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Summary. Let 〈X,Y 〉 be a duality pair of M -spaces X,Y of measurable functions from
Ω ⊂ Rn into Rd. The paper deals with Y -weak cluster points φ of the sequence φ(·, zj(·))
in X, where zj : Ω → Rm is measurable for j ∈ N and φ : Ω×Rm → Rd is a Carathéodory
function. We obtain general sufficient conditions, under which, for some negligible set Aφ,
the integral I(φ, νx) :=

	
Rm

φ(x, λ) dνx(λ) exists for x ∈ Ω \ Aφ and φ(x) = I(φ, νx)

on Ω \ Aφ, where ν = {νx}x∈Ω is a measurable-dependent family of Radon probability
measures on Rm.

1. Notations and some basic facts on Young measures. Let µ de-
note a complete separable σ-finite σ-additive positive measure on a σ-algebra
A of subsets of a set Ω. Measurability will always mean A-measurability.
Let E be a separable Banach space. We will denote by L∞(Ω,E;µ), or
briefly L∞(E), the Banach space (of all equivalence classes) of essential
E-norm-bounded measurable functions u : Ω → E with norm ‖u‖L∞ :=
ess supx∈Ω ‖u(x)‖E . Let L1(Ω,E;µ), or briefly L1(E), denote the Bochner–
Lebesgue space (of all equivalence classes) of µ-integrable strongly measur-
able functions from Ω into E.

LetM(Rm) be the Banach space of bounded signed Radon measures on
Rm and C0(Rm) be the Banach space of all continuous functions f : Rm → R
with lim|λ|→∞ f(λ) = 0 equipped with the sup-norm, where | · | denotes
the Euclidean norm in Rm. It is known that (C0(Rm))∗ ∼= M(Rm). Let
L∞ω (M(Rm)) denote the Banach space (of all equivalence classes) of C0(Rm)-
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weakly measurable functions ν : Ω → M(Rm) with norm ‖ν‖∞ := ‖x 7→
|νx|(Rm)‖L∞ < ∞, where |νx|(Rm) is the total variation of νx on Rm and,
for abbreviation, we write L∞ (resp. νx) instead of L∞(R) (resp. ν(x)). It
is known that L∞ω (M(Rm)) can be interpreted as dual space (L1(C0(Rm)))∗

via the injection ν 7→ 〈·, ν〉µ, where 〈h, ν〉µ :=
	
Ω〈v(x), h(x)〉 dµ(x) for all

h ∈ L1(C0(Rm)). Given a measurable function z : Ω → Rm, define the
parametrized Dirac measure δz ∈ L∞ω (M(Rm)) by

x ∈ Ω 7→ δz(x) := δz(x) (the Dirac measure supported at z(x)).

An element ν ∈ L∞ω (M(Rm)) is called a Young parametrized measure if
νx(Rm) = 1 µ-a.e. Define (φ◦z)(x) := φ(x, z(x)). A function f : Ω×Rm → E
is said to be Carathéodory if f(·, u) is measurable for every u ∈ Rm and f(x, ·)
is continuous for almost all x ∈ Ω.

The formulations and proofs of the main results of the present paper are
based on the following fundamental theorem [2, 3] about the Young measure
representation in case of the pair 〈X,Y 〉 = 〈L1(R), L∞(R)〉 (see Theorem 1.1;
cf. [20, p. 98–100], [8, Section 8.1, pp. 518–525], [5, 21]).

Theorem 1.1 (The Young measure representation; Ball [3], Balder [2]).
Suppose that a sequence of measurable functions zj : Ω → Rm satisfies the
global tightness condition with respect to µ:

(GB) lim
L→∞

sup
j∈N

µ{x ∈ Ω : |zj(x)| ≥ L} = 0.

Then there exist a subsequence zjk and a Young measure ν = {νx}x∈Ω such
that δzjk is L1(C0(Rm))-weakly convergent to ν in L∞ω (M(Rm)). Moreover ,
given a Carathéodory function ψ : Ω × Rm → R, the following statements
hold.

(Y1) If ψ ◦ zjk is L∞(R)-weakly convergent to ψ in L1(R), then, for some
µ-negligible set Aψ ∈ A, the integral

	
Rm ψ(x, λ) dνx(λ) ∈ R exists for

x ∈ Ω \Aψ and

(1.1) ψ(x) =
�

Rm
ψ(x, λ) dνx(λ) on Ω \Aψ.

