d\mu_*(x)$. Then \widetilde{Y}'_{μ_*} is in fact the Köthe associate space of \widetilde{Y} with respect to μ_* . Observe that, for $\alpha_* \tilde{z}' = z' \in Y$,

$$\langle z, \tilde{z}' \rangle_{\mu_*} = \int_{\Omega} (z(x), z'(x) / \alpha_*(x)) \alpha_*(x) \, d\mu(x) = \langle z, z' \rangle_{\mu}$$

As $\zeta \in L^1(\Omega, C_0(\mathbb{R}^m); \mu)$ if and only if $\widetilde{\zeta} := \zeta/\alpha_* \in L^1(\Omega, C_0(\mathbb{R}^m); \mu_*)$, we have

$$\langle \nu, \widetilde{\zeta} \rangle_{\mu_*} := \int_{\Omega} \left[\int_{\mathbb{R}^m} \widetilde{\zeta}(x, \lambda) \, d\nu_x(\lambda) \right] d\mu_*(x) = \langle \nu, \zeta \rangle_{\mu}.$$

Hence, $\delta_{z_{j_k}}$ is $L^1(\Omega, C_0(\mathbb{R}^m); \mu_*)$ weakly convergent to ν in $L^{\infty}_{\omega}(\Omega, \mathcal{M}(\mathbb{R}^m); \mu_*)$ and $\phi \circ z_{j_k}$ is \widetilde{Y} -weakly convergent to $\overline{\phi}$ in X with respect to the duality pair $\langle X, \widetilde{Y} \rangle_{\mu_*}$. By Theorem 2.1/(Y3), there exists $A_{\phi} \in \mathfrak{A}$ such that $\mu_*(A_{\phi}) = 0$, the integral $\int_{\mathbb{R}^m} \phi(x, \lambda) d\nu_x(\lambda)$ exists in vsupp X(x) for $x \in \Omega \setminus A_{\phi}$, and (2.1) holds for all $x \in \Omega \setminus A_{\phi}$. As μ is equivalent to μ_* , we see that $\mu(A_{\phi}) = 0$.

STEP 3.4 (Proof of (Y4)). Observe that X = Y' implies $X = \widetilde{Y}'_{\mu_*}$. Since the sequence $\phi \circ z_{j_k}$ is sequentially Y-weakly pre-compact in X, we conclude that $\phi \circ z_{j_k}$ is sequentially \widetilde{Y} -weakly pre-compact in X with respect to the duality pair $\langle X, \widetilde{Y} \rangle_{\mu_*}$. By Theorem 2.1/(Y4), there exists $A_{\phi} \in \mathfrak{A}$ such that $\mu_*(A_{\phi}) = 0$, the integral $\int_{\mathbb{R}^m} \phi(x, \lambda) \, d\nu_x(\lambda)$ exists in vsupp X(x) for all $x \in$ $\Omega \setminus A_{\phi}$, and $\phi \circ z_{j_k}$ is \widetilde{Y} -weakly convergent to $\widetilde{\phi}$ in X with respect to $\langle \cdot, \cdot \rangle_{\mu_*}$, where $\widetilde{\phi}(x) := \int_{\mathbb{R}^m} \phi(x, \lambda) \, d\nu_x(\lambda)$ for $x \in \Omega \setminus A_{\phi}$ and $\widetilde{\phi}(x) := 0$ otherwise. Since μ is equivalent to μ_* , we conclude that $\mu(A_{\phi}) = 0$ and $\phi \circ z_{j_k}$ is Y-weakly convergent to $\widetilde{\phi}$ in X.

Proof of Proposition 2.4. We divide this proof into Steps 3.5–3.6.

STEP 3.5. Assume that (SC1) holds. We claim that the sequence $\phi \circ z_j$ is Y-absolutely bounded in X, i.e.

$$(3.2) \quad y \in Y \Rightarrow \lim_{\mu_*(D) \to 0} \sup_{j \in \mathbb{N}} \int_D |(y(x), (\phi \circ z_j)(x))| \, d\mu(x) = 0,$$
$$\sup_{j \in \mathbb{N}} \int_\Omega |(y(x), (\phi \circ z_j)(x))| \, d\mu(x) < \infty.$$