(Y2) If ψ ◦zjk is sequentially L∞(R)-weakly pre-compact in L1(R), then, for
some µ-negligible set Aψ∈A, the integral I(ψ, νx) :=

	
Rm ψ(x, λ) dνx(λ)

∈ R exists for all x ∈ Ω \Aψ and ψ ◦ zjk is L∞(R)-weakly convergent
to ψ̃ ∈ L1(R), where ψ̃(x) := I(ψ, νx) for x ∈ Ω \ Aψ and ψ̃(x) := 0
otherwise.

The generalization of Theorem 1.1 for the LΨ∗(R)-weak limit of τ ◦zjk in
the Orlicz space LΨ (R) is proved by P. Málek et al. [11, Th. 4.2.1, pp. 171–
176] in the case when Ψ and Ψ∗ are complementary non-power Orlicz func-
tions, Ψ satisfies the 42-condition [12], and τ : Rm → R is continuous.
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2. Formulation of results. A linear space Z ⊂ L0(Rm) is called an
M -space if the inclusions z ∈ Z and α ∈ L∞(R) imply that αz ∈ Z [16, 18].
If m = 1 then it is easy to check that M -spaces Z are just vector lattices.
The Köthe associate space Z ′ with respect to µ of an M -space Z is defined
e.g. in [7, 9] for m = 1, and in [15, 14, 18] for m ≥ 2. By [16, Theorem 3.1],
equivalently in case m ≥ 2, Z ′ is defined by

Z ′ = {z′ ∈ L0(Rm) : z′(x) ∈ vsuppZ(x) µ-a.e., 〈z, z′〉µ ∈ R, ∀z ∈ Z}.

Here 〈z, z′〉µ :=
	
Ω(z(x), z′(x)) dµ(x), where (·, ·) denotes the Euclidean

scalar product on Rm, and the so-called vector support vsuppZ can be equiv-
alently defined by

vsuppZ(x) := {z1(x), z2(x), . . .} µ-a.e.

for some sequence zn ∈ Z such that z ∈ Z ⇒ z(x) ∈ {z1(x), z2(x), . . .} µ-a.e.
If Z, Y ⊂ L0(Rm) are M -spaces and Y ⊂ Z ′, then 〈Z, Y 〉 is a duality pair
with respect to 〈z, z′〉µ (z ∈ Z, z′ ∈ Y ), and we write 〈Z, Y 〉µ.

Let 〈Z, Y 〉 be a duality pair of vector spaces. A set N ⊂ Z is called se-
quentially Y -weakly pre-compact in Z (or conditionally sequentially Y -weakly
compact in Z) if each sequence zj ∈ N has some Y -weak Cauchy subse-
quence zj(k). The space Z is called sequentially Y -weakly complete if each
Y -weak Cauchy sequence is Y -weakly convergent in Z.

Theorem 2.1. Let X,Y ⊂L0(Rd) beM -spaces, suppX=Ω, vsuppX(x)
= vsuppY (x) µ-a.e., and Y ⊂ X ′, where X ′ is the Köthe associate space
of X with respect to µ. Suppose that a sequence zj ∈ L0(Rm) satisfies (GB)
with respect to µ, and a Carathéodory function φ : Ω × Rm → Rd satisfies
φ(x,Rm) ⊂ vsuppX(x) µ-a.e. Moreover , let zjk and ν be as in Theorem 1.1.
Then the following statements hold.

(Y3) If φ◦ zjk is Y -weakly convergent to φ in X, then, for some µ-negligible
set Aφ ∈ A, the integral

	
Rm φ(x, λ) dνx(λ) exists in vsuppX(x) for

x ∈ Ω \Aφ and

(2.1) φ(x) =
�

Rm
φ(x, λ) dνx(λ) on Ω \Aφ.

(Y4) If X = Y ′ and φ ◦ zjk is sequentially Y -weakly pre-compact in X,
then, for some µ-negligible set Aφ ∈ A, the integral I(φ, νx) :=	
Rm φ(x, λ) dνx(λ) exists in vsuppX(x) for all x ∈ Ω\Aφ and φ◦zjk is
Y -weakly convergent to φ̃ in X, where φ̃(x) := I(φ, νx) for x ∈ Ω \Aφ
and φ̃(x) := 0.

Condition 2.2 (Local tightness condition, [11, p. 171], [20]). A sequence
zj ∈ L0(Rm) satisfies
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(LB) lim
L→∞

sup
j∈N

µ{x ∈ Cq : |zj(x)| ≥ L} = 0 (∀q ∈ N)

for a nondecreasing sequence Cq ∈ A with µ(Cq) <∞ and
⋃
q∈NCq = Ω.

Theorem 2.3. Let µ(Ω) =∞ and let X, Y and φ be as in Theorem 2.1.
If a sequence zj ∈ L0(Rm) satisfies (LB) with respect to µ, then the state-
ments (Y3)–(Y4) of Theorem 2.1 remain true.

A normed space Z ⊂ L0(Rm) with norm ‖ · ‖Z is called a normed M -
space if the inclusions z ∈ Z and α ∈ L∞(R) imply that αz ∈ Z and
‖αz‖Z ≤ ‖α‖L∞‖z‖Z [16, 18]. The regular part Z◦ of a normed M -space
Z is defined to be the normed M -subspace of all elements z ∈ Z satisfying
limµ∗(D)→0 ‖χDz‖Z = 0, where µ∗ := µ if µ(Ω) < ∞ and µ∗ is a fixed
finite positive measure equivalent to µ if µ(Ω) = ∞, and χD denotes the
characteristic function of D ∈ A.

Proposition 2.4. Let X,Y ⊂ L0(Rd) be M -spaces with X ⊂ Y ′, where
Y ′ is the Köthe associate space of Y with respect to µ. Suppose that a sequence
zj ∈ L0(Rm) and a Carathéodory function φ : Ω × Rm → Rd satisfy one of
the following conditions:

(SC1) There exist nondecreasing continuous functions g, γ : [0,∞)→ [0,∞)
such that

(a) limt→∞ g(t) =∞ and limt→∞ γ(t)/g(t) = 0;
(b) {(g◦|zj |)u0}j∈N is Y -weakly bounded in X, where u0 : Ω → (0,∞)

is measurable, u0Y ⊂ L1(Rd), and vsuppX(x) = vsuppY (x)
µ-a.e.;

(c) |φ(x, λ)| ≤ γ(|λ|)u0(x) for µ-almost all x ∈ Ω and all λ ∈ Rm;

(SC2) There exists a Banach M -space Γ with Y ⊂ Γ ◦, (Γ ◦)′ ⊂ X and

supj∈N ‖φ ◦ zj‖(Γ ◦)′ <∞.
Then the sequence φ ◦ zj is sequentially Y -weakly pre-compact in X.

Remark 2.5. Proposition 2.4/(SC1) is a generalization of [20, Proposi-
tion 6.5] (where Y = L1(R) with µ(Ω) <∞).

In the case of φ : Ω×Rm → E with dimE =∞, results analogous to The-
orems 2.1 and 2.3 can be proved but only for a pair 〈X,Y 〉 of Köthe–Bochner
spaces X,Y of E-/E∗-valued functions (see Theorem 2.6). Given a separable
Banach space E and a vector lattice K ⊂ L0(R), the Köthe–Bochner space
K(E) is defined as the space (of equivalence classes) of strongly measurable
E-valued functions z such that ‖z(·)‖E ∈ K.

Theorem 2.6. Let K, K̃ ⊂ L0(R) be vector lattices, E be a Banach space
and E∗ be its dual. Assume that :
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(a) suppK = supp K̃ = Ω and K̃ ⊂ K ′, where K ′ is the Köthe associate
space of K with respect to µ;

(b) E is separable and reflexive with dimE =∞.

If φ : Ω × Rm → E is a Carathéodory function and a sequence zj ∈ L0(Rm)
satisfies either (GB) or (LB), then the statements (Y3)–(Y4) of Theorem 2.1
remain true for the Köthe–Bochner spaces X = K(E) and Y = K̃(E∗)
provided (2.1) (resp. φ̃) is substituted by

(2.2) φ(x) = (P )-
�

Rm
φ(x, λ) dνx(λ) on Ω \Aφ

(resp. φ̃(x) = (P )-
	
Rm φ(x, λ) dνx(λ) for x ∈ Ω \Aφ), where, for x ∈ Ω \Aφ,

the above integral exists as the Pettis integral of the function φ(x, ·) : Rm →
E with respect to the measure νx.