Indeed, we deduce that

$$\begin{split} & \int_{D} |(y(x), (\phi \circ z_j)(x))| \, d\mu(x) \leq \int_{D} |y(x)| \gamma(|z_j(x)|) u_0(x) \, d\mu(x) \\ & = \Big(\int_{D \cap \{\gamma(|z_j(\cdot)|) \leq l\}} + \int_{D \cap \{\gamma(|z_j(\cdot)|) \geq l\}} \Big) |y(x)| \gamma(|z_j(x)|) u_0(x) \, d\mu(x) \\ & \leq l \int_{D} |y(x)| u_0(x) \, d\mu(x) + \int_{\{\gamma(|z_j(\cdot)|) \geq l\}} |y(x)| \gamma(|z_j(x)|) u_0(x) \, d\mu(x). \end{split}$$

Since γ is nondecreasing, we can choose $m_l \to \infty$ such that $\{t \ge 0 : \gamma(t) \ge l\} \subset \{t \ge 0 : t \ge m_l\}$. Then

$$\begin{split} \int_{\{\gamma(|z_{j}(\cdot)|) \ge l\}} &|y(x)|\gamma(|z_{j}(x)|)u_{0}(x) \, d\mu(x) \\ &\leq \int_{\{|z_{j}(\cdot)| \ge m_{l}\}} &|y(x)|\gamma(|z_{j}(x)|)u_{0}(x) \, d\mu(x) \\ &\leq \frac{1}{M_{l}} \int_{\{|z_{j}(\cdot)| \ge m_{l}\}} &|y(x)|g(|z_{j}(x)|)u_{0}(x) \, d\mu(x) \\ &\leq \frac{1}{M_{l}} \int_{\Omega} &|y(x)|g(|z_{j}(x)|)u_{0}(x) \, d\mu(x) \le \frac{C}{M_{l}} \to 0 \end{split}$$

as $l \to \infty$ uniformly in j, where $C \in (0, \infty)$, $g(t) \ge M_l \gamma(t)$ for $t \ge m_l$, and $M_l \to \infty$ as $l \to \infty$. Hence, for any $\varepsilon > 0$ there exists l_0 such that

$$\int_{\{\gamma(|z_j(\cdot)|) \ge l_0\}} |y(x)|\gamma(|z_j(x)|)u_0(x) \, d\mu(x) \le \varepsilon \quad \forall j \in \mathbb{N}$$

As $y \in Y$ and $u_0 Y \subset L^1(\mathbb{R}^d)$ we have $\lim_{\mu_*(D)\to 0} \int_D |y(x)| u_0(x) d\mu(x) = 0$. Therefore, there exists $\delta > 0$ such that $\mu_*(D) < \delta$ implies

$$\int_{D} |y(x)u_0(x)| \, d\mu(x) \le \frac{\varepsilon}{l_0}$$

Hence, we infer that

$$\mu_*(D) < \delta \implies \int_D |(y(x), (\phi \circ z_j)(x))| \, d\mu(x) \le l_0 \, \frac{\varepsilon}{l_0} + \varepsilon = 2\varepsilon$$

So, the first part of (3.2) follows. The second part of (3.2) follows by the same arguments.

Since vsupp X(x) =vsupp $Y(x) \mu$ -a.e. and $X \subset Y'$, (3.2) implies that the sequence $\phi \circ z_{j_k}$ is sequentially Y-weakly pre-compact in X, due to the Y-weak pre-compactness theorem of J. Dieudonné [7] (if X is a normed lattice with X = X'', Y = X'); W. Luxemburg and A. Zaanen [10], P. P. Zabrejko [23, Theorem 33] (if X is a normed lattice); H. Nakano [13] (m = 1with X = X'', Y = X'); O. Burkinshaw and P. Dodds [4, Theorem 3.4, Proposition 2.4] (m = 1), and [15, Theorem 2.8/(2)], [18] ($m \ge 2$).