Proposition 2.7. Let zj ∈ L0(Rm) (j ∈ N). Then (LB) with respect to
µ follows from the condition:

(LK) For q ∈ N there exist a normed lattice with monotone norm K(q) ⊂
L0(R) and a continuous nondecreasing function gq : [0,∞) → [0,∞)
such that limt→∞ gq(t) = ∞ and supj∈N ‖χCqgq(|zj(·)|)‖K(q) < ∞ for
a nondecreasing sequence Cq ∈ A with µ(Cq) <∞ and

⋃
q∈NCq = Ω.

Remark 2.8. Proposition 2.7 is an extension of the statement in [3,
Remark 1, p. 209] (where K(q) = L1(R)).

Remark 2.9. If Z ⊂ L0(Rm) is a normed M -space and supj∈N ‖zj‖Z
< ∞, then (LB) holds. Indeed, by [9, Corollary of Theorem IV.3.1], [23]
(m = 1) and [16, Theorem 2.1/(3)] (m ≥ 2), the sequence zj is bounded
in L0(Rm) equipped with the quasi-norm ‖z‖L0(Rm) :=

	
Ω
|z(x)|

1+|z(x)| dµ∗(x).
Hence, by [9, Section III.1.3–III.1.4], this sequence is bounded in µ on any Cq,
and so (LB) follows. In particular, Z can be assumed to be either a Banach
lattice of scalar-valued functions (a solid space) or a non-solid generalized
Orlicz space (see, e.g., [1, 12, 17]) of Rm-valued functions with m ≥ 2.

3. Proofs of results of Section 2

Proof of Theorem 2.1. We divide this proof into Steps 3.1–3.2.

Step 3.1 (Proof of (Y3)). Given y ∈ Y , define φy : Ω × Rm → R by
φy(x, λ) := (y(x), φ(x, λ)). As Y is an M -space we have αy ∈ Y for every
α ∈ L∞(R), and from Y ⊂ X ′ we infer that

〈φ ◦ zjk , αy〉µ = 〈φy ◦ zjk , α〉µ ∈ R.

By Theorem 1.1/(Y2) for φy together with the assumption for φ ◦ zjk , we
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deduce that

〈φ ◦ zjk , αy〉µ = 〈φy ◦ zjk , α〉µ → 〈φ, αy〉µ = 〈φ̃y, α〉µ ∈ R

for all α ∈ L∞(R), where, for some D̃φy ∈ A with µ(Ω\D̃φy) = 0, the integral	
Rm φy(x, λ) dνx(λ) ∈ R exists for x ∈ D̃φy, and φ̃y(x) :=

	
Rm φy(x, λ) dνx(λ)

for x ∈ D̃φy and φ̃y(x) := 0 otherwise. Hence,

〈φ, χDy〉µ = 〈φ̃y, χD〉µ

=
�

D

[ �

Rm
(y(x), φ(x, λ)) dνx(λ)

]
dµ(x) ∈ R (D ∈ A, D ⊂ D̃φy).

On the other hand, 〈φ, χDy〉µ =
	
D(y(x), φ(x)) dµ(x) for any D ∈ A with

D ⊆ D̃φy. By the Radon–Nikodym theorem, we deduce that for y ∈ Y there
exists Dφy ∈ A such that Dφy ⊂ D̃φy, µ(D̃φy \Dφy) = 0, and

(3.1) (y(x), φ(x)) =
�

Rm
(y(x), φ(x, λ)) dνx(λ) ∈ R (∀x ∈ Dφy).

Now, we consider X ⊂ L0(Ω,Rd) and Y ⊂ X ′ for d > 1 (the case d = 1
can be handled analogously upon using [9, Corollary IV.3.2] for suppY =
suppX = Ω). By [16, Theorem 3.1], there exists a sequence of representative
families Gq = {u1q, . . . , udq} of the M -space Y such that the sets suppGq
∈ A are mutually disjoint, and

(1) µ(suppY \
⋃∞
q=1 suppGq) = 0;

(2) |u1q(x)| = · · · = |ud(q)q(x)| = 1 and |uiq(x)| = 0 (i 6∈ {1, . . . , d(q)})
for x ∈ suppGq and d(q) = dim vsuppY (x) on suppGq.

By the definition [16] of the representative family Gq, we have uiq ∈ Y
and the linear hull of {u1q(x), . . . , udq(x)} coincides with vsuppY (x) for
x ∈ suppGq. Hence, by (3.1), for χsuppGqupq ∈ Y (1 ≤ p ≤ d(q)) there exists
Dpq ∈ A such that Dpq ⊂ suppGq, µ(suppGq \Dpq) = 0, and

(χsuppGq(x)upq(x), φ(x)) =
�

Rm
(χsuppGq(x)upq(x), φ(x, λ)) dνx(λ) ∈ R

for x ∈ Dpq. By the assumption, there exists D0 ∈ A with µ(Ω \ D0) = 0
such that φ(x), φ(x, λ) ∈ vsuppX(x) = vsuppY (x) for all x ∈ D0 and
for all λ ∈ Rm. Hence, for x ∈ D0 ∩

⋂d(q)
p=1Dpq and 1 ≤ p ≤ d(q), the

integral
	
Rm φ(x, λ) dνx(λ) exists in the finite-dimensional Euclidean space

vsuppY (x) = vsuppX(x) and

(upq(x), φ(x)) =
(
upq(x),

�

Rm
φ(x, λ) dνx(λ)

)
∈ R.
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Therefore,
φ(x) =

�

Rm
φ(x, λ) dνx(λ) ∈ vsuppX(x)

for x ∈ Dφ :=
⋃∞
q=1[D0∩

⋂d(q)
p=1Dpq], and µ(Ω\Dφ) = 0. Hence the statement

(Y3) follows for Aφ := Ω \Dφ.
Step 3.2 (Proof of (Y4)). Observe that, as X = Y ′, there exist a sub-

sequence j(k) of jk and φ ∈ X such that φ ◦ zj(k) is Y -weakly convergent
to φ in X, due to the Y -weak completeness theorem of J. Dieudonné [7] (if
X is a normed lattice with Y = X ′); W. Luxemburg and A. Zaanen [10],
P. P. Zabrejko [23, Theorem 32] (if X is a normed lattice); H. Nakano [13]
(d = 1 with Y = X ′); O. Burkinshaw and P. Dodds [4, Corollary 4.2 of
Theorem 4.1] (d = 1) and [15, Theorem 2.8/(1)], [18] (d ≥ 2).

By Theorem 2.1/(Y3) applied to φ ◦ zj(k), we can find Aφ ∈ A such
that µ(Aφ) = 0 and the integral

	
Rm φ(x, λ) dνx(λ) exists in vsuppX(x) for

x ∈ Ω \Aφ.
We proceed to show that φ◦zjk is Y -weakly convergent to φ̃ in X, where

φ̃(x) :=
	
Rm φ(x, λ) dνx(λ) for x ∈ Ω \Aφ and φ̃(x) := 0 otherwise.

On the contrary, suppose that φ ◦ zjk is not Y -weakly convergent to φ̃
in X. Then there exist ε > 0, h0 ∈ Y and a subsequence qk of jk such that
|〈φ◦zqk , h0〉µ−〈φ̃, h0〉µ| > ε > 0. By the above Y -weak completeness theorem
together with Theorem 2.1/(Y3), for the sequence φ◦zqk we can find a subse-
quence ik of qk, φ̂ ∈ X and Abφ ∈ A such that 〈φ◦zik , h〉µ → 〈φ̂, h〉µ (∀h ∈ Y ),
µ(Abφ) = 0, the integral

	
Rm φ(x, λ) dνx(λ) exists in vsuppX(x) for x ∈

Ω \Abφ, and φ̂(x) =
	
Rm φ(x, λ) dνx(λ) on Ω \Abφ. Therefore, φ̂ and φ̃ define

the same element (equivalence class) in X, and 〈φ̂, h0〉µ = 〈φ̃, h0〉µ. Hence,
we get a contradiction.

Proposition 3.1 ([15, Lemma 4.2.2]). Let µ(Ω) = ∞. Then, for a se-
quence zj ∈ L0(Rm), the condition (LB) holds with respect to µ if and only
if the condition (GB) holds with respect to µ∗.

Proof of Theorem 2.3. By Proposition 3.1, (LB) for µ and zj implies
(GB) for µ∗ and zj . So, we may apply Theorem 2.1 for zj with respect to µ∗.
Recall that if µ(Ω) =∞ then the measure µ is called separable (see [9, 23])
provided µ∗ is separable, which is equivalent to separability of L0(Rm). We
divide the proof into Steps 3.3–3.4.