STEP 3.6. Assume that (SC2) holds. It is known that $(\Gamma^{\circ})'$ can be interpreted as the dual space $(\Gamma^{\circ})^*$ by the injection $z' \mapsto \langle \cdot, z' \rangle_{\mu}$ (see, e.g., [1, 23], [9, Theorems VI.1.4 and IV.3.6] (d = 1), [15, Corollary 2.2, Proposition 2.2], [18] $(d \ge 2)$). By [9, Theorem IV.3.3] (m = 1) and [16, Theorem 2.5], [15, 18] $(m \ge 2)$, the separability of μ implies the separability of Γ° . Hence, by the Alaoglu–Bourbaki theorem together with [9, Theorem V.7.6], the Γ° -weak

topology on any closed ball of $(\Gamma^{\circ})^*$ is compact and metrizable. Therefore, for any sequence a_i in the $(\Gamma^{\circ})'$ -norm-bounded set $\{\phi \circ z_{j_k}\}_{k \in \mathbb{N}}$ there exist a subsequence p(i) of the sequence i and $a \in (\Gamma^{\circ})'$ such that $a_{p(i)}$ is Γ° -weakly convergent to a in $(\Gamma^{\circ})'$. Since $Y \subset \Gamma^{\circ}$ and $(\Gamma^{\circ})' \subset X$, $a_{p(i)}$ is Y-weakly convergent to a in X. Hence, $a_{p(i)}$ is a Y-weak Cauchy sequence in X. Thus, the statement of Proposition 2.4/(SC2) follows.

Proof of Theorem 2.6. It suffices to modify Step 3.1 of the proof of Theorem 2.1/(Y3). Since supp $\widetilde{K} = \Omega$, by [9, Corollary IV.3.2] there exists a sequence of disjoint sets $\Omega_q \in \mathfrak{A}$ such that $\chi_{\Omega_q} \in \widetilde{K}$ and $\mu(\Omega \setminus \bigcup_{q=1}^{\infty} \Omega_q) = 0$. Since E is a separable reflexive space, so is E^* . Hence, there exists $\{\widetilde{u}_p\}_{p \in \mathbb{N}}$ dense in E^* . By (3.1) for $\chi_{\Omega_q} \widetilde{u}_p \in Y$, for some $\widetilde{D}_{pq} \in \mathfrak{A}$, $\widetilde{D}_{pq} \subset \Omega_q$ and $\mu(\Omega_q \setminus \widetilde{D}_{pq}) = 0$ and $\langle \chi_{\Omega_q}(x)\widetilde{u}_p, \overline{\phi}(x) \rangle = \int_{\mathbb{R}^m} \langle \chi_{\Omega_q}(x)\widetilde{u}_p, \phi(x,\lambda) \rangle d\nu_x(\lambda) \in \mathbb{R}$ for $x \in \widetilde{D}_{pq}$. Therefore, for $x \in \bigcap_{p \in \mathbb{N}} \widetilde{D}_{pq}$,

$$\langle \widetilde{u}_p, \overline{\phi}(x) \rangle = \int_{\mathbb{R}^m} \langle \widetilde{u}_p, \phi(x, \lambda) \rangle \, d\nu_x(\lambda) \in \mathbb{R}.$$

Put $\psi(x, \lambda) := \|\phi(x, \lambda)\|_E$. Since $\operatorname{supp} K = \operatorname{supp} \widetilde{K} = \Omega$ and the sequence $\phi \circ z_{j_k}$ is $\widetilde{K}(E^*)$ -weakly pre-compact in K(E), by M. Talagrand [22, Corollary 9 of Theorem 6] and M. Nowak [19, Theorem 3.3] we deduce that the sequence $\psi \circ z_{j_k}$ is \widetilde{K} -weakly pre-compact in \widetilde{K}' . By Theorem 2.1/(Y4) for $\psi \circ z_{j_k}$, there exists $D_{\psi} \in \mathfrak{A}$ such that $\mu(\Omega \setminus D_{\psi}) = 0$ and the integral $\int_{\mathbb{R}^m} \psi(x, \lambda) \, d\nu_x(\lambda) \in \mathbb{R}$ exists for all $x \in D_{\psi}$.

Fix $u^* \in E^*$. Then we can choose a sequence $\hat{u}_i := \tilde{u}_{p(i)}$ from the dense set $\{\tilde{u}_p\}_{p\in\mathbb{N}}$ with $\|\hat{u}_i - u^*\|_{E^*} \to 0$ as $i \to \infty$. Hence, $x \in \bigcap_{p=1}^{\infty} \tilde{D}_{pq} \cap D_{\psi}$ implies that $\langle \hat{u}_i, \phi(x, \lambda) \rangle \to \langle u^*, \phi(x, \lambda) \rangle$ for all $\lambda \in \mathbb{R}^m$, $\langle \hat{u}_i, \overline{\phi}(x) \rangle \to \langle u^*, \overline{\phi}(x) \rangle$, and $|\langle \hat{u}_i, \phi(x, \lambda) \rangle| \leq \sup_{i\in\mathbb{N}} \|\hat{u}_i\|_{E^*} \psi(x, \lambda) < \infty$. Hence, by the Lebesgue dominated convergence theorem, we infer that