Step 3.3 (Proof of (Y3)). Denote by α∗ ∈ L1((0,∞)) the Radon–Niko-
dym derivative dµ∗/dµ. Define

Ỹ := {z̃′ : α∗z̃′ ∈ Y },
Ỹ ′µ∗ := {z ∈ L0(Rm) : z(x) ∈ vsupp Ỹ (x) µ∗-a.e., 〈z, z̃′〉µ∗ ∈ R, ∀z̃′ ∈ Ỹ },
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where 〈z, z̃′〉µ∗ :=
	
Ω(z(x), z̃′(x)) dµ∗(x). Then Ỹ ′µ∗ is in fact the Köthe as-

sociate space of Ỹ with respect to µ∗. Observe that, for α∗z̃′ = z′ ∈ Y ,

〈z, z̃′〉µ∗ =
�

Ω

(z(x), z′(x)/α∗(x))α∗(x) dµ(x) = 〈z, z′〉µ.

As ζ ∈ L1(Ω,C0(Rm);µ) if and only if ζ̃ := ζ/α∗ ∈ L1(Ω,C0(Rm);µ∗), we
have

〈ν, ζ̃〉µ∗ :=
�

Ω

[ �

Rm
ζ̃(x, λ) dνx(λ)

]
dµ∗(x) = 〈ν, ζ〉µ.

Hence, δzjk is L1(Ω,C0(Rm);µ∗)-weakly convergent to ν in L∞ω (Ω,M(Rm);µ∗)
and φ◦zjk is Ỹ -weakly convergent to φ in X with respect to the duality pair
〈X, Ỹ 〉µ∗ . By Theorem 2.1/(Y3), there exists Aφ ∈ A such that µ∗(Aφ) = 0,
the integral

	
Rm φ(x, λ) dνx(λ) exists in vsuppX(x) for x ∈ Ω \Aφ, and (2.1)

holds for all x ∈ Ω \Aφ. As µ is equivalent to µ∗, we see that µ(Aφ) = 0.

Step 3.4 (Proof of (Y4)). Observe that X = Y ′ implies X = Ỹ ′µ∗ . Since
the sequence φ◦ zjk is sequentially Y -weakly pre-compact in X, we conclude
that φ ◦ zjk is sequentially Ỹ -weakly pre-compact in X with respect to the
duality pair 〈X, Ỹ 〉µ∗ . By Theorem 2.1/(Y4), there exists Aφ ∈ A such that
µ∗(Aφ) = 0, the integral

	
Rm φ(x, λ) dνx(λ) exists in vsuppX(x) for all x ∈

Ω \Aφ, and φ ◦ zjk is Ỹ -weakly convergent to φ̃ in X with respect to 〈·, ·〉µ∗ ,
where φ̃(x) :=

	
Rm φ(x, λ) dνx(λ) for x ∈ Ω \ Aφ and φ̃(x) := 0 otherwise.

Since µ is equivalent to µ∗, we conclude that µ(Aφ) = 0 and φ ◦ zjk is
Y -weakly convergent to φ̃ in X.

Proof of Proposition 2.4. We divide this proof into Steps 3.5–3.6.

Step 3.5. Assume that (SC1) holds. We claim that the sequence φ ◦ zj
is Y -absolutely bounded in X, i.e.

(3.2) y ∈ Y ⇒ lim
µ∗(D)→0

sup
j∈N

�

D

|(y(x), (φ ◦ zj)(x))| dµ(x) = 0,

sup
j∈N

�

Ω

|(y(x), (φ ◦ zj)(x))| dµ(x) <∞.

Indeed, we deduce that�

D

|(y(x), (φ ◦ zj)(x))| dµ(x) ≤
�

D

|y(x)|γ(|zj(x)|)u0(x) dµ(x)

=
( �

D∩{γ(|zj(·)|)≤l}

+
�

D∩{γ(|zj(·)|)≥l}

)
|y(x)|γ(|zj(x)|)u0(x) dµ(x)

≤ l
�

D

|y(x)|u0(x) dµ(x) +
�

{γ(|zj(·)|)≥l}

|y(x)|γ(|zj(x)|)u0(x) dµ(x).
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Since γ is nondecreasing, we can choose ml→∞ such that {t≥0 : γ(t)≥ l}
⊂ {t ≥ 0 : t ≥ ml}. Then�

{γ(|zj(·)|)≥l}

|y(x)|γ(|zj(x)|)u0(x) dµ(x)