$$\int_{\mathbb{R}^m} \langle \hat{u}_i, \phi(x, \lambda) \rangle \, d\nu_x(\lambda) \to \int_{\mathbb{R}^m} \langle u^*, \phi(x, \lambda) \rangle \, d\nu_x(\lambda) \in \mathbb{R}$$

as $i \to \infty$ for $x \in \bigcap_{p=1}^{\infty} \widetilde{D}_{pq} \cap D_{\psi}$. Hence, $x \in \bigcap_{p=1}^{\infty} \widetilde{D}_{pq} \cap D_{\psi}$ implies that $\langle u^*, \overline{\phi}(x) \rangle = \int_{\mathbb{R}^m} \langle u^*, \phi(x, \lambda) \rangle \, d\nu_x(\lambda) \in \mathbb{R}$ for all $u^* \in E^*$. Therefore, for $x \in \bigcap_{p=1}^{\infty} \widetilde{D}_{pq} \cap D_{\psi}$, the Pettis integral (P)- $\int_{\mathbb{R}^m} \phi(x, \lambda) d\nu_x(\lambda) \in E$ exists and coincides with $\overline{\phi}(x)$ [6, p. 53]. So, we obtain

$$\left(x \in D_{\phi} := \bigcup_{q=1}^{\infty} \bigcap_{p=1}^{\infty} \widetilde{D}_{pq} \cap D_{\psi}\right) \Rightarrow \overline{\phi}(x) = (P) - \int_{\mathbb{R}^m} \phi(x, \lambda) \, d\nu_x(\lambda) \in E,$$

and $\mu(\Omega \setminus D_{\phi}) = 0$. Hence, the statement (Y3) of Theorem 2.6 follows for $A_{\phi} := \Omega \setminus D_{\phi}$.

LEMMA 3.2 ([15, Lemma 4.2.3]). Let $K \subset L^0(\mathbb{R})$ be a normed lattice with monotone norm. Then for $\varepsilon \in (0,\infty)$ there exists $r(\varepsilon) \in (0,\infty)$ such that $||z||_K \leq r(\varepsilon) \Rightarrow ||z||_{L^0(\mathbb{R})} \leq \varepsilon$.

Proof of Proposition 2.7. By 2.7, $g_q(|z_j(x_0)|) \ge g_q(L)$ for $x_0 \in D_L^j := \{x \in \Omega : |z_j(x)| \ge L\}$. Since K(q) is a normed lattice with monotone norm $\|\cdot\|_{K(q)}$, we infer that

$$\begin{aligned} \|\chi_{C_q} g_q(|z_j(\cdot)|)\|_{K(q)} &\geq \|\chi_{C_q \cap D_L^j} g_q(|z_j(\cdot)|)\|_{K(q)} \\ &\geq \|\chi_{C_q \cap D_L^j} g_q(L)\|_{K(q)} = g_q(L)\|\chi_{C_q \cap D_L^j}\|_{K(q)}. \end{aligned}$$

Hence, $\lim_{L\to\infty} \sup_{j\in\mathbb{N}} \|\chi_{C_q\cap D_L^j}\|_{K(q)} = 0$. By Lemma 3.2, for all $\varepsilon > 0$ there exists $r_q(\varepsilon) > 0$ such that, given $j \in \mathbb{N}$, if $\|\chi_{C_q\cap D_L^j}\|_{K(q)} \le r(\varepsilon)$ then $\|\chi_{C_q\cap D_L^j}\|_{L^0(\Omega,\mathbb{R})} = \frac{1}{2}\mu_*(C_q\cap D_L^j) \le \varepsilon$. Therefore, there exists L_{ε}^q such that $L \ge L_{\varepsilon}^q$ implies that $\|\chi_{C_q\cap D_L^j}\|_{K(q)} \le r(\varepsilon)$ for all $j \in \mathbb{N}$. It follows that $\frac{1}{2}\mu_*(C_q\cap D_L^j) \le \varepsilon$ for all $j \in \mathbb{N}$ and all $L \ge L_{\varepsilon}^q$. This gives (GB) for μ_* and z_j on $C_q \subset \Omega$. By Proposition 3.1, (LB) follows for μ and z_j .