≤
�

{|zj(·)|≥ml}

|y(x)|γ(|zj(x)|)u0(x) dµ(x)

≤ 1
Ml

�

{|zj(·)|≥ml}

|y(x)|g(|zj(x)|)u0(x) dµ(x)

≤ 1
Ml

�

Ω

|y(x)|g(|zj(x)|)u0(x) dµ(x) ≤ C

Ml
→ 0

as l → ∞ uniformly in j, where C ∈ (0,∞), g(t) ≥ Mlγ(t) for t ≥ ml, and
Ml →∞ as l→∞. Hence, for any ε > 0 there exists l0 such that�

{γ(|zj(·)|)≥l0}

|y(x)|γ(|zj(x)|)u0(x) dµ(x) ≤ ε ∀j ∈ N.

As y ∈ Y and u0Y ⊂ L1(Rd) we have limµ∗(D)→0

	
D |y(x)|u0(x) dµ(x)

= 0. Therefore, there exists δ > 0 such that µ∗(D) < δ implies
�

D

|y(x)u0(x)| dµ(x) ≤ ε

l0
.

Hence, we infer that

µ∗(D) < δ ⇒
�

D

|(y(x), (φ ◦ zj)(x))| dµ(x) ≤ l0
ε

l0
+ ε = 2ε.

So, the first part of (3.2) follows. The second part of (3.2) follows by the
same arguments.

Since vsuppX(x) = vsuppY (x) µ-a.e. and X ⊂ Y ′, (3.2) implies that
the sequence φ ◦ zjk is sequentially Y -weakly pre-compact in X, due to the
Y -weak pre-compactness theorem of J. Dieudonné [7] (if X is a normed
lattice with X = X ′′, Y = X ′); W. Luxemburg and A. Zaanen [10], P. P.
Zabrejko [23, Theorem 33] (if X is a normed lattice); H. Nakano [13] (m = 1
with X = X ′′, Y = X ′); O. Burkinshaw and P. Dodds [4, Theorem 3.4,
Proposition 2.4] (m = 1), and [15, Theorem 2.8/(2)], [18] (m ≥ 2).

Step 3.6. Assume that (SC2) holds. It is known that (Γ ◦)′ can be inter-
preted as the dual space (Γ ◦)∗ by the injection z′ 7→ 〈·, z′〉µ (see, e.g., [1, 23],
[9, Theorems VI.1.4 and IV.3.6] (d = 1), [15, Corollary 2.2, Proposition 2.2],
[18] (d ≥ 2)). By [9, Theorem IV.3.3] (m = 1) and [16, Theorem 2.5], [15, 18]
(m ≥ 2), the separability of µ implies the separability of Γ ◦. Hence, by the
Alaoglu–Bourbaki theorem together with [9, Theorem V.7.6], the Γ ◦-weak
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topology on any closed ball of (Γ ◦)∗ is compact and metrizable. Therefore,
for any sequence ai in the (Γ ◦)′-norm-bounded set {φ ◦ zjk}k∈N there exist a
subsequence p(i) of the sequence i and a ∈ (Γ ◦)′ such that ap(i) is Γ ◦-weakly
convergent to a in (Γ ◦)′. Since Y ⊂ Γ ◦ and (Γ ◦)′ ⊂ X, ap(i) is Y -weakly
convergent to a in X. Hence, ap(i) is a Y -weak Cauchy sequence in X. Thus,
the statement of Proposition 2.4/(SC2) follows.

Proof of Theorem 2.6. It suffices to modify Step 3.1 of the proof of The-
orem 2.1/(Y3). Since supp K̃ = Ω, by [9, Corollary IV.3.2] there exists a
sequence of disjoint sets Ωq ∈ A such that χΩq ∈ K̃ and µ(Ω \

⋃∞
q=1Ωq) = 0.

Since E is a separable reflexive space, so is E∗. Hence, there exists {ũp}p∈N
dense in E∗. By (3.1) for χΩq ũp ∈ Y , for some D̃pq ∈ A, D̃pq ⊂ Ωq and
µ(Ωq \ D̃pq) = 0 and 〈χΩq(x)ũp, φ(x)〉 =

	
Rm〈χΩq(x)ũp, φ(x, λ)〉 dνx(λ) ∈ R

for x ∈ D̃pq. Therefore, for x ∈
⋂
p∈N D̃pq,

〈ũp, φ(x)〉 =
�

Rm
〈ũp, φ(x, λ)〉 dνx(λ) ∈ R.