Acknowledgements. We are grateful to the referee for many constructive remarks used for preparing the revised version.

References

- J. Appell and P. P. Zabrejko, Nonlinear Superposition Operators, Cambridge Univ. Press, Cambridge, 1990.
- [2] E. J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory, SIAM J. Control Optim. 22 (1984), 570–598.
- [3] J. M. Ball, A version of the fundamental theorem for Young measures, in: PDE's and Continuum Models of Phase Transitions (Nice, 1988), D. Serre et al. (eds.), Lecture Notes in Phys. 344, Springer, Berlin, 1989, 207–215.
- [4] O. Burkinshaw and P. Dodds, Weak sequential compactness and completeness in Riesz spaces, Canad. J. Math. 28 (1976), 1332–1339.
- [5] C. Castaing, P. Raynaud de Fitte, and M. Valadier, Young Measures on Topological Spaces with Applications in Control Theory and Probability Theory, Kluwer, Dordrecht, 2004.
- [6] J. Diestel and J. J. Uhl, Vector Measures, Amer. Math. Soc., Providence, 1977.
- [7] J. Dieudonné, Sur les espaces de Köthe, J. Anal. Math. 1 (1951), 81–115.
- [8] I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: L^p Spaces, Vol. I, Springer, Berlin, 2007.
- [9] L. V. Kantorovich and G. P. Akilov, *Functional Analysis*, Pergamon Press, Oxford, 1982.
- [10] W. A. J. Luxemburg and A. C. Zaanen, Compactness of integral operators in Banach function spaces, Math. Ann. 149 (1963), 150–180.
- [11] J. Málek, J. Nečas, M. Rokyta, and M. Růžička, Weak and Measure-Valued Solutions to Evolutionary PDEs, Chapman & Hall, London, 1996.

- [12] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, Berlin, 1983.
- [13] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen, Tokyo, 1950.
- [14] H. T. Nguyêñ, Theory of semimodules of infra-semi-units in vector functions ideal spaces and its applications to integral operators, Dokl. Akad. Nauk SSSR 317 (1991), 1303–1307 (in Russian); English transl.: Soviet Math. Dokl. 43 (1991), 615–619.
- [15] —, Non-Solid Ideal Spaces of Vector Functions: Geometry, Interpolation and Applications to Nonlinear Operators and Equations, Habilitation dissertation, Belarus State Univ., Minsk, 1991, 341 pp.
- [16] —, On Banach function M-spaces, Indag. Math. (N.S.) 14 (2002), 551–564.
- [17] H. T. Nguyêñ and D. Pączka, Generalized gradients for locally Lipschitz integral functionals on non-L^p-type spaces of measurable functions, in: Function Spaces VIII, H. Hudzik et al. (eds.), Banach Center Publ. 79, Inst. Math., Polish Acad. Sci., 2008, 135–156.
- [18] H. T. Nguyêñ and P. P. Zabrejko, *Ideal spaces of vector-valued functions and their applications*, in: Function Spaces 1989, J. Musielak et al. (eds.), Teubner-Texte Math. 120, Teubner, Stuttgart-Leipzig, 1991, 112–119.
- [19] M. Nowak, Conditional and relative weak compactness in vector-valued function spaces, J. Convex Anal. 12 (2005), 447–463.
- [20] P. Pedregal, Parametrized Measures and Variational Principles, Birkhäuser, Basel, 1997.
- [21] T. Roubiček, Relaxation in Opimization Theory and Variational Calculus, de Gruyter, Berlin, 1997.
- [22] M. Talagrand, Weak Cauchy sequences in $L^1(E)$, Amer. J. Math. 106 (1984), 703–727.
- [23] P. P. Zabrejko, Ideal spaces of functions I, Vestnik Yaroslav. Univ. 8 (1974), 12–52.

Hông Thái Nguyên Institute of Mathematics Szczecin University Szczec Wielkopolska 15 70-451 Szczecin, Poland E-mail: nguyenhthaimathuspl@yahoo.com

Dariusz Pączka Institute of Mathematics Szczecin University of Technology Al. Piastów 48 70-311 Szczecin, Poland E-mail: paczka@ps.pl

Received October 3, 2007; received in final form July 23, 2008

(7621)