Put ψ(x, λ) := ‖φ(x, λ)‖E . Since suppK = supp K̃ = Ω and the sequence
φ◦zjk is K̃(E∗)-weakly pre-compact inK(E), by M. Talagrand [22, Corollary
9 of Theorem 6] and M. Nowak [19, Theorem 3.3] we deduce that the sequence
ψ◦zjk is K̃-weakly pre-compact in K̃ ′. By Theorem 2.1/(Y4) for ψ◦zjk , there
exists Dψ ∈ A such that µ(Ω\Dψ) = 0 and the integral

	
Rm ψ(x, λ) dνx(λ) ∈

R exists for all x ∈ Dψ.
Fix u∗ ∈ E∗. Then we can choose a sequence ûi := ũp(i) from the dense set

{ũp}p∈N with ‖ûi−u∗‖E∗ → 0 as i→∞. Hence, x ∈
⋂∞
p=1 D̃pq ∩Dψ implies

that 〈ûi, φ(x, λ)〉 → 〈u∗, φ(x, λ)〉 for all λ ∈ Rm, 〈ûi, φ(x)〉 → 〈u∗, φ(x)〉,
and |〈ûi, φ(x, λ)〉| ≤ supi∈N ‖ûi‖E∗ψ(x, λ) < ∞. Hence, by the Lebesgue
dominated convergence theorem, we infer that�

Rm
〈ûi, φ(x, λ)〉 dνx(λ)→

�

Rm
〈u∗, φ(x, λ)〉 dνx(λ) ∈ R

as i → ∞ for x ∈
⋂∞
p=1 D̃pq ∩Dψ. Hence, x ∈

⋂∞
p=1 D̃pq ∩Dψ implies that

〈u∗, φ(x)〉 =
	
Rm〈u

∗, φ(x, λ)〉 dνx(λ) ∈ R for all u∗ ∈ E∗. Therefore, for
x ∈

⋂∞
p=1 D̃pq∩Dψ, the Pettis integral (P )-

	
Rm φ(x, λ)dνx(λ) ∈ E exists and

coincides with φ(x) [6, p. 53]. So, we obtain(
x ∈ Dφ :=

∞⋃
q=1

∞⋂
p=1

D̃pq ∩Dψ

)
⇒ φ(x) = (P )-

�

Rm
φ(x, λ) dνx(λ) ∈ E,

and µ(Ω \ Dφ) = 0. Hence, the statement (Y3) of Theorem 2.6 follows for
Aφ := Ω \Dφ.
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Lemma 3.2 ([15, Lemma 4.2.3]). Let K ⊂ L0(R) be a normed lattice
with monotone norm. Then for ε ∈ (0,∞) there exists r(ε) ∈ (0,∞) such
that ‖z‖K ≤ r(ε)⇒ ‖z‖L0(R) ≤ ε.

Proof of Proposition 2.7. By 2.7, gq(|zj(x0)|) ≥ gq(L) for x0 ∈ Dj
L :=

{x ∈ Ω : |zj(x)| ≥ L}. Since K(q) is a normed lattice with monotone norm
‖ · ‖K(q), we infer that

‖χCqgq(|zj(·)|)‖K(q) ≥ ‖χCq∩DjLgq(|zj(·)|)‖K(q)

≥ ‖χ
Cq∩DjL

gq(L)‖K(q) = gq(L)‖χ
Cq∩DjL

‖K(q).

Hence, limL→∞ supj∈N ‖χCq∩DjL‖K(q) = 0. By Lemma 3.2, for all ε > 0
there exists rq(ε) > 0 such that, given j ∈ N, if ‖χ

Cq∩DjL
‖K(q) ≤ r(ε) then

‖χ
Cq∩DjL

‖L0(Ω,R) = 1
2 µ∗(Cq ∩D

j
L) ≤ ε. Therefore, there exists Lqε such that

L ≥ Lqε implies that ‖χ
Cq∩DjL

‖K(q) ≤ r(ε) for all j ∈ N. It follows that
1
2 µ∗(Cq ∩D

j
L) ≤ ε for all j ∈ N and all L ≥ Lqε. This gives (GB) for µ∗ and

zj on Cq ⊂ Ω. By Proposition 3.1, (LB) follows for µ and zj .
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